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Observables for polarized neutrons transmitted through polarized targets
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A general and concise formalism is presented for the identiScation and evaluation of observ-
ables, including those that would indicate parity-conservation and/or time-reversal violation by the
neutron-nucleus interaction, of experiments on the transmission of polarized neutrons through polar-
ized nuclear targets. Statistical tensors are used for the description of the polarization states of the
projectile and target, and the neutron-nucleus total cross section is decomposed into partial cross
sections so that each corresponds to difFerent ranks of the projectile and target statistical tensors
and to a speci6c transfer of the orbital angular momentum. Each such partial cross section is as-
sociated with a "correlation factor" of particular parity-conservation and time-reversal symmetries
and is measurable by polarizing the projectile and target in states in which the statistical tensors
have speci6c geometries, suggested by the simple geometric properties of the correlation factors.

PACS number(s): 25.40.Dn, 11.30.Er, 24.10.Ht, 24.70.+s

Under specific well-defined conditions, the transmis-
sion of polarized neutrons through nuclear targets is
sensitive to a violation of parity (P) conservation or
time-reversal (T) invariance, and, accordingly, neutron-
transmission experiments can provide sensitive null tests
of these fundamental symmetries in nuclear systems
[1—3]. Recently, Conzett [4] has emphasized the null-
test nature of such experiments and used the Cartesian
formalism for the description of spin-dependent phenom-
ena to identify the P-nonconserving and T-violating ob-
servables. However, the formalism of statistical spherical
tensors [5] is a much more powerful, if not even indispens-
able tool for the description of polarization phenomena
involving spins greater than 1/2, and tensor-polarized
targets of spins I & 1 are essential for the tests of the
T invariance. Gould et aL [6] have identified the various
P-nonconserving and T-violating terms in the neutron-
nucleus total cross section by using the statistical-tensor
formalism, and the recent experimental [3] and theoreti-
cal work [7] on T violation in neutron-nucleus total cross
sections has also employed this formalism.

In this paper, the statistical-tensor methods that have
been used in Refs. [6,7] are simplified and consolidated
into a general formalism enabling a systematic identifica-
tion of all the difFerent observables, including those that
are P nonconserving and/or T violating, of the neutron-
transmission experixnents, as well as providing a unified
&amework for the evaluation of these observables. This is
achieved by decomposing the neutron-nucleus total cross
section into partial cross sections, which correspond to
specific ranks of the projectile and target statistical ten-
sors and to specific transfers of the orbital angular mo-
mentum, and which are independent of the magnitude
and geometry of the statistical tensors. The geometric

aspects of the statistical tensors, peculiar to a given ex-
perimental setup, are factored out into separate "correla-
tion factors" of definite and easily identifiable symmetries
with respect to parity conservation and time reversal.

It should be noted that the incoherent regime of the
neutron transmission through the target is assumed, so
that there is no coherent precession of the incident neu-
tron spin that could result in mimicking a T-violating
interaction [8,9]. Such coherent-scattering effects can
play a significant role only at epithermal neutron ener-
gies, and, in principle, it can be checked experimentally
that no coherent precession of the spin of the incident
neutrons occurs on the transmission through the target.

The optical theorem relates the total cross section ot to
the forward elastic-scattering amplitude f M~, M(O=O)
by

+t = 4ir~Im ) pram'pMM' frn'M', naM(O)s
nona'MM'

where p and pMM are the density matrices of the
projectile and target nuclei, respectively, whose initial
polarization states are assumed to be independent. De-
scribing the projectile and target polarization states by
statistical tensors [5] thq(s) and t~q(I), respectively,
rather than by density matrices, and using the partial-
wave expansion of the elastic-scattering amplitude [5],
the total cross section o't for neutrons (spin s = 1/2) in-
cident on a target nucleus with spin I can be written as

o, = ) i "+ +" [tg(s), tJr(I)]p, „- Yp(p) oazi, (2)
kKA

where
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Here, [, ]i, denotes a spherical-tensor product of rank

k, p is a unit vector along the beam direction, A is

the reduced wavelength, k = (2k + l)i~2, etc. , and

Ti, , i. ——(1/2i)(Si, , i. —bii biz ), where Si, , i are ele-

ments of the elastic-scattering S matrix in the spin-orbit

coupling representation; the angular brackets, R', and
braces denote the Clebsch-Gordan, Racah, and 9-j co-
eKcients, respectively. The quantities o.p~p are partial
total cross sections that correspond to diferent ranks k

and K of the statistical tensors and to difFerent values

A of the transfer of the orbital angular momentum. The

partial cross sections cry, ~~ are de6ned so that they are
independent of the magnitude and geometry of the sta-
tistical tensors, as any such dependence is factored out
by the scalar products in (2) [10]. The 9-j coefficient in

(3) limits the values of A to the range from ~k
—K~ to

k + K, and the phase factors i"+++" in (2) ensure that
the coeKcients with which the partial cross sections o g~p
enter the sum in (2) are real even when k+ K+ A is odd.

When the channel-spin coupling representation is used
instead of the spin-orbit one, the summation in (3) mod-
iies to

TS

(2J+ 1) ( 1) lSS/{lAOOll'0)W(JlS'A; Sl') 4 A k K &Ti s, is~

JlSl' S' , s' ~

with Ti's', is = (1/2i)(Si's, is bii'hss'), where Si's', is isJ . J
now the elastic-scattering S matrix in the channel-spin
representation.

The expression of Eq. (2) for the total cross section o'i

does not assume any specific coordinate kame. In exper-
imental practice, however, the devices used to polarize
beams and targets produce invariably polarization states
with an axiaL symmetry, and in the coordinate frames
with z axes along the directions of axial symmetry, de-
noted by unit vectors si, and I~ for the projectile and
target, respectively, the statistical tensors are "diago-
nal": tgq(s) = tgp(s)bqp and tIi'q(I) = t~p(I)hqp (for
simplicity in notation, the subscripts k and K on the
unit vectors s and I wi11 be omitted henceforth; for neu-
trons the statistical-tensor rank k can be at most 1, in
any case). Assuming then the existence of such axial-
symmetry frames, the general statistical tensors in {2)
become proportional to spherical harmonics of the direc-
tions s and I

I

inal unity components of the statistical tensors ti,p(s)
and tIcp(I), and to a nominal unity correlation factor

Ci sex(s Ip).
Statistical-tensor expressions of varying generality for

the total cross section have been given in the literature
on several occasions before [6,7,12—14].

The correlation factor Ci,rig(sIp) associated with a
partial cross section og~p has simple properties under
the symmetry operations of space inversion (i.e., the par-
ity transformation) and time reversal. Under the par-
ity transformation P, the directions of axial symmetry
s and I of the spin states do not change, as spins re-
main unchanged under P, but the beam direction p is
reversed, and so, using the property of spherical har-
monics Yi~(—r) = (—1) Yi~(r) in the definition (8), the
correlation factor changes as

P Cg~p (s I p) = (—1) Cieli p (s Ip).

ti,q(s) = ti,p{s) (v 4~/k) Yi,q(s),

t~q(I) = txp(I) (+4m./K) YIig(I), (6)

On the other hand, under time reversal T, the directions
of spin axial symmetry s and I, as well as the beam di-
rection p are reversed, and [15]

as they are obtained from the tensors ti,q(s) and t~q(I)
by appropriate rotations of the axial-symmetry frames,
and the total cross section ot. can be expressed as

t o( ) t o(I) C ( Ip) (7)

Ci,y&p(sIp) = i"+ +" „[Yj,(s), Yz (1)]g,Yp(p)
kKA

The scalar quantities Ci,icy(sIp) contain the geometric
features peculiar to a given experixuenta} arrangement,
and will be termed the correlation factors. They are de-
ffned in (8) with the phase factor i,~+~+" so that they
are always real [11].Et is now seen from Eq. (7) that the
partial cross sections og~p are each normalized to nom-

T CHEKA(sIP) = ( 1) CieKA(sIP) ~

In other words, the correlation factor Ci,~q(sIp) is
"P even" ("P odd") when A is even (odd); similarly,

Ci,~q{sIp) is "T even" ("T odd") when k + K + A is

even (odd). These symmetry properties can be attached
also to the partial cross sections oping, in the sense that
their contributions to the total cross section oq are pro-
portional to the correlation factors [see Eq. (?)], and so
would (would not) change sign under the space-inversed
experimental conditions when the corresponding correla-
tion factors are P odd. (P even), and similarly for the
time-reversed experimental conditions. Thus, a mea-
sured nonzero partial cross section oy~p with A odd is a
positive indication of a violation of parity conservation.
Similarly a partial cross section with k+ K+ A odd. is an
indication of a violation of the time-reversal invariance,
provided there is no coherent precession of the neutron
spin, which could lead to mimicking of a T-violating o g~p
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where oooo is the partial cross section for an unpolarized
beam and target. According to the Madison Convention
[16], Ai, xq is an analyzing power when either k or K is
zero, otherwise it should be called a spin-correlation coef-
Scient. To simplify the terminology, the name "analyzing
coefficient" will be used here generically for both kinds
of these observables, unless the values of k, K, and A are
specified.

For an unambiguous identification of the experimental
conditions under which a particular analyzing coefficient
Ag, Kp is directly measurable, an expbcit evaluation turns

TABLE I. The correlation factors Ci,~q(sip) and their
symmetries under the parity transformation P and time rever-
sal T for various combinations of the statistical-tensor ranks
Ic and K and the orbital angular momentum transfer A. The
positive (negative) sign denotes that the correlation factor is
even (odd) under a symmetry transformation.

(kKA) Ci m, (s Ip) P T
(000) 1 + +
(011) +i p +
(022) 5~5 (I p)' ——.'] + +
(101) —S.p +
(110) ~is i + +
(111) —~~s. (I x p)
(112) jio [(s 'p)(X p) 3 s. I] + +
(121) +o [(s X)(X.p) —

3 s. p" +
(122) —+s.(I x p)(I ~ p) +
(123) —~ [(s .p)(X - p)' —

—,'(s .X)(I.p) — s .p) +

[8,9].
Limiting ourselves to a maximum value K = 2 of the

target statistical-tensor rank, there are altogether 10 dif-
ferent combinations (kKA) of k, K, and A, of which
(000) involves no spin dependence, and (011) and (101)
are formally equivalent (see Table I). It is seen in Ta-
ble I that out of these first 10 combinations of (kKA),
only (122) is associated with a pure T violation, while a
nonzero partial cross section 0'i,xp with (kKA) = (111)
would indicate both P nonconservation and T violation.
The P-nonconserving combinations (kKA), on the other
hand, are (011), (101), (121), and (123). Thus neutron-
transmission experiments involving only vector polarized
beams or targets (i.e., polarizations of statistical-tensor
ranks k or K = 1) already can be employed as tests of P
conservation, while polarized neutron beams and at least
tensor rank-2 polarized targets are necessary for tests of
the T invariance, leaving aside the "doubly violating"
case (kKA) = (111).

Within the developed formalism, analyzing powers, or
spin-correlation coefficients in the total cross section are
defined naturally in terms of the partial cross sections
aaza »

out to be useful of the corresponding correlation factor
Ci,xp(s Ip) in terms of Cartesian constructs (such as the
dot and cross vector products) involving the nuit vectors
s, I, and p. Let us consider, for example, the P-even, T-
odd correlation factor Ci22(s Ip). Using the methods of
spherical-tensor algebra [17], it can be evaluated to have
the following "fivefold" form [7,11]:

Ci22(sIp) =— s (I x p)(I p). (12)

Explicit Cartesian expressions for the correlation factors
were calculated for all the ten combinations (kKA) that
are limited by the maximum value K = 2 of the target
statistical-tensor rank, and the results are collected in
Table I [18].

An analyzing coeKcient AqKp is then measurable in
principle as follows. Polarized neutrons are transmitted
through a purely tensor rank-E polarized target and an
asymmetry

N+ —N
N+ + N—

is measured. Here N+ (N ) is the transmitted number
of neutrons in a polarization state bio(s) [—bio(a)] with
respect to a suitably oriented mais of neutron polarization
s; it is assumed that the incident beam has the same
intensity in the two polarization states. Provided that
the directions s, I, and p can be chosen so that no partial
cross section with k = 1 other than cr~Kp can contribute
to the total cross section ~q, the asymmetry e is related
t«&K~ by

ta~[tio (s)tKO (I)C1KA (s Ip) +1KA ii] ) (14)

where Cixg(sIp) is the correlation factor of the chosen
geometry of the directions s, I, and p, and n is the thick-
ness of the target in the number of nuclei per unit area.
The analyzing coefficient Aix q itself is then

artanh ~1
~1KA—

tio(s)iso(I)Cix), (s Ip) &ooo&

Thus to measure the P-even, T-odd spin-correlation coef-
ficient Ai22 [19], to return to the example with (kKA) =
(122), the axis of the neutron polarization s is set parallel
to I x p, i.e. , normal to the plane defined by the axis I of
the tensor rank-2 alignment of the target and the beam
direction p [20]. In this geometry, the partial cross sec-
tions o'ioi, oi2i, and oils cannot contribute to the total
cross section cr~, which is confirmed by an inspection of
the expressions for the correlation factors Cioi(s Ip) and
Ciqg(s Ip) with A = 1 and 3 in Table I.

However, a single asymmetry measurement would not
be sufBcient for the determination of the analyzing coef-
ficient AqK~ when, for given values of the tensor ranks
k = 1 and K, there is no geometry of the directions s,
I, and p in which, out of the partial cross sections with
k = 1, only the partial cross section crqKp can contribute
to the total cross section 0.q. Thus to measure the spin-
correlation coeKcients Aqqo and Aqq2, the P-odd, T-even
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analyzing power Azp~ would have to be determined in
principle, too, in order to be able to account for possible
contributions due to the partial cross section ogpu to the
measured asymmetries (the P od-d, T-even o'zoq happens
to be, of course, negligibly small under ordinary circum-
stances).

The measurement of the analyzing powers Apzz and
Ap22 does not involve the use of polarized beams. The
P-odd, T-even analyzing power Ap~~ is determined by
the measurement of the asymmetry (13), where, how-
ever, N+ (N ) now refers to the transmitted number
of neutrons for the target in a polarization state tqo(I)
[—t yp(I)] with respect to a suitably oriented axis I of pure
K = 1 polarization of the target (a natural choice is, of
course, to set I parallel to the beam direction p). To
determine the analyzing power Ap22, on the other hand,
it is in principle sufBcient to use two different settings Iq
and I2 of the axis of the tensor rank-2 alignment of the
target, and to measure the corresponding asymmetry ~.

The analyzing power Ao2z [21] is then

2(oooorf)
—'artanh c

Ap22 =—
t2o(I) CQ22(s Iz p) —Co22(s I2 p)

where Co22(s I; p), i = 1, 2 are the correlation factors for
the two settings of I [22].

In conclusion, it should be stressed that the devel-
oped formalism relates rigorously the analyzing coeffi-
cients A~~p to the elastic-scattering S matrix. This
enables an evaluation of these observables when the
elastic-scattering S matrix can be calculated &om a
neutron-nucleus interaction of appropriate parity and
time-reversal symmetries [23]. In fact, a nonzero ana-
lyzing coefficient A~~p indicates that there is a term in
the neutron-nucleus interaction that has the same sym-
metries and the same spherical-tensor structure as the
corresponding correlation factor CglcA(s Ip) [7].
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