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Muon capture, continuum random phase approximation, and in-medium
renormalization of the axial-vector coupling constant
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We use the continuum random phase approximation to describe the muon capture on C,
0, and Ca. We reproduce the experimental total capture rates on these nuclei to better than

10% using the free nucleon weak form factors and two different residual interactions. However,
the calculated rates for the same residual interactions are signi6cantly lower than the data if the
in-medium quenching of the axial-vector coupling constant is employed.

PACS number(s): 24.30.Cz, 23.40.—s, 27.20.+n, 27.40.+z

The capture of a negative muon &om the atomic 1s
orbit,

p + (Z, N) m v„+ (Z —1, N + 1)',

is a semileptonic weak process which has been studied
for a long time (see, e.g. , the reviews by Walecka [1]
or Mukhopadhyay [2) and the earlier references therein).
The total capture rate has been measured for many nu-

clei; in some cases the partial capture rates to speci6c
states in the daughter nucleus have been determined as
well.

The nuclear response in muon capture is governed by
the momentum transfer which is of the order of the muon
mass. The energy transferred to the nucleus is restricted
&om below by the mass difference of the initial and 6nal
nuclei, and from above by the muon mass. The phase
space and the nuclear response favor lower nuclear exci-
tation energies; thus the nuclear states in the giant reso-
nance region dominate.

Since the experimental data are quite accurate, and
the theoretical techniques of evaluating the nuclear re-
sponse in the relevant regime are well developed, it is
worthwhile to see to what extent the capture rates are
understood and, based on such a comparison, what can
one say about possible in-medium renormalization of the
various coupling constants. In particular, there are var-
ious indications that the axial-vector coupling constant
g~ in a nuclear medium is reduced &om its &ee nucleon
value of g~ ——1.25 to the value of g~ 1. The evidence
for such a renormalization comes primarily &om the anal-
ysis of beta decay between low-lying states of the (sd)
shell nuclei [3]. In addition, the "missing Gamow-Teller
strength" problem, as revealed in the interpretation of
the forward angle (p, n) charge-exchange reactions [4], is
also often quoted as evidence for quenching of g~. The
quenching of gA is believed to be related to a second-

'Present address: Physics Department, University of Basel,
CH-4056 Basel, Switzerland.

2M„F~(0)
m —q

(2)

where m is the pion mass and F~(0) = g~ = 1.25.
[In muon capture one often uses a dimensionless quan-

tity gp = m„Fp(q2) at the relevant momentum trans-
fer q —0.9m„, such that g~ 8.4 for free protons. ]
In a nuclear medium I'I can be again renormalized,
and this renormalization does not necessarily obey the
Goldberger- Treiman relation [9].

The continuum random phase approximation (RPA)
has been used successfully in the description of the nu-

clear response to weak and electromagnetic probes [10].
The method combines the usual RPA treatment with
the correct description of the continuum nucleon decay
channel. We have used this method for calculations of

order core polarization caused by the tensor force [5] on
the one hand and on the other hand to the screening of
the Gamow-Teller operator by the 6-hole pairs [6]. In
both cases, one would expect that all matrix elements
of the axial current operator are quenched; however, the
evidence so far is restricted only to the Gamow-Teller
(GT) strength, concentrated in the giant GT resonance.
This resonance is at excitation energies not very far &om
the energies involved in the muon capture, although this
latter process is dominated by the transitions to the neg-
ative parity spin-dipole states.

The Gamow-Teller and spin-dipole strengths are af-
fected primarily by the 1p-1h (one-particle —one-hole) cor-
relations included in the present random phase approxi-
mation treatment. They are also shifted and spread by
the 2p-2h correlations [7], and indeed by all multiparticle-
multihole correlations between the valence nucleons.
Here we do not investigate the effect, presumably small,
of these more complicated con6gurations on the muon
capture rate.

Muon capture also depends on the induced pseu-
doscalar hadronic weak current. At the free nucleon level
the corresponding coupling constant is determined by the
Goldberger- Treiman relation [8]

0556-2S13/94/50(5)/2576{6}/$06. 00 50 2576 1994 The American Physical Society



50 MUON CAPTURE, CONTINUUM RANDOM PHASE. . . 2577

TABLE I. Comparison of calculated total muon capture rates with experimental data [24]. For
C and 0 the capture rates to particle-bound states have been subtracted. The rates are given

in 10 s

Target nucleus
12C
16O
40'

Experiment
0.320+0.01
0.924+0.01

25.57 +0.14

Bonn potential
0.342
0.969

26.2

Landau-Migdal potential
0.334
0.919

23.4

the muon capture processes on ~2C, ~60, and 4 Ca. As
residual interactions we adopted the finite-range force
[11]based on the Bonn potential [12] and the zero-range
Landau-Migdal force with the parametrizations for izC
and isO taken from Refs. [13] and [14], respectively. For

Ca we used the standard parametrization as, for exam-
ple, given in Ref. [15]. Note that none of these forces have
been adjusted to weak interaction data for these nuclei.
In the calculation we evaluate the capture rate at each
energy transfer &u for each multipole separately. The mo-
mentum conservation condition is fulfilled throughout.
We also use an accurate relativistic description of the ini-
tial bound muon. Form factors and their q dependence
have been adopted from Ref. [16].

The results of our calculations are summarized in
Figs. 1—3, which show the capture rate as a function of
excitation energy, and in Table I, which compares the to-
tal capture rates with the data. The total muon capture
rates for C and 0, as given in Table I, are defined as
the part of the rate where the nucleus in the final state is
excited above the particle threshold and therefore decays
via particle emission. The experimental entries in Table I
were derived by subtracting the partial muon capture
rates into the particle bound states (we used the average
of the various data sets) from the total capture rates. We
would like to point out that most of the capture rate goes
to particle-unbound states. In C, capture to particle-
bound levels (mainly the i2B ground state) contributes
about 16% of the total rate, while in isO the bound-state
contributions are roughly 10%. As is obvious from Ta-
ble I, our calculations reproduce the total muon capture
rates into the continuum states very well. For all three
nuclei the Bonn potential slightly overestimates the data,
however, by less than 10%%up. The Landau-Migdal force re-
produces the continuum data for C and 0 remarkably
well, while it underestimates the 4PCa data by about 9'%%up.

For C and 0, partial muon capture rates to partic-
ular bound levels have been also measured. We compare
these data with our calculation in Table II. The calcu-
lated partial muon capture rates, as given in Table II,
again reproduce the magnitude of these rates well, with
the notable exception of the transition to the B ground
state. A proper description of this particular Gamow-
Teller transition requires full p-shell model diagonaliza-
tion with configurations not included in the (lp-1h) RPA
approach [17] in addition to the renormalization of the
axial-vector coupling constant mentioned earlier. For the
capture to the 0 and 1 states in 6N we performed the
calculation not only by the continuum RPA, but also by
the standard RPA which treats all states as bound; the

two methods agree with each other quite well. For the
2 state we used only the latter method since the con-
tinuum RPA gives a much too narrow resonance in this
case and the roundofF errors are too severe.

Figure 1 shows the total izC(p, v„)i2B capture rate
as a function of neutron energy EN above the n + B
threshold in B. Most of this rate goes via 1 and 2
multipole excitations to the giant dipole and spin-dipole
resonances. This is demonstrated in Fig. 1, which, as
additional information, shows the partial contributions
of these multipoles. Giant dipole and spin-dipole ex-
citations also dominate the capture rates for the other
two nuclei, 60 and Ca. For example, we find that
the 1 and 2 multipoles together contribute about 75%
[65%] to the total MO(p, , v„)i N [4PCa(p, v„) K] rate.
Excitation of the giant quadrupole resonance at about
20 MeV (see Fig. 1) contributes a few percent. For 4PCa,
the 0 and 3 multipoles each contribute about 10'%%up to
the rate.

In accordance with our discussion above, we find an
average excitation energy which in all cases corresponds
to the regime of the giant dipole and spin-dipole res-
onances in these nuclei. If we consider the Q values
of the reactions, these average energies indicate that

Source
(LM)
(BP)

Ref. [25]
Ref. [26]
Ref. [27]
Ref. [27]
Ref. [28]

~(1+)
25400
22780

6290+300

6000+400
5700+800
6280+290

~(1 )
220
745

720+175
1080+125
890+100
700+400
380+100

(u(2 )
40

10+230
60+200

170+240
400+600
120+80

~(2')
&1
&10¹0¹0¹

200+400
270+100

Source
(LM)
(BP)

Ref. [29]
Ref. [30]
Ref. [31]
Ref. [32]

(u(0 )
1.45
1.85

1.1+0.2
1.6+0.2

0.85+0.06
1.56+0.17

~(1 )
1.75
3.10

1.9+0.1
1.4+0.2

1.85+0.17
1.31+0.1

(u(2 )
8.10
8.65

6.3+0.7

8.2+1.2

TABLE II. Partial muon capture rates for the bound states
in C(p, , v„) B' (upper part) and O(p, v„)' N'(lower
part) in units of s, calculated for the Landau-Migdal force
(LM) and the Bonn potential (BP). In each part the theoret-
ical results are shown in the top two lines, followed by the
measured data. Note that the values marked with ¹ were as-
sumed to be 0, as the 0+ -+ 2+ transition is second forbidden.
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FIG. 1. Muon capture in C as a function
of the neutron energy E(n). Solid line is the
total rate, dashed line is for the 1 multipole,
short dashed line is for the 2 multipole, and
the dotted line is for the 2+ multipole. The
calculation is for the Landau-Migdal interac-
tion.
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the average neutrino energy after the capture process is

(E„) 80 MeV, while the remaining 25 MeV of the muon
mass are transferred, on average, to internal nuclear de-
grees of &eedom.

In Fig. 2, we compare the excitation spectrum for the
sO(p, v„)~sN reaction as calculated for the two resid-

ual interactions we used. Both spectra are very similar,
but the Bonn potential predicts a slightly higher excita-
tion rate to the giant dipole resonances, which accounts
for the 10%%uo difference in the total rates for the two inter-
actions. Finally, in Fig. 3 we show the capture rate for
4oCa(p, v„)4oK as a function of the excitation energy
in the 6nal nucleus K, i.e., for the whole range of the
nuclear response.

All results presented so far have been obtained using
the free nucleon form factors. To test the dependence
of the calculated rates we repeated our muon capture
calculations, however, using renormalized values for g~
and gp. We present the results in Table III for three
models of the in-medium renormalization. In model 1 we
simply quench the axial vector coupling, and keep the
Goldberger-Treiman relation intact:

(3)

In models 2 and 3 we modify the relation between g~
and g~, using the relation g~ = f~g~~~/M~ and two
alternative prescriptions given in Ref. [9]. So in model 2

2m„f g ~~
1.35(m2 —q2) —0.35q 2 ' g~~~/g~~~ = 1.0/1.25, g~ = 1.0 1 (4)

and in model 3

0 6m~ f g NNg„= 2 2 2, g~ÃN/g„N~ = 1.0/1.25, gx = 1.0 .
m2 —q2 —0.7q 2 ' (5)
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FIG. 2. Muon capture in O. Solid line
is the capture rate for the Bonn potential
and the dashed line is for the Landau-Migdal
force.
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FIG. 3. Muon capture rate in Ca as a
function of the excitation energy in the final
nucleus K. The calculation is for the Lan-
dau-Migdal force.
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As expected from the axial-vector dominance of the
muon capture cross section, the rates in all three cases
displayed in Table III are significantly smaller than the
ones obtained for the free nucleon form factors. Depend-
ing on the adopted model for the renormalization, the
rates are lowered by 20—30%, where the decrease is nearly
the same for all three nuclei for a given model. This de-
crease clearly shows that the muon capture rate, although
dominated by the axial-vector current interaction, is also
affected by the vector-axial-vector interference, and by
terms containing gp. The induced pseudoscalar coupling
decreases the capture rate, as one can see best in model
3 where g~ is strongly reduced. Comparing the three
models of renormalization we coTI&rm the known weak
sensitivity of the total capture rate to the variations in
g~. However, most importantly, the rates obtained with
the quenched form factors are in disagreement with the
data.

To test the sensitivity of our results to the adopted
residual interaction we have performed calculations for all
three nuclei, in which the overall strength of the Landau-
Migdal force has been decreased or increased by 10%%uo. In
all of the calculations g~ was set to g~ ——1.25. Noting
that the residual interaction is repulsive in the isovector
channel and pushes the T = 1 strength to higher exci-
tation energies, a weakening of the force results in the
T = 1 states, which are the only states populated in
muon capture on T = 0 targets like C, 0, and Ca,
residing at lower excitation energies. Consequently, the

TABLE III. Same as Table I, but calculated for the three
renormalisation modeis of g~ and gJ, defined in Eqs. (3—5).
The calculations have been performed for the Landau-Migdal
force. The rates are given in 10 s

Target nucleus Experiment Model 1 Model 2 Model 3
C 0.320+0.01 0.245 0.252 0.267
0 0.924+0.01 0.682 0.698 0.736
Ca 25.57+0.14 17A3 17.8 18.8

energies of the neutrinos, E„,which are released after the
capture to these states, are slightly higher. As the muon

capture rate is proportional to E„i +
(A is the order of2{1+4)

the spherical Bessel function of the corresponding oper-
ator) [1,], jt is increased when the residual interaction is
weakened. The same sequence of arguments shows that
the rate is lowered if the interaction is increased. These
expectations are confirmed by our calculations. For ex-
ample, the total muon capture rate on 4oCa is changed to
22.77 x 10s s ~ (24.18 x 10 s ~) if the overall strength
of the Landau-Migdal force is increased (decreased) by
10%. When compared to our results, given in Table I,
we conclude that a 10% variation in the interaction re-
sults in a change of the total muon capture rate of less
than 3%. The same sensitivity is observed for the nuclei

C and 0, where the same variation in the interaction
changes the rate by less than 3% and 2%, respectively.
We conclude that the changes in the muon capture rates
induced by the in-medium renormalization of the form
factors g~ and gg are noticeably larger than its sensitiv-
ity to reasonable variations of the residual interaction.

Before drawing conclusions from our calculations, it is
perhaps worthwhile to briefiy review other calculations
of the muon capture rate for the nuclei we are consider-
ing. In the classical paper of Foldy and Walecka [18],the
authors relate the dipole capture rate to the experimen-
tal photoabsorption cross section. In addition, they use
symmetry arguments ta relate the vector and axial-vector
nuclear matrix elements. In its slightly mare xnadern
version [1], which uses the present free nucleon coupling
constants, the calculation gives total capture rates quite
close to ours in Table I for ~C and 0, and perhaps
20% higher than our numbers (and the experiment) for
40C

Another calculation worth mentioning is the treatment
of ~sO by Eramzhyan et aL [19]. This calculation em-
ploys a truncated shell model with ground state cor-
relations included and standard free nucleon coupling
constants. For the bound states in 6N the results are
similar to ours in Table II, particularly to our entries
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for the Landau-Migdal force. For the transitions to un-
bound states (which the authors treat as a shell model,
i.e. , bound anyway) they obtain a total capture rate of
1.02x10s s, within 10% of our result. On the other hand,
Ohtsuka's [20] calculated capture rates in C and 0
are larger than ours and the experiment by a substantial
factor of 1.5 and 2.5, respectively. The author attributes
this overestimate to the neglect of ground state corre-
lations in the adopted nuclear model. In fact, the same
calculation overestimates the photoreaction cross section,
which has nothing to do with weak interactions or axial-
vector current, by a similar factor.

All of these calculations are therefore basically compat-
ible with our result, and suggest that the experimental
rate is best reproduced with the free nucleon coupling
constants. A similar conclusion follows from the compar-
ison of the measured i2C{v„e ) 28' cross sections for
the v, &om stopped muon decay [21], with the results
calculated within the same approach as employed here

In contrast, the recent calculation in Ref. [23] is per-
formed quite differently. It uses an approach based on
the local density approximation to infinite nuclear mat-
ter. In Ref. [23], the capture rate is reduced by a factor
of about 2 by the strong nuclear renormalization. This

renormalization seems to include both the eKects of the
residual interaction, which reduce the rate as we argued
above, and the eKect of in-medium renormalization. It
is dificult to separate the two, and therefore diKcult to
compare our results with those of Ref. [23].

Our calculations show that the continuum RPA
method with a standard, unadjusted residual interaction
describes the muon capture rates in the T = 0 nuclei
quite well, provided that free nucleon form factors are
used. In particular, quenching of the axial current cou-
pling constant suggested in the analysis of the Gamow-
Teller strength would result in a noticeable disagreement
with the data. We checked that this conclusion is not
sensitive to reasonable variation in the residual force. We
stress that the muon capture is dominated by the tran-
sitions to the negative parity dipole and spin-dipole col-
lective states. Our conclusion is therefore only relevant
for such states.
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