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We compute the multifractal moments G~ in terms of a new scaled variable I suggested by
Bialas and Gazdzicki to study the dynamical Buctuations of particles produced in the interactions
of Au at 10.6A GeV with nuclear emulsion. An asymptotic power-law dependence of the mo-

ments on the bin size b X has been observed in pseudorapidity (q), azimuthal (P), and rt-P phase
spaces. The dynamical values of the generalized dimensions are determined in all the phase spaces.
The dynamical properties of the produced particles are mapped onto smooth multifractal spectra
f(Dos) by excluding the statistical contribution. The Au results are compared with a Si ion
at 14.5A GeV and a S beam at 200A GeV.

PACS number(s): 25.75.+r

I. INTRODUCTION

Bialas and Peschanski [1] suggested the method of
scaled factorial moments in order to find out the origin
of nonstatistical fluctuations in the distributions of the
secondary particles produced in high energy collisions.
Such fluctuations reveal the self-similar behavior of mul-

tiplicity fluctuations in particle production at high en-

ergy. The nonstatistical particle density fluctuations in
high energy collisions have been observed in several ex-
periments [2], when the scaled factorial moments F~ [1]
are studied as a function of the phase space interval size
down to the limit of the detector resolution. The con-
jectured power-law behavior of the scaled factorial mo-
ments [1] is known as intermittency in analogy with the
description of bursts of turbulence in the theory of chaos.
The intermittent behavior appears to be a general prop-
erty of particle production at relativistic energies [2].

Analogous to the well-known phenomenon of self-
similarity in geometrical and statistical systems, it has
been suggested that the multiparticle production data
may also exhibit &actal behavior [3]. The power-law be-
havior of the scaled I"q moments, indeed, implies the exis-
tence of some kind of fractal patterns [4,5] in the dynam-
ics of the particles produced in their final state. There-
fore, it is natural to address the concept of self-similarity
under. the perspective of fractal properties of the hadronic
matter in rnultiparticle production. A formalism to in-
vestigate quantitatively any single particle density dis-
tribution in the &amework of multifractal characteristics
has been recently proposed [5], and it involves the com-
putation of multifractal moments, Gq, as a function of
the phase space intervals. The technique of multifractal
moments has been recently applied successfully to under-
stand the self-similarity of the hadronization mechanism
prevailing in leptonic [6], hadronic [7], and nuclear colli-
sions [8] at relativistic energies.

We presented experimental evidence on the existence
of multifractal properties of singly charged hadrons
emerged in nucleus-nucleus collisions over a wide range

of energies [8,9], and, subsequently, of the projec-
tile fragments of charge Z & 2 produced at energies
& 2A GeV [10]. So far, no data are available on the anal-

ysis of multifractal structures of the produced hadrons
at the Brookhaven Alternating Gradient Synchrotron
(AGS) energy with a projectile of mass more than the

Si beam. Very recently, a massive Au projectile was
accelerated to an energy of 10.6A GeV from the AGS at
Brookhaven National Laboratory (BNL). Our aim is to
explore the multifractal properties in the currently col-
lected data on 9 Au-emulsion collisions in the pseudo-
rapidity (rt), azimuthal (P), and ri-P phase spaces using
a new scaled variable X suggested by Bialas and Gazdz-
icki [11]. We shall then compare the results of s Au
beam with two additional data samples: (i) 14.5A GeV
2sSi beam [12] obtained &om BNL and (ii) 200A GeV
s2S ion [13] obtained &om CERN, an ion with the high-
est available energy per nucleon.

II. EXPERIMENTAL TECHNIQUE

The data presented here were obtained by irradiating
the Fuji emulsion pellicles to a beam of ~srAu ions at
10.6A GeV (projectile) A) &om Brookhaven National
Laboratory (Expt. No. 875). The details of scanning
and angular measurement techniques are discussed else-
where [14,15]. For angular measurements, we selected a
sample of 245 "Au events such that the projectile frag-
ments of charges 1 & Z & 17 survived in an interaction,
and also the number of singly charged produced shower
particles (N, ) in a collision was always ) 50, with the
number of low energy target tracks, Nh & 0. The pro-
duced shower particles N, are predominantly relativistic
pions with velocity P = v/c ) 0.7. Ka represents the
number of low energy (P & 0.7) heavy particles emerged
&om the target nucleus of emulsion [15]. While perform-
ing the angular measurements, utmost care was taken to
exclude uninteresting background shower tracks emerg-
ing from pion-gamma conversion to e+e pairs. These
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shower tracks almost occur in the same plane in emul-
sion and when followed downstream showed a consider-
able amount of Coulomb scattering. An experienced ob-
server, while doing the angular measurements, can eas-
ily catch them and exclude them. In addition to it,
another source of unwanted background due to double
counting of the shower tracks was also avoided. By us-
ing the reference primary method [15], we achieved an
accuracy of 0.1 mrad in measuring the emission angles
(8) of shower particles in the central pseudorapidity re-
gion (rj = —ln tan 8/2). We compared the ~srAu beam
(projectile A) results with the 14.5A GeV 2sSi ion (pro-
jectile B) from BNL (Expt. No. 847) and with the
200A GeV s~S nucleus (projectile C) from CERN (Expt.
No. EMU08). For B and C data sets, we selected only
the events with complete destruction of the beam nucleus
into singly charged projectile &agments. The numbers of
events used for projectiles B and C were 172 and 200, re-
spectively. The analysis was confined to the pionization
region in each case. The selected ranges of pseudora-
pidity intervals were Ag =0.5—3.7, 0.5—3.9, and 0.4—6.4
for projectiles A, B, and C, respectively. The average
multiplicities of the singly charged particles (N, ) in the
investigated Ag ranges are 139.5 6 11.5, 62.6 6 4.8, and
207.4 6 14.7 for the ions A, B, and C, respectively. For
azimuthal P phase space, the analysis was performed on
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~ ~ S

35- ~ 1 ~

~ ~
k~

~ ~ i ~15—
a

the shower particles falling in the above-mentioned b,g
range of an individual projectile.

In Fig. 1(a), we show the singly charged particle pseu-
dorapidity densities p(g) for the three projectiles A, B,
and C used. One may notice that the p(rI) distribution
is not completely uniform over the investigated Ag range
in each case. Each of the distributions suffers &om edge
efFects and hence may not be suitable to investigate the
multi&actal moments Gq. Since Gq moments depend on
the shape of the single particle density distribution, it is
advisable to circumvent the problem of edge effects. To
avoid it and also to compare the results obtained &om
several experiments, where the basic observables are dif-
ferent, Bialas and Gadzicki [11] have suggested a new
scaled variable X related to the single particle density
distribution p(rI) as

n n2

X(ri) = p(rI)dpi p(rI)dq .
gl gl

Here, gl and g2 are the two extreme limits of the pseu-
dorapidity distribution. For a given value of the pseu-
dorapidity g falling in the interval Ag = g2 —gl of an
individual shower track in an event, the X variable was
created using Eq. (1). The variable X varies uniformly
between 0.0 and 1.0, so that p(X) —constant with qq
and F2 as depicted in Fig. 1(b) for the projectiles A, B,
and C in g phase space. The value of p(X) as expected
is the highest for the szS projectile and the lowest for the

Si projectile. For Au, it lies almost at the middle of
the distributions for S and Si beams. Similar results
were also obtained for the X(P) and X(rig) variables (not
shown here). The present analysis, therefore, deals with
the computation of Gq moments &om the single particle
X(rI), X(P), and X(rig) density distributions, instead of
the usual pseudorapidity g, azimuthal P, and g-P distri-
butions.

III. THEORETICAL FORMALISM

195—

t 1

(b) g —space

According to the theory of multifractals [5], N singly
charged shower particles falling in a given interval QX =
X —X;„are distributed into I nonempty bins with
a bin size hX = b.X/M. The power-law dependence
of (Gq) of order q on X for the self-similar Buctuations,
when N/M )) q, is expressed as

N„M
(Gq) = ) ) (n;/N)' oc bX

ev

28Si

Q
O. O 0.5

X.
1.0

FIG. l. (a) Single particle pseudorapidity distributions
p(g) for the projectiles A, B, and C. (b) Single particle den-
sity distributions p(Ã) of the scaled variable X(q) for the
above j.ons.

where n~ denotes the multiplicity of charged particles de-
tected in the jth bin and N = g. z nz denotes the total
n»mber of particles detected in an event. The exponents
q extend over all real numbers. N,„stands for an en-
semble of events analyzed in a given data set. 7q are the
generalized exponents and can be determined unambigu-
ously from the asymptotic behavior. A linear dependence
of (lnGq) on —lnbX over all the windows is related to
rq ——limsx~o(b, (lnGq)/b, lnbX). From the derivatives
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of vq, a.q is determined and by the Legendre transforma-
tions, one obtains the spectral function f (aq) as follows:

d~
~f(~q) = q~q

dq

For the presence of multikactal structures in a particu-
lar data sample, the spectral function f(aq) must have

(i) downward concave form, (ii) f(ctq) has a maximum
value at aq = o.o, and (iii) f(nq) ( f(ao), for q P 0.
The width of the f(aq) distribution is a measure of the
size of dynamical fiuctuations. For a purely statistical
system with absolutely no fluctuations, f(nq) = o.q

——1
for all values of q and the function f(nq) is a straight line
parallel to the y axis at nq ——1. The generalized dimen-
sions Dq [4,5] of the multifractals are related to the mass
exponents vq by

qDq-
q —1
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for q g 1. Here, Do ——f(ao), Di = f(ai) = cti& and
D2 ——2ct2 —f(o.q) are known as the fractal, information,
and correlation dimensions, respectively.

(b) 14.5A GeV "Si
7J-space

IV. RESULTS AND DISCUSSION 1 6.0- q
——4

q= —3

In Fig. 2(a), we plot a variation of (ln Gq) as a function
of —lnbX for projectile A in g phase space. Clearly, a
linear dependence of (ln Gq) on —lnhX is demonstrated
(except for a few last data points for q = —6 and q = —7),
which is a qualitative measure of the manifestation of the
multifractal structures exhibited by the Au-emulsion
reactions at BNL. To compare the results, similar plots
are shown for projectiles B and C in Figs. 2(b) and 2(c),
respectively. The multi&actal characteristics are also ob-
served for the projectiles B and C. The errors quoted
in Figs. 2(a)—2(c) are calculated on the basis of the total
number of shower particles falling in each bin. For the
negative values of q,

2 Si data at 14.5A GeV show satu-
ration effects much earlier as compared to Au and S
data sets. This is due to the fact that the mean multi-
plicity of shower particles (N, ) for 2 Si data is much less
in comparison to the other two data samples. As the bin
width bX is decreased, more and more nonempty bins
contain only one shower particle and the scaling proper-
ties of the Gq moments are lost for the bins containing
only a single particle. Thus, the multi&actal structures
can be observed only if more shower particles are avail-
able in each bin and when the saturation starts; we do
not consider those bins for linear relation. However, for
the positive values of q, the saturation effect seems to be
almost nonexistent for all the beams A, B, and C.

It is interesting to examine the multi&actality in the
dynamics of produced singly charged particles in the az-
imuthal P phase space also. To achieve this objective,
the above analysis is repeated over the I variable in az-
imuthal plane. The outcome of such a study is presented
in Figs. 3(a), 3(b), and 3(c) for the projectiles A, B, and
C, respectively. Except for a few last data points, a linear
of (ln Gq) with —lnbX is observed for all the data sets
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FIG. 2. (ln Gq) as a function of —lnhX for (a) Au at
10.6A GeV, (b) Si at 14.5A GeV, and (c) S at 200A GeV
in q phase space.
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FIG. 3. The same as in Fig. 2, but in 4 phase space. FIG. 4. The same as in Fig. 2, but in g-P phase space.
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TABLE I. Values of slopes Tq for Au at 10.6A GeV, Si at 14.5A GeV, and S at 200A GeV projectiles in g phase space.
Here, Tq stands for the slopes of Gq moments for simulated events of these projectiles.

—7
—6
—5
—4
—3
—2
—1

0
2

3
4
5
6
7

197A

Tq
—9.849+0.068
—8.843+0.055
—7.125+0.043
—5.783+0.032
—4.469+0.022
—3.312+0.014
—2.043+0.008
—0.978+0.004

0.913+0.006
1.780+0.013
2.614+0.021
3.426+0.029
4.221+0.038
5.005+0.047

Data samples
28S-

Tq

—8.486+0.115
—7.127+0.091
—5.779+0.069
—4.455+0.049
—3.185+0.030
—2.009+0.016
—0.955+0.007

0.870+0.009
1.682+0.019
2.456+0.031
3.203+0.043
3.933+0.055

32S

Tq
—10.059+0.093
—8.650+0.075
—7.251+0.057
—5.872+0.038
—4.527+0.022
—3.245+0.009
—2.063+0.003
—0.991+0.003

0.931+0.003
1.818+0.008
2.672+0.014
3.503+0.021
4.232+0.027
5.119+0.035

197A
St

—10.047
—8.643
—7.248
—5.871
—4.528
—3.247
—2.061
—0.984

0.917
1.785
2.618
3.425
4.214
4.990

—8.728
—7.321
—5.925
—4.557
—3.246
—2.038
—0.960

0.870
1.678
2.445
3.186
3.909

Simulated events
28S.

st
32S

st

—9.795
—8.425
—7.069
—5.736
—4.443
-3.210
-2.061
—0.997

0.948
1.859
2.742
3.602
4.445
5.275

TABLE II. Same as in Table I, but in P phase space.

q
—7
—6
—5

4
—3
—2
—1

0
2

3
4
5
6
7

197A

Tq
—10.194+0.108
—8.768+0.088
—7.351+0.068
—5.949+0.048
—4.579+0.030
—3.270+0.014
—2.063+0.006
—0.981+0.004

0.906+0.007
1.761+0.016
2.579+0.026
3.371+0.037
4.146+0.048
4.909+0.059

Data samples
28S ~

—8.749+0.119
—7.333+0.094
—5.929+0.070
—4.554+0.048
—3.239+0.029
—2.029+0.016
—0.952+0.008

0.857+0.010
1.648+0.021
2.398+0.033
3.120+0.045
3.823+0.058

32S

7 q

10.181+0.136
—8.754+0.112
—7.338+0.086
—5.941+0.061
—4.579+0.036
—3.279+0.016
—2.080+0.004
—0.995+0.001

0.930+0.004
1.814+0.009
2.666+0.015
3.493+0.021
4.304+0.029
5.102+0.036

197A
st
q

—10.000
—8.605
—7.219
—5.850
—4.516
-3.241
-2.600
—0.984

0.917
1.786
2.621
3.432
4.226
5.006

—8.697
-7.296
—5.908
—4.548
-3.244
-2.040
—0.962

0.874
1.678
2.459
3.204
3.931

Simulated events
28S

st
q

32S
st

—9.846
—8.468
-7.103
—5.762
—4.459
—3.219
—2.064
—0.997

0.945
1.850
2.726
3.579
4.415
5.237

TABLE III. Same as in Table I, but in g-P phase space.

197A

—3
—2
—1

0
2
3
4

28S.

Tq
—10.478+0.095
—8.647+0.078
—7.254+0.060
—5.878+0.043
—4.533+0.027
—3.249+0.014
—2.059+0.007
—0.981+0.004

0.908+0.007
1.763+0.017
2.582+0.027
3.375+0.039
4.149+0.050
4.910+0.062

Data samples
32S

—8.655+0.114
—7.263+0.090
—5.882+0.067
—4.527+0.046
—3.227+0.027
—2.028+0.014
—0.958+0.007

0.870+0.009
1.681+0.019
2.451+0.030
3.196+0.042
3.924+0.054

19YA

Tq
—10.041+0.120
—8.637+0.098
—7.244+0.075
—5.870+0.052
—4.532+0.031
—3.255+0.013
—2.072+0.003
—0.994+0.001

0.930+0.004
1.811+0.009
2.656+0.015
3.477+0.022
4.280+0.029
5.071+0.036

28S.
st

—10.076
—8.667
—7.269
—5.887
—4.539
—3.253
—2.063
—0.984

0.915
1.780
2.610
3.415
4.203
4.998

—8.782
—7.359
—5.950
—4.570
—3.252
—2.040
—0.961

0.874
1.688
2.462
3.211
3.944

Simulated events
32S

st st

-9.788
—8.420
—7.066
—5.735
—4.442
—3.210
—2.062
—0.997

0.947
1.857
2.738
3.596
4.436
5.263
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This shows that the dynamical fiuctuations also exist in
the multiplicity distribution of the produced hadrons in
azimuthal 4 phase space.

If a cascading mechanism is responsible for the pro-
duction of jets of hadrons [16], then the dynamical fiuc-
tuations are expected to be more in higher dimensions.
In order to explore the features of dynamical fIuctua-
tions in higher dimensions, we perform the multifractal
analysis of our data in both of the variables rl and P si-
multaneously (g-P phase space). The results of such an
investigation are depicted in Figs. 4(a), 4(b), and 4(c) for
projectiles A, B, and C, respectively. Just like in g or
P phase space, we once again observe a linear behavior
of (lnGs) with —lnbX, which is due to the dynamical
fiuctuations of the produced hadrons in rl-It phase space.

Prom Figs. 2, 3, and 4, the slopes rq are obtained by
straight line fits through the linear portion of the data
points for projectiles A, B, and C. In least-squares fitting
for ions A and C, the last five data points were excluded,
while for projectile B, the last seven points were ignored.
The 7~ values along with their statistical errors as ob-
tained from the above fittings are listed in Tables I, II,
and Ill for rl, P, and ri-P variables, respectively, for the
three ions used. Prom these tables, we may draw the
following inferences: (i) The value of d7s/dq for negative
values of q is always more than that for the positive q
values in rI, p, and rl-p phase spaces. (ii) Although pro-
jectiles Au and S have quite difFerent masses and
energies, the values of 7q, within errors bars, are very
close to each other at every order of q in p and rI-p phase
spaces. However, in g-P phase space for the values of
q & 2, the rq values for the szS ion are more than that
of the zsSi ion. (iii) On a careful examination of the 7q
values for beams ~ rAu, Si, and S in rI, P, and g-It
phase spaces indicate that for q & —1, 7q values do not
depend on the mass and energy of a given ion. However
for q + 0, an apparent departure from this behavior is
observed for the 2sSi data from ~srAu and s2S data. (iv)
In P and rI-P phase spaces for q & 0, 2sSi data also de-
part Rom ~srAu and szS data. To study the effect of
statistical contribution to Gq moments) a ssmple Monte
Carlo simulation was performed. For each event with N
particles, we distributed those particles randomly in the
given interval AX to determine the statistical Gq and
then averaged it over all the multiplicity distribution of
a given real data sample. For every event, p(X) = const,
and it implies a trivial dynamics due to a Bat structure-
less X distribution for each event. The Gq moments for
the simulated events also exhibited a power-law behavior
characteristic of a self-similar system. For the simulated
events of Au, sSi, and 2S beams in rl, P, and g-P
phase spaces, the slope values v' are also presented in
Tables I, II, and III. The deviation of 7q from the sta-
tistical ~' is a measure of the real dynamics [5). The
implications of these results of simulated samples will be
discussed in Fig. 6.

Derado et aL in Ref. [5] have presented a relationship
to determine the dynamical value of the slope parame-
ter 7 from the experimental 7q and the statistical r'
components: 7 " = wq

—r' +q —1. From this equation,
for a particular data set given in Tables I, II, and III, the
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FIG. 5. Dq" vs q for ious A, B, and C in (a) g, (b) P, and
(c) rI-P phase spaces.

dynamical value of r"" can be obtained by inserting the
value of 7q and its corresponding statistical value w at
any order of q. Thus, it is possible to compute dynamical
values of the generalized dimensions D~" using Eq. (4).
The Dd" parameter is plotted in Figs. 5(a), 5(b), and
5(c) as a function of q in rI, P, and rI-P planes, respec-
tively, for the ions A, B, and C. For all the projectiles A,
B, and C, D " is always positive for each order of q and
(0.9654 & Ds" & 1.0418) in rI, P, and rI-P phase spaces.
For the ion C, D " is always more than unity for q & —1
in rI, p, and rI-p phase spaces, which is contrary to the
predictions of Ref. [5]. This inference is also valid for the
ions A and B in P phase space, when q & —3. For beam
C in rI, It, and rl-p planes, D~" declines monotonically
from a maximum to a minimum value as q is increased
from —7 to 7, which is also true for the ions A and B in
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P phase space. However, for the projectiles A and B in

g plane, D"~" increases &om a minimum to a maximum
value, when q varies Rom —7 to 7. In g phase space,
data obtained from BNL AGS (i 7Au and 2 Si) overlap,
within their statistical errors, for order q & 0, whereas a
distinct separation between two data sets can be noticed
for q ( —1. S data obtained &om CERN has a quite
distinctive behavior as compared to 197Au and Si data
at all values of q. In P phase space, within errors bars,
all the data samples overlap for q ) 0, while for q & —1
the three data sets diverge &orn each other. In ql-p phase
space, Au and Si data samples, within the errors,
have approximately the same values of D &" for q & 0,
while for q & —1 the two data sets show an obvious de-

parture from each other. The fractal Do"", information
Di"", and correlation D2

" dimensions for the three ions
are given in Table IV, in ql, P, and rl Pphas-e spaces.
Within error bars, the Do"" and Dz"" dimensions seem
to be independent of the mass and energy of a given ion
in all the three phase spaces. The correlation (D2"")
dimension has the same magnitude for Au and Si
beams in the ql and ql-P phase spaces, while for the S
ion its magnitude is less than those for l97Au and Si. In
the P plane, the correlation dimension D2"" has almost
the same value for all three projectiles for q ) 0. The ter-
minal points of the curves in Figs. 5(a), 5(b), and 5(c) are
all positive, indicating the absence of a phase transition
according to the predictions of the Os model [17].

In Figs. 6(a), 6(b), and 6(c), we present a variation
of f(Anq) as a function of the Lipschitz-Holder expo-
nent nq in q), P, and rl-P phase spaces for all the ions
used in this study. In these figures, f(b,o:q) represent
the di8'erence between the experimental and statistical
values of f(nq) for each data set used. In each case of
Figs. 6(a) and 6(b), the multi&actal spectrum f(Aaq) is
a continuous function of 0;q, thus characterizing a quali-
tative manifestation of the dynamical Quctuations in the
multiplicity distribution of a particular data set in g or
in P phase space. For q ) 1, the f(b cxq) spectrum repre-
sents a qualitative measure of the peaks, while for q & 1,

TABLE IV. Values of generalized dimensions D "" for
Au at 10.6A GeV, Si at 14.5A GeV, and S at 200A GeV

projectiles in qI, 4I, and qI /phase spaces-

0.04 I I I

(a) g —space
~ &9&Au

28Sj

0'

&1

& —0.02-

—O. OB
0.40.04

0.8
(b) 4 —space

&I
5 —0.02-

—0.08
0.40.06 0.8

I I I

(c) g.4 —space

it corresponds to the valleys in a given X distribution in
either of the phase spaces for the individual events. The
multifractal spectra depicted in Figs. 6(a), 6(b), and 6(c)
satisfy a general feature of occurrence of a peak at no and
a common tangent at an angle of 45' at ~i ——f(Aevi)
In ql phase space, the f(Eaq) spectra of is~Au, 2sSi, and

S ions almost overlap for q ( 0. However, for q ) 1, the
spectra of all the three beams diverge from each other.
For the is7Au and 2sSi projectiles in p phase space, the
f (Da ) spectra have almost the same width, but the s2S

ion spectrum has the least width in comparison to Au
and 2 Si spectra. The f(6aq) spectra of Au and 2 Si
ions in ql-P phase space are quite different &om that of

q
0
1
2

197A

0.9936+0.0027
0.9950+0.0027
0.9962+0.0027

g phase space
28S.

0.9924+0.0048
0.9960+0.0048
1.0000+0.0048

32S

0.9939+0.0025
0.9897+0.0024
0.9833+0.0027

U'

& —O. O Xa

0 0.9966+0.0027
1 0.9931+0.0027
2 0.9892+0.0027

P phase space
0.9900+0.0048
0.9864+0.0047
1.9828+0.0047

0.9986+0.0025
0.9922+0.0024
0.9857+0.0024

—O. OB
0.4 0.8

0 0.9967+0.0027
1 0.9951+0.0027
2 0.9933+0.0027

ql-P phase space
0.9967+0.0048
0.9967+0.0048
1.9968+0.0048

1.0030+0.0025
0.9928+0.0024
0.9824+0.0024

FIG. 6. Variation of f(Aaq) vs nq for projectiles A, B, and
C in (a) ql, (b) 4I, and (c) ql-qI phase spaces. Solid straight line
represents a 45' line, tangent to f(Aaq) at nq = cubi. Free
hand drawn curves are passed through three diferent data
sets.
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the s2S ion, and, presently, we do not know the reason
for this behavior of ~Au and 28gj jons

V. CONCLUSIONS

singly charged particles produced at relativistic energies.
A downward concave shape of the multi&actal spectral
function f(Aaq) indicates that the self-similar cascading
mechanism [16] might be responsible for the production
of 6nal state particles in relativistic heavy ion collisions.

The analysis of Gq moments has been performed by
using a new scaled variable X suggested by Bialas and
Gazdzicki [11]. Multifractal structures are revealed in
the multiplicity distributions of shower particles pro-
duced in ~svAu-emulsion collisions at AGS energy. The
results are compared with the available data on zsSi
and szS projectiles. The fractal properties seem to be
an intrinsic characteristic prevailing in the dynamics of
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