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In this paper a relativistic constituent-quark model based on the Ruijgrok —de Groot formalism
is presented. The quark model is not defined in configuration space, but in momentum space.
The complete meson spectrum, with the exception of the self-conjugate light un6avored mesons, is
calculated. The potential used consists of a one-gluon exchange (OGE) part and a confining part.
For the confining part a relativistic generalization of the linear plus constant potential was used,
which is well defined in momentum space without introducing any singularities. For the OGE part
several potentials were investigated. Retardations were included at all places. By the use of a fitting
procedure involving 52 well-established mesons, best results were obtained for a potential consisting
of a purely vector Richardson potential and a purely scalar confining potential. Reasonable results
were also obtained for a modified Richardson potential. Most meson masses, with the exception of
the m, the K, and the Ko, were found to be quite well described by the model.

PACS number(s): 12.39.Pn, 03.65.Ge, 03.65.Pm

I. INTRODUCTION

It is generally believed that the properties of mesons
and baryons should be correctly described by quantum
chromodynamics (/CD). However, apart from lattice
gauge calculations, a practical calculation is impossible at
the moment. As a replacement simple quark models, in
which hadrons are viewed as bound states of constituent
quarks, are quite successful (for a review see [1]). The
simplest are the nonrelativistic (NR) ones. The potential
used here usually consists of a Coulomb term to account
for the perturbative one-gluon exchange (OGE), and a
linear potential with possibly an additional constant to
incorporate the nonperturbative confining. These models
work very well for the heavier charmonia and bottonia.
For the lighter mesons, however, it is clear that relativis-
tic corrections should be included. Relativistic models
are most naturally formulated in momentum space. Tra-
ditionally, however, and also because of the belief that
it would be impossible to describe a confining potential
in momentum space, the equations are normally trans-
formed to configuration space. Some time ago [2—7], it
has been realized that there is no obstacle to define a
confining potential in momentum space, even in the rel-
ativistic case. Therefore a growing interest has arisen to
study quark models directly in this, to our view, more
favorable representation.

This will also be the subject of this paper. A relativis-
tic covariant quantum formalism, introduced by Ruijgrok
and de Groot (RdG), will form the basis of a constituent-
quark model in momentum space. The masses of all
known mesons will be calculated, with the exception of
the self-conjugate light unfiavored ones. A proper anal-
ysis for these latter ones should allow for transitions of
the form qq -+ q'q', which are not regarded in this paper.

The RdG formalism (for a review see, e.g. , [8]) is de-
fined via an as simple as possible relativistic extension

of the NR Lippmann-Schwinger equation. It does not
require further specification in the course of its solution
and it does not start &om the Bethe-Salpeter equation.
The main difference is that in the intermediate states all
particles remain on their mass shell, and that only total
three-velocity and not four-momentum is conserved. For
a two-particle system this means that in the intermediate
states there are, like in the NR case, three degrees of &ee-
dom left. Therefore there is no need to make a quasipo-
tential reduction &om four to three degrees of &eedom,
which is a delicate point in the Bethe-Salpeter &ame-
work. For observable quantities, such as the total cross
section, in addition to the conservation of total three-
velocity, the total energy is conserved, so that for these
physical quantities total conservation of four-momentum
is restored.

Concerning the Poincare invariance a similar situation
arises as in Dirac s point form of a relativistic dynam-
ical system [9], in which the commutation relations for
the six generators of the Lorentz group M„„are trivially
satisfied and the interaction effects must be put into the
generators for the space and time translations, i.e., in the
momentum operators P„.

The Lorentz invariance of the formalism is guaranteed,
because the matrix elements V p of the potential that ap-
pears in the formalism are functions of the scalars that
can be constructed out of the momenta of the individual
particles. Under a space-time translation a this matrix
element acquires a phase factor e'& P~, where P
and Pp are the total four-momenta of the initial state 0;

and final state P. This phase factor is not equal to unity,
because in the formalism the interaction does not con-
serve the total four-momentum. Full Poincare invariance
therefore implies that also the solution for the scattering
amplitude M p in. the relativized Lippmann-Schwinger
equation be multiplied by the same phase factor. This
situation is not different from the case of nonrelativis-
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tic scattering theory: the phase factor has no observable
consequences since for aQ measured quantities, such as
the scattering cross section, the initial and final four-
moment»~ do have the same value.

Negative energy states are not included in the RdG
formalism. The statement that relativistic covariance
requires the simultaneous existence of particles and an-
tiparticles is correct only in the framework of a relativis-
tic field theory, but does not apply for ordinary quantum
theories, like the RdG formalism.

Retardation efFects are incorporated in a simple and
unambiguous way [8]. This is to be contrasted with
the Bethe-Salpeter equation, where difFerent three-
dimensional quasipotential reductions lead to different
retardations (see, e.g. , Sec. 2.3 of [1]).In [8] it was shown
that this incorporation gave rise to the correct fine-
structure formulas for the hydrogen atom and positro-
XDQXIl.

The organization of this paper is as follows. In Sec. II
first a short s»pnmary of the RdG formalism will be given.
The general structure of the quark-antiquark potential
and its partial-wave decomposition will be considered. In
Sec. III a number of quark-antiquark potentials will be
discussed. A modification of the Richardson potential, to
acount for the OGE, as well as a relativistic generaliza-
tion of the constant potential is defined. An important
feature of the mesons consisting of light quarks is the ap-
pearance of linear Regge trajectories. Their origin in the
light of the present theory is discussed in Sec. IV. The
numerical method used will be described in Sec. V and
its results will be further discussed in Sec. VI. We end
with some conclusions.

II. RESUME OF THE RdG FORMALISM

In this section we will repeat the ingredients of the
RdG formalism, which for the present application are
most important. For a more extended review, see, e.g.,

A. The general framew'ork of RdG

A state a of a quark (mass mq) and an antiquark (mass
m2) can be characterized by (pqAq, pzAz), where pq and
pz are the four-momenta of the quark and antiquark, and
Aq and A2 are their helicities. Also in intermediate states

lql' ~ -q~ qz = lp' - pl' ~(p' p)

where the term 7, given by

~(p', p) = (R —Eg)(Ez —Ez),

(2.2)

(2.3)

is responsible for retardation efFects. The theoretical jus-
tification for this replacement is twofold (see [8]). In the
first place it is consistent with velocity conservation. The
second and more practical justification is that, in the case
of the Coulomb potential, r automatically generates the
correct form for the Breit interaction (see [8]). In the
equal-mass case 7 = (E —E')z, w—hich is exactly oppo-
site to the retardation used by Gross and Milana [4] and
Maung, Kahana, and Norbury [6]. The difference in sign
will give the wrong sign for the Breit interaction, which
in turn will efFect the fine-structure of positronium (see
also the discussion given by Olsson and Miller [10]). In [8]
it was shown that Eq. (2.3) gives the correct positronium
fine-structure forxnula.

In the center-of-momentu~ frame (cms) the relativistic
wave equation, from which the mass M of the meson is
to be solved is given by (5 = c = 1)

particles will remain on their mass shell, which means
that p; = g~p;[z+m; = E;, i = 1,2. The formalism is
constructed in such a way that in the interaction the total
three-velocity is conserved. This means that the quark-
antiquark potential Vp for a transition &om an initial
state a = (pqaq, pzAz) to a final state P = (pI. ~x»2~a)
contains only nonzero elements if v' = v, i.e., for which

(2.1)

In the center-of-momentn~ system (cms) this velocity
conservation coincides with three-momentum conserva-
tion, i.e., pz ———p2 = p .- p&

———p2 = p'.
frame therefore the potential can be written as

Vp~ = Vw~x~ p, p, (p', p).

In the NR case the momentn~ dependence of a central
potential appears in the form ~q[ = )p' —p)2. In the
relativistic case this expression must be replaced by a co-
variant one. Here the usual replacement ~q~ ~ —q can-
not be used because, due to the lack of four-momentum
conservation, the loss of momentum qq

——pq —pz by the
quark, will in general difFer from the gain of momentuxn

q2
——pz —p2 by the antiquark. Instead the following

obvious and symmetrical substitution is made (see [8]):

[Ei+E2 —M]%'p~p~(p)+) . Wg', p,',p, p, (p p)@p',g,'(p ), , dp = 0
1 2

1

(2.4)

where the wave function 4p, p, (p) is normalized as

J l@~,~. (s )I'
AgAg

1 2

and V = 4mqm2W. The quantity W is introduced for
convenience, because it reduces in the NR limit to the

NR potential. In this limit Eq. (2.4) reduces to the NR
Schrodinger equation in momentum space.

B. Decomposition

The interaction W used in the present application can
be decomposed into a vector part V~ and a scalar part
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Vg, which in the cms is given by

W(p', p) = up (p~)vp, (p2) p„.p "V~(p', p)

+ll ' R Vs(p', p) v„,(p')u„, (p, ).

(2.6)

Here the Dirac spinors u and v for the quark and anti-
quark are defined by

P

u~(p) = ~
2AZ X(A, p/S),

1

-2kb
vg(p) = N

1 (—i)o.2y'(A, p/p),

with E = g(E + m)/(2m), 6 = p/(E + m), and
y(A, p/p) the helicity spinor with helicity A. For the two-
particle helicity states we use the conventions introduced
by Jacob and Wick [11].Potential Eq. (2.6) partially de-
couples with respect to the states ~p; JM; AqA2), which
are defined by (18) of [11],giving

(p'; J'M', AIA2(W(p; JM; AgAs} = bye bMM (A~A2~W (p', p)~A~A2&.

The determination of this decoupling is a technical
matter. In [12] this calculation was given in detail for the
case in which only one of the two particles carries spin.
For the present case of both particles carrying spin, an
analogous analysis can be made. This analysis, however,
is much more complex and therefore we will only give the
result of the reduction.

Because of conservation of parity, S' further decom-
poses into two 2 x 2 submatrices, each having a definite
parity. The subspace spanned by

(2.8)

has parity (—1)~+~. It contains the triplet J = l 6 1
states. The complementary subspace, spanned by

1
By

(2.9)

B2

has parity (—1) and contains the J = / singlet and
triplet states. Only in the equal-mass case does this sub-
space further split into two 1 x 1 subspaces. Let

V,",'=p'I ' '
(n, ~W'(p', p)~u, &, n=. , t,

gE E E E
(2.10)

then the eigenvalue equation (2.4) can be cast in the form
(by suppressing the quantum numbers J, M, and s or t)

l

(Vs),". ~ are given. The reduced wave function f is nor-
malized to

). If'(p) I'du = 1. (2.12)

C. Quantum numbers

P = (—1)'+ and C = (—1) +'. (2.13)

Also s is not a good quantum number, but can like I, still
be used to label states.

For a potential of the form Eq. (2.6) the total angular
momentum J and the parity P are conserved quantities.
In a relativistic theory involving particles carrying spin,
the orbital angular momentum is not conserved and is
therefore not a good quantum number. If the relativistic
effects are not too large, however, l is still approximately
conserved. Therefore I is often regarded as an "almost
good" quantum number (for a discussion see, e.g. , [13]).
For convenience the number l can still be used to distin-
guish between different states. Examples of this are the
J = l 6 1 triplet states. Only in the NR case are these
states actual eigenstates, in the relativistic case they will
in principle mix.

For the self-conjugate mesons there is an additional
conserved quantum number: charge conjugation C. In-
deed it was seen in the previous subsection, that for this
equal-mass case the channel containing the J = l singlet
and J = / triplet decouples. Both the charge conjugation
C and the parity P can be expressed in terms of the total
spin S = s(s + 1) (s = 0 for singlet, s = 1 for triplet
states) and l:

(@&+@&™Ifi(s) + ) f &'(~' ~)f (s')~~' = '
0

III. THE QUARK-ANTIQUARK POTENTIAL

(2.11)

In Appendix A explicit formulas for V;. = (V );. +

The quark-antiquark potential must contain a one-
gluon exchange (OGE) to account for the short range,
and a confining part for the long range interaction. It
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is generally believed that V~GE should have a vector
Lorentz structure, because this follows &om the /CD
Lagrangian. About the connning part V, „ there is no
such consensus (see, e.g. , [1]).Some believe that it must
have a purely scalar structure, while others admit a mix-
ture between scalar and vector coupling. We will adopt
this last point of view. The potential can therefore be
written in the form [see Eq. (2.6)]

&v = &oGE+«.on,
Vs = (1 —s)V, „, (3.1)

Q = V gl ' 92

is introduced. In the NR limit it reduces to ~q~.

(3.2)

A. The one-gluon exchange:
Running coupling constant

The renormalization scheme of perturbative /CD says
that, for large momentum transfer, the running coupling
constant a, in

4 n. (Q2)
0GE =

3 2 2Q2

where e represents the scalar-vector mixing of the conan-
ing potential.

For V, the relativistic generalization of the linear po-
tential, as described in [7], plus a constant potential (to
be defined in Sec. III 8) was used. This generalization
is de6ned in a formal way and does not introduce any
singularities. For the OGE two diferent potentials were
used: the Richardson potential [14] and a modified ver-
sion of this potential (to be defined in Sec. IIIA), both
containing a running coupling constant (see Sec. III A).
The Richardson potential contains a linear part by it-
self. Therefore in this case (&om now on denoted by case
I), s = 0 was chosen, so that the confining in the vec-
tor direction is completely determined by the Richard-
son potential. The modified Richardson potential has no
linear part. Therefore in this case (denoted by case II) a
nonzero e was admitted.

In all these potentials the NR momentum transfer ~q~
is replaced by —qi q2 [see Eq. (2.2)] and it is this replace-
ment that ensures the inclusion of retardation efFects at
all places. For notational convenience, the quantity

and n is the n»mber of quarks with a mass smaller than
Q. The subscript MS denotes that the renormalization
is performed according to the modified minimal subtrac-

tion scheme. The connection between the different A s
r (~) ~

is given by (B4) of [24]. The typical momentum transfer
within a meson is on the order of 1 GeV, so in this region
n = 3. Therefore, Eq. (3.4) with n = 3 is in many cases
used as an approximation for all large momentum trans-
fers. In addition, the b3 term is almost always neglected.
But this term is not small at all: in the Q region &om
1 to 5 GeV its contribution is about 25%. Even for very
high momentum transfers its contribution is substantial

15% for Q = 50 GeV. However, it appears that when

AMS rather than AMS is used, a fairly good approxima-
tion of Eq. (3.4) for large Q is obtained by putting

(3 5)

VE(Q ) =-
2wzQ2ln[l + Q~]

no A~ o'0
for Qm0. (3.6)

1.5

1.0—

(see the curve "standard approximation" of Fig. 1). For
Q = 5 GeV the deviation &om Eq. (3.4) is 7%, and
for Q 50 GeV there is no detectable difFerence. Also
for smaller Q the agreement is better, but of course in
this region the validity of Eq (3.4. ) is doubtful. Nev-
ertheless, we think that these considerations show that
there is no theoretical necessity to stick to the value of
aa in Eq. (3.5): a small deviation &om it also results in a
good running coupling constant for large Q. We will use
this &eedom for the two OGE potentials discussed in the
remainder of this subsection.

For small positive Q values Eqs. (3.4) and (3.5) diverge.
To remedy this, Richardson [14] proposed a potential in
which the divergence is shifted to the origin by making
the replacement Q -+ Q + A in Eq. (3.5):

is given by (see also (B2) of [24])
0.5

12m

(33 —2n)
'

6(153 —19n)
(33 —2n) 2

X„=ln QyA'",'

The factor s arises &om color averaging. In Eq. (3.4) 0 0
0.0

I 0 I I I I I I I I I I I I I I I I I I L I I I I I I I I I I I I I I I I I I I I I I I I I

1.0 2.0 3.0 4.0 5.0
Momentum transfer Q (GeV)

FIG. 1. Running coupling constant n, (q ), de6ned by
(3.3) for three difFerent choices of VoGs compared to the
@CD formula (3.4) and its standard approximation (3.5).
A = A = 0.3 GeV and ns = 16s./27.
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The color factor 3 is absorbed in Q.p. In Fig. 1 the
running coupling constant, defined via Eq. (3.3) with
V, „=V~, is compared to the /CD formula for cxo ——

sus ——16m/27 = 1.862. The singularity for Q = 0
results from a linear term in the potential with string
tension zaoA2 (see [7]). When the singularity is sub-
tracted, the ru~~ing coupling constant saturates to the
value 2a3 ——0.698. From Fig. 1 it is seen that for mo-
mentum transfers starting &om 2 GeV, a much better
approximation to Eq. (3.4) is obtained, if 0;s is slightly
decreased. A value of np = 1.750 turns out to be a very
good choice.

A difFerent way to remove the singularities is to also
make the replacement Qz ~ Qz +As in 1/Qz itself. This
results into

(3.11)

The resulting 1/(p' —p) singularity is handled by the
principal-value integral (denoted by f). It was shown
that this subtraction is not just a trick to avoid singular-
ities, but is in fact generated by definition Eq. (3.9).

For a confining potential which consists of a mixture
of a scalar and vector Lorentz structure [see Eq. (3.1)],
the pointwise limits of the spinless partial waves [see Eq.
(Al)] are given by W& ——eWLi and W& ——(1 —e)W&,
where

(3.12)

VM(Q ) =— Ap

2z & [Q2 + A2] in[1 + $.]
0,'p

for Qm0. (3.7)

and also R(p', p) is given in Appendix A. Here zo is
defined by Eq. (B2) and Qi is the Legendre function of
the second kind of order f. The 1/(p' —p) singularity of
WI, is determined by

This modified Richardson potential VM does not contain
a linear part. The coupling constant saturates to a value
as. The repinning coupling constant defined via this po-
tential is given in Fig. 1 for ao ——sas. From this figure it
is seen that this choice for ap gives a good representation
of the /CD formula for moderate Q values.

The spinless partial waves W~ and WM of V~ and VM,
defined by Eq. (Al), are given in Appendix B.

R(p p)
z'(&' &) —r(p' p)

The retardation defined by Eq. (2.3) behaves around p'

p like

B. The con8ning: "Linear + constant" potential

For the confinement a relativistic generalization of a
linear plus constant potential was used:

Vcon —Vjin + Vc. (3.8)

82 A 1
Vj; ——lim )

qgo Brjz 27I Qz + g2
(3.9)

where A is the string tension. It was shown in [7] that
the limit exists in a distributional sense. The result was
that the integral in Eq. (2.11) is replaced by

~ ~

OO 4 C"
V',

" '(p' p)f~(S')+ „*',, f~(p) dp'. (310)

Here V;". , n = s, t, is the naive pointwise limit obtained
from Eq. (3.9). The 1/(p' —p)2 singularity it contains is
removed by the quantity

As was also discussed in [7], it was for a long time be-

lieved that a linear potential could not correctly be de-

scribed in momentum space. A naive consideration shows

that it behaves like —1/Q4, which results in an ill-defined
bound-state equation. A few years ago it was shown

[2,3,5] that this singularity for the NR case is only ap-
parent. For the relativistic case difFerent methods were

employed [4,6,7] to solve this problem. In this paper we

use the definition given in [7]:

and therefore contributes to the singularity. If one com-
bines limit equations (3.11) and (3.12) with the results
of Appendix A, it can be shown that C;~ is given by

(3.13)

where pi p2 ——EiE2+~p~ is the dot product between the
four-vectors pq and pq. Note that C;~ does not depend
on J and the parity s or t. In addition it is a manifest
Lorentz covariant quantity.

When the interaction does not contain a linear part,
the integral Eq. (3.10) coincides with the integral in Eq.
(2.11). This is so because then C;z ——0 and there is
no 1/(p' —p) singularity, which means that the princi-
pal value coincides with an ordinary integral. Therefore
the replacement equation (3.10) in combination with Eq.
(3.11) can be applied to the entire interaction. In this
way a nonzero value of C automatically indicates the
presence of a linear term. For the Richardson potential
Eq. (3.6) with a purely vector character results in

apA2
(CR)'; = 2' (3.14)

which indeed indicates a linear term with string tension
12apA .

In analogy with the linear potential the constant po-
tential V~ can also be defined via the Yukawa potential.
In the NR case one has in configuration space

0 C
Vc(r) = C =ha ——

ppp gg T
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Therefore in momentum space an obvious relativistic
generalization is

(3.15)

Note that this expression also includes retardations,
which are hidden in Q [see Eq. (3.2)]. The definition,
Eq. (3.15), has to be included in the integral of Eq. (2.11)
before the limit is taken. The spinless partial wave R'„
of this constant potential is given by

The only term that survives the limit rI $ 0 is

For a confining potential that has both a scalar and vec-
tor part [see Eq. (2.6)] this results in

1

1 2 E pl 'p22

(3.16)

IV. LINEAR REGGE TRAJECTORIES

Experimentally it is found that the mesons which con-
sist of the light u, d, and 8 quarks only, lie on so-called
linear Regge trajectories. This means that there are sev-
eral groups of mesons, for which the mass squared for
each meson within such a group is proportional to its
angular momentum J, i.e., M&2 —PJ + C. The con-
stant C depends on the group, the Regge slope P how-
ever is about the same for all groups. Its experimental

value is P = 1.2 GeV . For mesons containing a heavy
c or b quark, such trajectories have not been observed.
This suggests that linear trajectories are induced by rel-
ativistic eKects. In fact, it is known [1,15,16], that the
Schrodinger equation with ultrarelativistic (UR) kine-
matics (i.e., 2p instead of p2/2p) for a linear potential,
does indeed give rise to linear trajectories, while the (NR)
Schrodinger equation does not. The slope P is in such a
case found to depend only on the string tension A, namely

P =8A.
For the present case a similar effect is observed. It nu-

merically appears that the UR limit (i.e., mq) m2 -+ 0)
of the bound-state equation, Eq. (2.11), also leads to lin-

ear trajectories, with a group-independent slope P. This
slope, however, depends on the vector part Ay of the
string tension only. It is found to be a factor v 2 larger
than for the relativized Schrodinger equation, namely

P = (8v2)&v (4.1)

This dominance of the vector part was also observed by
Tiemeijer and Tjon [17,18], who studied a quark model
based on the Bethe-Salpeter equation in configuration
space. In addition they found [19,18] that the confining
in the vector direction should not exceed a certain value,
because then, due to the negative energy states, unphysi-
cal solutions would arise. This critical behavior which, as
Tiemeijer and Tjon explain, is similar to the Klein para-
dox for the Dirac equation, and is related to the creation
of an unbound number of quark-antiquark pairs. This
breakdown does not occur for the present work, for the
simple reason that it does not contain negative-energy
states.

As can be deduced from Appendix A, the off-diagonal
elements Vq2 and V2q of both a vector and a scalar poten-
tial vanish in the UR limit. Therefore Eq. (2.11) further
decouples into two single equations. For the pure vector
case, it reduces for the Vzz channel to

4@2
[2p —M] fg(p)+ V (p')p)fg(p') + —,2 2 ~ fg(p) dp' = 0)

0 K pa —p'' (4.2)

with

This equation was solved numerically using the method
described in Sec. V. The calculated masses (in units of
v A) of the lowest states for each J are presented in Ta-
ble I. The Schrodinger equation with UR dynamics is in
momentum space also given by Eq. (4.2), but now with

(4.4)

The corresponding calculated masses are also listed in

Table I. They all agree with the calculations performed
by Basdevant and Boukraa (see Table I of [15]).

In principle the trajectories are expected to be linear
only for large values of J. However, as Table I shows,
the convergence is very fast. It was found that also for
moderate masses Eq. (2.11) leads to Regge trajectories
with the same relation, Eq. (4.1), between P and A. The
convergence, however, is then slower. When in addition
a OGE term and a constant are added to the potential,
the relation, Eq. (4.1), is a8'ected. The change, however,
is not very large. Therefore it can be concluded that,
in order to obtain reasonable Regge slopes, the string
tension in the vector direction A~ should be around A~
0.1 GeV .
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TABLE I. Regge trajectories calculated from the ultrarelativistic (4.2). The masses are expressed
in terms of ~A, where A is the string tension.

J
0
1
2

3
4
5

6

0.969
0.987
0.993
0.996
0.998
0.998

Present case potential (4.3)
Mg (M~ —MJ, )/(8~2)
3.830
5.062
6.066
6.931
7.701
8.402
9.049

0.985
0.994
0.996
0.998
0.999
0.998

Basdevant and Boukra [15] potential (4.4)
Mg (M~ —M~, )/8
3.157
4.225
5.079
5.811
6.461
7.052
7.597

V. NUMERICAL METHOD

The present model is defined by the eigenvalue equa-
tion, Eq. (2.4), in combination with a quark-antiquark
potential W consisting of a one-gluon exchange part
V~QE and a confining part V, „.The way in which V~QE
and V, „enter in the eigenvalue equation, Eq. (2.4), is
given by Eqs. (2.6) and (3.1). The OGE potential (see
Sec. IIIA) is determined by two parameters ao and A
and the confining potential (see Sec. III B) is determined
by a string tension A and a constant C. Furthermore,
a parameter e can be introduced to give the confining
potential a mixed scalar-vector character.

The numerical solution of the model can be divided
into two parts. The first one concerns the calculation of
the masses of the mesons, &om the eigenvalue equation,
Eq. (2.11), given all parameters of the potential under
consideration, and the quark masses. The second part
is the fitting to the experimental data. The eigenvalue
equation was solved by expanding the wave function. into
cubic Hermite splines (see [20]). The integration region

p C [0, oo) was projected onto the finite interval x C [0, 1]
by z = (p —po)/(p+po), where po was chosen in the physi-
cal region. On this interval N equidistant spline intervals
were chosen on which 2N spline functions were defined.
The matrix elements of the resulting eigenvalue equation
for the expansion coefficients only involved single inte-
grations of the potential times a spline function. This
is a major advantage of the spline method compared to
the more conventional expansion techniques, where the
evaluation of matrix elements involves two-dimensional
integrals. The integration was performed using Gauss-
Legendre quadratures. In the case where the singular
point p' = p was inside the region of integration, special
care had to be taken. In the first place, an even number of
abscissas centered around p' = p was used. In that way
the principal value, which occurs for the confining po-
tential, is automatically taken care of [5,21]. Second, the
logarithmic singularity 1n(~p —p]), which is induced

by both the Coulomb and the confining potential, was

separately handled by means of Gaussian quadratures
based on a logarithmic weight function (see e.g. , Table
25.7 of [22]). Another important advantage of using Her-
mite splines is their small nonzero domains. Therefore on
each spline interval only a few of these splines (four for
the Legendre and three for the logarithmic quadrature)
were needed to obtain high accuracies. The matrix equa-

tion was solved using standard techniques [23), giving the
meson masses M;.

The choice of the projection parameter pp and the
number of intervals N, depended on the specific meson.
For instance, the typical momentum transfer for the T
mesons (bb) is about 1 GeV, so po ——1 GeV. The masses
of these mesons are all known to a high precision and
they are all radial levels of the J = 1 channel. The
T" is the tenth radial state (n = 10). Therefore 20 spline
intervals were needed to guarantee accurate results. The
Kz, however, is the only known J = 2+ strange meson,
apart &om the unconfirmed Xz'. Therefore N = 8 was
sufficient to obtain reliable results. pp = 0.5 GeV was a
proper choice for this meson.

The second part of the problem was to get a good fit
to the experimental data. For this purpose the merit
function

- 2
M "'(ai, , a ) —M;"

X (aI) ~ ~ . )+nj =
0''

(5.1)

has to be optimized with respect to the parameters
ay . . . a . Here g labels the mesons M. and
denote their experimental and calculated masses, and 0;
their weights. A nonlinear regression method, based on
the Levenberg-Marquardt algorithm was used to perform
the fits (see Sec. 15.5 of [23]). This method requires as
input the explicit knowledge of the derivatives of the cal-
culated masses with respect to the fit parameters. For the
present complex situation this information is not known.
It is only known that the derivatives of a meson mass with
respect to quark masses it does not contain, is equal to
zero. Therefore the derivatives were approximated in the
least time consuming way by the following expression:

yMthe

Oa~

M,'"'(ai, . . . , a, + E, . . . , a„) —M,'~'(ai, . . . , a„)

(5.2)

In this manner all required information, i.e., M;"' and
BMt"'/Ba~, is obtained by calculating all meson masses
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(~ + 1) times. A more sophisticated method would con-
siderably increase this n»mber. The approximation, Eq.
(5.2), turned out to be very effective: starting with a
physically sensible set of parameters, after four or five
steps convergence to an optimum was reached. The value
of the parameter 4 appeared to be of minor importance.
b, = 0.04 (dimensionless, in GeV, or GeV, depending
on the dimension of az) was found to be a good choice.

All mesons regarded to be established by the 1992
Particle Data Group [24] (in Table III indicated by a
"o") were used in the fit, with the exception of the self-
conjugate light »nHavored ones. For a fair description of
these mesons, an annihilation interaction &om initial qq
states to final q'q' states should be included. Also the
charmed strange D, and D,g were excluded, because of
the uncertainty of their quantum numbers. Furtherznore
the up and down quarks were considered to be of equal
mass. In addition the electromagnetic interactions are
completely neglected. Therefore the x and m+, the Ko
and K+, and so on will be degenerate in this picture. Be-
cause of the indistinguishability of the u and d quarks,
&om now on such a quark will be denoted by "u/d. " This
accuznulates to a total of 52 mesons: 11 light un8avored
(+du/d), 11 strange (st), 4 charmed (cu/d), 2 charmed
strange (cs), 10 charmonia (cc), 2 bottom (bu/d), and 12
bottonia (bb).

For the weight cr; the maximum of the uncertainty
dM,

'" of the measured mass and the predictive power
of the model, was taken. It is difficult to give an esti-
mate for this predictive power. In the first place quark
models have a phenomenological nature; there is no di-
rect link with /CD. In the second place, most mesons
are in fact resonances. The decay mechanisms, which
are not incorporated in this paper, could considerably
efFect the position of the calculated masses. This espe-
cially applies for the mesons that have decay widths of a
few hundred MeV. To account for all of this, a grid size
S = 20 MeV was introduced to give a zninimum to 0.
Only for bottonium (bb), a grid size of 10 MeV was used,
because in this system relativistic eKects are less impor-
tant and most states have narrow widths. Summarizing,
the weights were determined by the following forznula

TABLE II. Final parameter sets from the fitting procedure
described in Sec. V for potential models I and II. The varied
parameters are indicated by a ". " For model I two difFerent
fits were made. In case Ia np was held fixed and A was fitted,
while in case Ib A was put equal to 0 and ap was fitted. The
related quantities are discussed in Sec. VI.

Model:
Potential
VOGE

Vcon

Parameters

Ia

VR (3.6)
Viin + VC

Ib

VR (3.6)
Viin + Vc

VM (3.7)
Vien + Vc

znade by taking only half of the spline intervals N needed
to obtain the desired accuracies. The resulting fit pa-
rameters were then used as the starting point for a full
accuracy fit. The typical computation time for a com-
plete rough fit for all 52 znesons was 30 min on a Spare
2 workstation, while the fine tuning fit took about 1 h.

As was already mentioned, two diferent types of po-
tentials were examined. In case I the Richardson poten-
tial V~ was taken to account for the OGE and for the
confinement in the vector direction. V, „has a purely
scalar character (e = 0). For ao both the "/CD" value
16m/27 and the value 1.75, which gives a better agree-
ment with the /CD formula, Eq. (3.4), were taken. Both
choices ended in comparable fits (y2 —260). The result-
ing parameters for ao ——1.75 (denoted by Ia) are given
in Table II and the calculated meson spectrum in Table
III. Also the case in which neither ao nor e was fixed
was regarded. The regression method led to very small
values for e and the string tension A. Therefore a fit,
denoted by Ib, was made where these two parameters
were put equal to zero, and where ao was varied. This
resulted in a somewhat better fit (Ib) with y2 = 250 (see
also Tables II and III). In both cases seven parameters,
three to model the potential and four quark masses, were
fit. Finally, the case was considered in which the linear
terzn of V~ was subtracted. To get a confining poten-
tial in the vector direction, the mixing e was also varied.
This choice is very similar to the quark-antiquark poten-
tial used by Crater and Alstine [25]. The results did not

(5.3)

A few exceptions to this rule were znade. The pion ~ and
the kaon K are the ground states of the +du/d and su/d
mesons, respectively. It is commonly believed that in or-
der to give a fair description of these particles the mech-
anism of chiral symmetry breaking should be included in
the model. It appeared that also the Ko mass was badly
described by the model. This state, however, has a large
decay width of 300 MeV. Therefore cr = 0.4 GeV and
o.~ ——o.~ ——0.2 GeV were chosen, so that these states
get an insignificant weight in the fit. Another point are
the p' and p". These states also have large decay widths

( 300 MeV). It appeared that best results were ob-
tained if each state was regarded to be composed of two
neighboring resonances. In Sec. VI this point will be dis-
cussed in more detail.

To decrease the computation tizne first a rough fit was

C1p

A (GeV)
A (GeV )
C (GeV)

Quark masses

m~g (GeV)
m, (GeV)
m, (GeV)
ms (GeV)
g parameters
x'
Related quantities
At~t (GeV )
P (GeV )
P
n, (34 GeV)
o~(Mz = 91 GeV)

1.750
0.324 ~

0.077 ~

-1.297 ~

0

0.512 ~

0.766 ~

2.066 ~

5.474
7

263

0.169
1.18+0.05

0.81
0.141
0.1164

2.434 ~

0.320 ~

0
-1.291 ~

0

0.699 ~

0.889 ~

2.206 ~

5.616
7

250

0.125
1.27+0.09

0.79
0.196
0.161

1.862
0.376 ~

0.136 ~

-1.038 ~

0.523

0.966 ~

1.072 ~

2.249 ~

5.593
8

322

0.136
0.93+0.08

0.75
0.155
0.127
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TABLE III. Meson spectrum calculated from (2.11) for three difFerent parameter sets Ia, Ib,
and II, ( see Table II). All masses are in GeV. The experimental values are taken froxn [24], with
the exception of the h, i, which is taken from [28]. The mesons labeled with a "~" (regarded as
being established by [24]) were, with the exclusion of the D," and the D,z, involved in the fitting
procedure The weights a; are determined by (5.3). The most dominant '+ Lz waves are in bold.

Name i

P
P

III
P
P
ap

I
Gp

Gl

G2

COG

7r2

X2

P3
I

P3

G3

a4

p5
a6

Name i
K
K'
KII

K
K"

Ks lr

Kp

Ks I
0

Kl
Kl
K"1
K2

K2
K2
K2"

K3
K3
K4
K4
K5

JPC
p

—+

p
—+

p
—+

1
1
1
1
1
1
1
p++
p++
1++
2++

1+—

2
—+

2 +

3
3
3
3++
4++

JPC
0
0
0
1
1
1
1
0+
p+
p+
1+
1+
1+
2+
2+
2+

3
3+
4+

Lig
2s+1LJ
'Sp
'S
'Sp
S /sD
Si/ Di
Si/ Di

sS jsD
sS /sD
Si/ Di

sS /sD
Pp
Pp
P

sp /sF
3

Pp, l,2
1P
'D2
1D
sD /sQ
'Ds/'Gs
Ds/ Gs

3F
F4/ H
Gs/ Is
Hs/ Js

Stra
2a+1L J
'Sp
'Sp
'Sp
'Si/'Di
Si/ Di

sS /sD
sS /sD

Pp

3P
'Pi/'Pi
Pl/ Pi

sp /sp
'&,j'F,
'Ds/ Ds
'D / D
'Ds/ Ds
'Ds/ Gs
'Fs / Fs
F4/ H4

'G4/ G4
sg /sI

M'"~'
0.135
1.300
1.775
0.768

M'
0.600
1.243
1.711
0.754
1.365
1.474
1.806
1.865
2.162
2.200
1.012
1.517
1.166
1.301
1.224
1.183
1.590
1.958
1.698
2.051
2.097
1.915
2.021
2.297
2.540

1
2

3
1
2
3
4
5
6
7
1

2

1

1
1
1
1

2

1
2

3
1
1
1

1

1.465
1.700

2.100
2.150
0.983
1.320
1.260
1.318
1.262
1.232
1.670
2.100
1.691
2.250

2.050
2.040
2.350
2.450

(Kaons): s, u/d quarksnge mesons
Mexpt M'

0.762
1.402
1.864
0.891
1.504
1.618
1.945
1.177
1.674
2.074
1.304
1.322
1.773
1.416
1.867
1.945
1.706
1.715
2.082
1.801
2.027
2.115
2.300
2.386

0.495
1.460
1.830
0.894
1.412
1.714

1
2
3
1
2

3
4
1

2

3
1
2

3
1
2

3
1
2
3
1
1
1
1
1

1.429

1.950
1.270
1.402
1.650
1.429
1.980

1.580
1.768
2.250
1.770
2.320
2.045
2.500
2.380

ht unfiavored mesons: u/d quarks
M'b

0.595
1.206
1.671
0.762
1.345
1.477
1.786
1.864
2.151
2.206
0.981
1.464
1.163
1.319
1.229
1.194
1.614
1.986
1.734
2.092
2.152
1.957
2.085
2.395
2.677

M'b

0.723
1.329
1.786
0.876
1.455
1.588
1.890
1.112
1.587
1.989
1.274
1.306
1.725
1.415
1.849
1.934
1.693
1.711
2.065
1.813
2.034
2.150
2.333
2.449

M"
0.688
1.292
1.695
0.867
1.387
1.460
1.764
1.807
2.065
2.096
1.017
1.510
1.197
1.329
1.250
1.231
1.561
1.880
1.637
1.940
1.969
1.813
1.883
2.093
2.279

M II

0.781
1.385
1.786
0.955
1.477
1.553
1.852
1.115
1.604
1.955
1.288
1.321
1.701
1.415
1.785
1.831
1.640
1.650
1.962
1.722
1.900
1.967
2.116
2.176

0.400
0.100

0.020

0.025
0.020

0.020

0.030
0.020

0.020
0.020

0.020

0.200

0.020
0.020
P.020

0.200

0.020
0.020

0.020

0.020

0.020

0.020

Name i JPC
0

28+1L J
1S
sS jsD

Charmed mesons:
Mexgt

1.867 1
2.010 1

c, u/d quarks

1.935
2.006

1.901
1.999

M.
1.904
2.031

0.020
0.020
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TABLE III. ( Coratinued. )

Charmed mesons: c, q/d quarts

Name i

Dl
D~(')

D2

Naxne i
D,

D:(')

D,l

~ D.~(')

gPC

p+
1+
1+
2+

gPG

0
1
p+
1+
1+
2+

MCXpt
5

24+1LJ
Sp

$S /$D
Pp

'P, /'e,
iF /$P
$P /$F

2.537

2.564

'+l LJ
3p
Pi/ Pg 2.424
Pi/ Pi 2.440'P$/'F$2. 450

Charmed strange
Mcxpt

1.969
2.110

meso ns:

1
1
1
1
2
1

M.
2.339
2.406
2.439
2.485

c, s quarks
M-
2.032
2.100
2.436
2.498
2.520
2.561

M.
2.290
2.379
2.438
2.492

S

1.990
2.088
2.387
2.473
2.516
2.568

2.264
2.382
2.424
2.484

1.984
2.110
2.349
2.466
2.503
2.563

0.020

0.020

0.020

0.020

Name i
B

B'

Name i
& (')
&:(')

gPG

0
1

JPG
0
1

2@+1LJ
1S
Si/ Di

Bottom mesons: 5, u/d
2a+l L McxptJ
1S 5.279 1
Si/ Di 5.325 1

Bottomed strange mesons:
Mcxpt

5

5.38 1
5.43

quarks
M'
5.303
5.336

b, 8 quarks
M'
5.379
5.413

5.268
5.318

M.'b

5.340
5.394

5.247
5.316

M"t
5.317
5.387

0.020
0.020

Name i
gc

I
9C

J/@
yl

@ll
@III

Q%Q

gcp
gcl
QCQ

COG
h, l

JPG
p-+
p-+
1
1
1
1
1
1
1
p++
1++
2++

2a+1LJ
1S
1S
$S /$D
$S /$D
$s /$D
$S /$D
's, /'D,
'S, /'D,
'si/'Di
'Pp
3P
Ps/ F$
P0,1,2

1P

Mexp't
5

2.979
3.590
3.097
3.686
3.770
4.040
4.159
4.415

1
2
1
2
3
4
5
6
7
1
1
1
1
1

3.415
3.511
3.556
3.525
3.526

BottOXLluIQ:

Char monium: c quarks
M'
3.042
3.615
3.099
3.655
3.766
4.051
4.124
4.376
4.430
3.437
3.485
3.523
3.501
3.492

5 quarks

M,'b

3.010
3.589
3.104
3.646
3.780
4.017
4.105
4.319
4.384
3.433
3.506
3.562
3.529
3.520

3.007
3.609
3.117
3.665
3.775
4.028
4.097
4.314
4.364
3.409
3.504
3.572
3.531
3.522

0.020

0.020
0.020
0.020
0.020
0.020
0.020

0.020
0.020
0.020

Namei
gb
T

yl

gbo
gbp

X»
X»
Xb2

Xb2
COG
COG

gPG
0-+
1
1
1
1
1
1
1
1
1
1
0+'+

p++
1++
1++
2++
2++

2e+lL J
'Sp
'Si/'Di
$S /$D
's, /'D,
$S /$D
$s /$D
$S /$D
$s /$D
'Si/'Di
'si/'Di
$S /$D
3P

Pp
5p
3p
$P /$F
'P./$F,

P0$1,2
3P0,1,2

Mcxpt

9.460
10.023

10.355

10.580

10.865

11.019
9.860

10.232
9.892

10.255
9.913

10.268
9.900

10.260

1
1
2
3
4

6
7
8
9
10
1
2
1
2
1
2
1
2

M'
9.454
9.493

10.011
10.131
10.346
10.423
10.614
10.672
10.846
10.893
11.054
9.859

10.220
9.882

10.239
9.901

10.253
9.890

10.245

M,'b

9.353
9.434

10.018
10.171
10.348
10.444
10.599
10.670
10.811
10.868
11.000
9.863

10.229
9.906

10.258
9.938

10.281
9.919

10.267

M"
9.368
9.441

10.022
10.160
10.365
10.451
10.626
10.688
10.844
10.892
11.035
9.843

10.232
9.888

10.261
9.922

10.284
9.902

10.271

0.010
0.010

0.010

0.010

0.010

0.010
0.010
0.010
0.010
0.010
0.010
0.010
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improve, however.
In case II the modified Richardson potential VM in

combination with a mixed scalar-vector V, was taken.
The value o;0 ——16vr/27 was the only parameter held
fixed, so that eight parameters were varied. In spite of
the extra parameter, the resulting fit (II), see Tables II
and III, is worse than the fits found for case I and gave
X' = 322-

VI. DISCUSSION

The meson spectrum calculated for parameter sets Ia,
Ib, and II is given in Table III. Also the mesons that were
not involved in the fitting procedure (the ones without a
o.j were calculated. It is seen that most of these uncon-
firmed mesons (see [24]), are reasonably well described
by the model. Many states are a mixture between two
'+ Lp waves. Only in the NR limit these waves de-

couple because only then the angular momentum / is a
good quantum number (see Sec. II C). For each state
the most dominant wave is in bold. Most distributions
are like 99'%%uo vs 1'%%uo, which supports the statement that I

is almost a good quantum number.
A few years ago (for a review, see page VII of [24]),

p(1450) and p(1700) were recognized as being a split-
ting in the formerly known p(1600) resonance. It could
be interpretated as the fine-structure splitting between
the n = 2, dominantly 8 states and the n = 3, dom-
inantly D states. The splitting however is rather big

( 250 MeV). For the present model this interpretation
was found to be in con8ict with the rest of the spectrum.
A correct p' —p" splitting induced a far too large split-
ting in the 1 states of charmonium and bottonium,
and vice versa. Only if the p' was regarded to consist of
the n = 2 and n = 3 states, and the p" of the n = 4 and
n = 5 states, correct splittings for the entire spectrum
could be obtained. In addition, the correct splitting be-
tween the observed p"' and p'" ( 50 MeV) was obtained.
The difference between the n = 2 and n = 3 mass, and
between the n = 4 and n = 5 mass, was found to be
100 MeV, which is much smaller than the decay widths
of the p' and the p" ( 300 MeV).

In the fits discussed so far the ao was regarded as an
established meson. However, there are indications that
the ao is not a qq system, but a KK molecule. In that
case not the ao but the ao would be the lowest radial
excitation of the J = 0++ channel. Therefore also
fits in which the ao was not regarded and fits in which
the ao was identified with the lowest 0++ excitation frere
made. It appeared, however, that there was a preference
of the lowest 0++ excitation, to lie around 1 GeV, i.e.,
the mass of the ao. The identification of the ao with the
lowest excitations led to considerably worse fits. These
results indicate that in the light of the present quark
model the ao is to be regarded as a qq state and not as a
KK molecule.

The masses of the vr, E, and Ko are found to be much
too large. As was already mentioned, this was to be ex-
pected, because the small masses of these particles are
believed to be a consequence of spontaneous breaking of

chiral symmetry. In all cases Ia, Ib, and II, the mass of
the g is found to be too high. As was pointed out by
Hirano et aL [26], this is probably a consequence of the
omission of negative energy states. They found that for
a quark model based on the instantaneous ladder Bethe-
Salpeter equation for charmonium, the g, is strongly in-
fiuenced by neglecting these states ( 100 MeV), while
the infiuence on all other states is much weaker ( 10
MeV). Ifone extrapolates these results to the present the-
ory, this means that the omission of the negative-energy
states only weakly afFects the spectrum. Only for the

So ground states may a substantial mass drop occur.
This would mean that also the masses of the D and the
Dg, which are now found a bit too high, would become
smaller. The B would also get a smaller mass, which only
has a positive result in case Ia.

The center-of-gravity COG(n) (see, e.g. , Sec. 8.1 of
[1]) is defined by

M(sP2) —M(sPi)
M( Pi) —M( Pp)

(6.1)

Its experimental value is 0.21 for u/de, 0.48 for cc, 0.66
for n = 1 bb, and 0.57 for n = 2 bb. For all three cases
Ia, Ib, and II, a rather constant value of p 0.8 (see
Table II) was found. A perturbative configuration space
calculation shows (see, e.g. , Sec. 4.2 of [1]) that this
too large value for p is a consequence of the dominance
of the vector OGE. An analysis for the present case in
momentum space gives a similar result. One can also
prove that p = 2 for an arbitrary purely scalar potential.
The splittings M( P2) —M( Pi) and M( Pi) —M( Po),
however, then both have the wrong sign. Prom this it
follows that the value of p must be very sensitive to the
competition between the vector Coulomb part and the
scalar part of the potential. This is so because the path
&om the one extreme to the other involves the change of
sign of both splittings. This in addition explains why the
experimental value of p differs so much for the different
quarkonia, because the competition between the vector
Coulomb and the scalar potential depends on the relevant
momentum scale.

The following remarks on the parameter sets can be
made. From Table II it; is seen that the quark masses
are substantially larger than usual in quark models. Fur-
thermore, the masses are quite difFerent for the differ-
ent cases. The smallest masses are obtained by fit Ia.
This is a consequence of the large negative constant
C —1.0 GeV, which, however, is necessary in order

COG(n):——M(n P2) + —M(n Pi) + —M(n Pp).
5 3 1 3 1

9 3 9

It can be proved that, for an arbitrary scalar potential Vp
and a Coulomb vector potential V~, up to first-order rel-
ativistic corrections, this COG equals the corresponding
niPi singlet. The relation is violated by the Q depen-
dence of o., and the presence of a confining term in the
vector direction. It is also affected by higher-order rela-
tivistic corrections. In all cases the COG is found to be
somewhat higher than the corresponding singlet state. A
related quantity is the ratio [1,27]
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to obtain a good fit for the entire spectrum. If, for in-
stance, one only considers bottonium and charmonium, it
turns out that the quality of the fit only weakly depends
on the value of t . The system is overparametrized and
one in fact does not even need a constant in the poten-
tial. But, when simultaneously also good results for the
lighter mesons are required, the large negative constant
arises automatically.

The total string tension Aq q is defined as the sum of the
tensions in vector and scalar direction. For case I one has
A«& ——A+ znpA, while case II simply gives Aq« ——A.
These tensions are also quite different for the difFerent
cases. In case Ib, which gave the best fit, there is only
a vector tension. This is in contrast to the requirement
that, in order to obtain better p values, the confining
should be dominantly scalar. The total tension for ease
Ia is closest to the value A 0.18 GeV, which is often
given in the literature.

The Regge slopes of Ia and Ib are compatible with the
experimental value P 1.2 GeV . The slope found in II
is somewhat too low. This can clearly be seen &om the
high- J states like the ps, as, and Ks. The errors given in
Table II represent a measure of linearity of the trajecto-
ries. It is defined as the spread in the difFerence between
the masses squared of adjacent states. The spreads found
are considerably smaller than the experimental value.

Finally the ru~ning coupling constant for Q = 31 GeV
and for Q equal to the mass of the weak Z boson (Q =
Mz = 91.16 GeV) were compared with the experimental
values

a, (34 GeV) = 0.14 + 0.02,

a, (Mz) = 0.11346 0.0035.

Only case Ia is compatible with both conditions. The
choice ck'p = 1..75 was made to give the best approxima-
tion to the /CD formula, Eq. (3.4), for moderate mo-
mentum transfer. Now it appears that this choice also
gives correct results for very high momenta. A fit of type
Ia, but now with ao ——16m/27 (not displayed) gave a
too large high momentum a, . In principle, the high q
range of the potential is completely irrelevant for the cal-
culation of the meson spectrum, where the potential is
only tested up to a few GeV. Nevertheless, for the sake
of theoretical consistency, this test was made.

VII. CONCLUDING REMARKS

In this paper a relativistic quark model defined in mo-
mentum space was studied. The quark-antiquark po-
tential used consisted of a OGE with a Lorentz vector
character and a linear plus constant confining potential.

l

For the OGE the Richardson potential V~, given by Eq.
(3.6), with and without its linear part, as well as a mod-
ified Richardson potential VM, defined by Eq. (3.7), was
regarded. Best results were obtained for the Richardson
potential including its linear term (case I). The linear
plus constant potential was given a pure scalar charac-
ter, i.e., e = 0 in Eq. (2.6). In this way, the confining
in the vector direction was induced by the linear part of
V~. For case I two different fits were made, fit Ia, in
which the value of ao was fixed to 1.75, and fit Ib, in
which ao was varied, but the string tension in the scalar
direction A was put equal to zero. Also reasonable well
results were obtained for V~Qg = VQ (case II). Here the
confining potential was given a mixed scalar-vector char-
acter. For the fits Ia, Ib, and II, most meson masses,
with the exception of m, Ã, and Xp were found to be
reasonably described by the model. In cases Ia and Ib
correct Regge slopes were found, and only in case Ia a
correct strong coupling constant for large momenta was
found. The ratios p, defined by Eq. (6.1), however, were
in all three cases found to be too large. Et is concluded
that case Ia should be preferred.

No detailed comparison with other theories has been
made because the main purpose of the present applica-
tion was not so much to improve upon the existing calcu-
lations, but rather to show that results of the same qual-
ity could be obtained using a relativistic theory which is
formulated in the momentum representation.

APPENDIX A: PARTIAL-%VAVE
DECOMPOSITION

In this appendix we give the precise form of the de-
composition of a potential W defined by Eq. (2.6). The
partial-wave potentials

= (Vv)";,. + (Vs)";, , n = a, t,

defined by Eq. (2.10) can in general be expressed in terms
of the "spinless" partial waves 8'&~ and R'&~ of Vy and V~,
respectively. They are defined by

+1
Wvs(p', p) = (2n p'p)R(p', p) Wv, s(p', p)Pi(z)dx,

—1

(A1)
I

with z =, and Pj the Legendre polynomial of order
P'J'.

The quantity B is defined by R(p', p) = g'ig'2&i&2,

with A = 2E If furthermore b = E",then
the result is the following: Vector potential for the (si q)
states

J+1 W +' JW' '
(VV) ii (p ) p) [1 + 3(bib2 + blb2) + bib2blb2] Wv + (b] b2)(bl b2) 2J+1

J+x J—z

(V )i'(p' J) = (b' —b')(b + b )V'~(J+1) = (V )i'(p p')2J+1 (A2)

(Vv) 22 (p, p) = (1+bib2) (1 + bib2) Wv + (bi + b2)(bi + b2) 2J+1
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Vector potential for the gati z) states

Scalar potential for the isi, z) sta, tes

J 1 ~ +

2 +1
J+X J-X

(Vs)12(P ~p) (blbl b2b2) V J(J + 1) J 1
(Vs)21(P1P )~

+

Scalar potential for the gati 2) states

(Vs)»(p'~ p) = (1+bib2bib2)
z, , (J+1)Ws+ + JWs

2J+1
—(bibi + b~b2) Ws,

~J+1 ~J—1

(Vs)i2(p', p) = —(1 —bib2bib2) gJ(J+ 1) = (Vs)zi(» p')

1 W'+' JW'-'
(Vv)ii(p', p) = (1 —bib&)(1 —bibz) + [(bi —b2)(bi —bz) + 4(bibz + bzbi)j Wv,2J+ 1

J+1 J—X

(Vv)'8(p' p) = —(1 —bib2)(1+ bibz) v J(J+1) 2J+, = (Vv)"i(» p')

(Vv) 2z (p, p) = (1 + b'ibz) (1 + bib2) + (bi + b2) (bi + bz) Wv.2J+1

(A3)

(A5)

Strictly speaking, these results are only valid for J ) 0.
For J = 0 only the Vii's are nonzero and are also given
by Eqs. (A2) —(A5), but with W'= = 0.

In the equal-mass case there is no difference between
the bi's and the b2's. From this it is seen that the Vyg s
and the V2'i 's are zero. This means that the potential de-
couples with regard to the isi) state, which corresponds
to the l = J singlet, and the isz) state, which corre-
sponds to the l = J triplet. Therefore in this case only
the il = J 6 1) triplet states mix. In the unequal-mass
case the l = J singlet and triplet states mix.

APPENDIX B:SPINLESS DECOMPOSITION OF
THE RICHARDSON POTENTIALS V~ AND VM

O' = Q'(p, p', *) = 2pp'(zo —*). (B1)

In this appendix the spinless partial-wave decomposi-
tions O'~ and O'M of the potentials V~ and VM, de6ned
by Eqs. (3.6) and (3.7) will be calculated.

The momentum transfer Qz which is de6ned by Eq.
(3.2) depends on the lengths p =

ipse and p' = ip'i of
the incoming and outgoing momentum, and on the angle

x =, between these two momenta:pp'

where the retardation w is a theory dependent quantity
which in the present case is given by Eq. (2.3). The spin-
less partial wave Wi(p', p) corresponding to an angular
momentum l is defined by Eq. (Al). Introducing

Q'(z) Az
y(x) = 1 + , b = (B3)

and y+ = y(z = pl) ) 1, then Wz and WM are given
by

lO'R ——— "+ P)zp —by —1
~y)

2vr „(y—1)»y
apR "+ Pi zp —b y —1

dy.
2m „ylny (85)

The y dependence in Pi can be expanded, by using

l

Pi(z —iu) = ) g,'. (z)is'.
i=p

(B6)

Here g, is a polynomial of degree l —i. For l ( 3 it is
given in Table IV. For general l it can be found &om the
recurrence relation

Here

J'+p"- (p, p')
zo(p p ) =

2pp'
(B2)

(l + 1)g,
'+' = (2l + 1)(zg,

' —g,', ) —lg,
'

in combination with the initial values

go (z) = 0, go(z) = l.

(B7)
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0
1
2

z
3 2 1—z2 2

5 3 3—z ——z2 2

—3z

——z +—15 2 3
2 2

15—z2

TABLE IV. The polynomials g,'- for I & 3, defined by (B6).

where

One 6nds

n n

k)

y+ n —1
I„= dy, n & 0.y

y lIly

(812)

(813)

Note that go obeys the recurrence relation of the Legen-
dre polynomials. In combination with the initial values,
Eq. (88), it follows that gp = Pt.

The partial waves W& and WM can be written in terms
of g,'-'s and the integrals

lny+

lny

I„=Ei(nlny+) —Ei(nlny ), n ) 0,

where

Ei(~) =— dt—

(814)

(815)

(816)

bra y+ (y I)ra
A„= — dy, n& —&.

2 y ylny

For n = —1 one has

(89)
is the exponential integral (see (5.1.2) of [22]). The
principal-value integral is denoted by f.

Summarizing all steps it follows that W& and WM,
defined by Eqs. (Al), (3.6) and (3.7), are given by

where

1A, = —[F(lny+) —F(lny )],
2b

(810) W t(tp, p) = — ) g,'(zp)(A;+ bA; i),
i=0

W' (p, p') =- ' ) g,'(z.)X;,

(817)

(BIS)
F(z) =—,, z &0.tet —1'

For n ) 0 the integrals A„can be expanded into

(811)
where the polynomials g; are defined by Eq. (86) and the
integrals A„can be found from Eqs. (810) and (812).
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