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We show how momentum conservation is fundamental to the description of angular distributions
in preequilibrium nuclear reactions. By using state densities with linear momentum to describe the
phase space during the preequilibrium cascade, angular distributions can be derived in a transparent
way. Fermi-motion and Pauli-blocking effects are included, and correlations between the emission
particle’s energy and angle are obtained for all orders of scattering. Our model provides a physical
basis for many features of the widely used phenomenological systematics of Kalbach, and provides
a framework for understanding the systematical properties of continuum angular distributions.

PACS number(s): 24.60.Gv, 24.60.Dr, 25.40.Fq, 24.50.+g

Particles ejected during the early stages of a nuclear
reaction are typically of high energy and have forward-
peaked angular distributions, since they are emitted prior
to nuclear equilibration and partially preserve the inci-
dent projectile’s direction of motion [1-7]. These pre—
equilibrium particles account for the continuum region
of double differential emission spectra. Theoretical at-
tempts to understand such spectra span from semiclassi-
cal approaches, notably exciton and hybrid models, up to
recent quantum mechanical multistep theories [8]. The
quantum mechanical approaches have been used with a
certain amount of success for analyzing nucleon reactions
up to 200 MeV. However, they still face open questions
regarding the formulation of multistep processes [9], mul-
tiple particle emission, and the emission of complex par-
ticles. Semiclassical models have provided a clear in-
sight into the physics of preequilibrium processes and
have successfully explained many angle-integrated spec-
tra, though they were initially not formulated to account
for angular effects. Therefore a widely adopted approach
[1-4] is to use these angle-integrated spectra, and ob-
tain angular distributions from the Kikuchi-Kawai [10]
nucleon-nucleon scattering kernel in a Fermi gas. While
this has been able to explain certain features of the for-
ward peaking, it has not been able to account for many
of the systematic properties of continuum angular dis-
tributions [11]. Furthermore, most works assume a fast
leading particle that carries all the directional informa-
tion during the cascade. This is in contradiction to the
equiprobability assumption used in the exciton model
which puts all the excited particles and holes on an equal
footing, and does not follow the individual particle’s mo-
tion [2].

In the absence of a sufficient theoretical understanding
of the general properties of continuum angular distribu-
tions, Kalbach developed phenomenological systematics
to describe them [11]. She analyzed a large body of exper-
imental measurements (over 900 data sets) in nucleon and
alpha-induced reactions at energies up to several hun-
dreds of MeV, and found simple angular variations and a
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surprising similarity between angular distributions in re-
actions involving varying types of projectile and ejectile.
While these systematics are very useful for describing and
predicting differential cross sections, their physical basis
has remained obscure. The fact that observed contin-
uum preequilibrium cross sections tend to vary smoothly
with angle and energy, and lend themselves to simple
parametrizations [11], suggests that they should be de-
scribable using a relatively simple model of the reaction
process. In this paper we show how momentum consid-
erations are fundamental to the description of continuum
angular distributions, and using a semiclassical preequi-
librium model we derive Kalbach’s parametrization of the
forward-peaking shape.

Our derivation applies to reactions involving both nu-
cleons and complex particles, and relies on the use of
state densities with linear momentum, which we intro-
duced in Refs. [6, 7]. These densities describe the lin-
ear momentum structure of the phase space of excited
particles and holes (excitons), and are closely related to
angular-momentum-dependent state densities [7]. In the
exciton model the emission rate from the nth preequilib-
rium stage containing p particles and h holes (n = p+h),
leaving p, particles and A, holes in the residual nucleus, is
obtained by applying detailed balance. By explicitly con-
serving linear momentum we obtain an angle-dependent
rate for emission with energy € and direction € given by

dz/\n(ea Q) _ 2[160’inv P(Pr, h1‘7E — €Q, K - kﬂ)
deQ N 7r2h3 4m P(P, haEaK) '

(1)

where for clarity we have omitted model-dependent fac-
tors which may be applied to account for the type of
ejectile particle [8]. p is the ejectile reduced mass, and
the reaction cross section for the inverse process is oy -
The composite system total energy and momentum be-
fore particle emission are E and K, respectively, and the
residual nucleus energy and momentum after emission are
E—eq and K—kq, respectively, all these quantities being
measured relative to the bottom of the nuclear well. The
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energy and momentum of the emitted particle relative to
the bottom of the nuclear well are eq = € + Bem + €, and
kq, where [kq| = ﬂ2pen), Bem being the emission par-
ticle separation energy and ¢, the Fermi energy. Momen-
tum, like energy, is not transferred to the whole residual
nucleus; rather, it is carried solely by the excited parti-
cles and holes. The forward-peaked angular variation for
a given emission energy follows directly from the varia-
tion of p(p,, hr, E — €, K — kq) with angle 2 in Eq. (1).
This in turn follows from the inclusion of Fermi-motion
and Pauli-blocking in the state densities, and ignores de-
viations from center-of-mass isotropy in nucleon-nucleon
scattering. During the preequilibrium cascade our model
assumes that particle-hole states can be populated pro-
viding that both energy and momentum are conserved,
and the memory of the initial projectile direction is not
maintained solely by a fast leading particle, but rather it
is carried by both the excited particles and the holes.

The state density with linear momentum can be ex-
pressed [7] as the product of a state density in energy
space, p(p,h,FE), and a linear momentum distribution
function M(p, h, E,K),

p(p,h, E,K) = p(p, h, E) M(p, h, E,K), (2)

in analogy to the usual partitioning of the angular mo-
mentum state density. It has units of MeV~1(MeV/c)~3,
is independent of the direction of K, and yields the
energy-dependent state density when integrated over all
momenta, [ p(p, h, E,K)4nrK?dK =p(p,h, E). The indi-
vidual momenta of the particles and holes are oriented
in random directions, and the state density with linear
momentum counts all configurations which sum to the
required total energy and total momentum. The central
limit theorem implies that the ensemble of the various
particle and hole momenta sum to yield a distribution of
total momenta which follows a Gaussian,

M(p,h,E,K) = exp(—K?/20%), (3)

(2m)3/253

where o is the momentum cutoff (representing the width
of the distribution). This Gaussian solution has been
shown to accurately describe the momentum distribu-
tion even when the number of excitons is small [7]. The
momentum cutoff can be obtained by considering the
average-squared value of the exciton momentum projec-
tions on the direction of K in a Fermi-gas nucleus, giving

o2 =n (2”;fav) , (4)

where m is the nucleon mass, and €, is the average exci-
ton energy relative to the bottom of the nuclear well.
Thus, as n increases with more excited particles and
holes, the width of the total momentum distribution in-
creases. If the excitation energy is less than the Fermi
energy and p = h, then €,, = €., but in general in an
equidistant single-particle model it is given by

_2+)plp+LhE) E
ng p(p, h, E) n 7

(5)

av
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with the notation that E denotes the excitation energy
relative to the Fermi level, E = E — (p — h)e,, and the
state densities in Eq. (5) are taken from the equidistant
model with finite well-depth restrictions [12].

Following the preequilibrium emission of a particle
with momentum kg, the squared absolute value of the
residual nucleus momentum is

|K — ko|? = K2 + k% — 2Kkq cosf,

where 6 is the angle of emission in relation to the projec-
tile direction. This residual-nucleus momentum appears
in the state density in the numerator of Eq. (1) and ac-
counts for the angular-dependence of the emission rate.
Since the cross section for emission is proportional to the
emission rate, we obtain

d%0,(6,Q)  dog,(e) 1 2a,,
dedQ ~  de

4T e%n — e~ Gn exp(a, cosf), (6)

where do, (€)/de is the nth-stage angle-integrated exciton
model cross section, the preexponential factor arises from
the normalization conditions, and

3Kkq
a, =

=~ a_ ___
2n,.meay

(7)

where n, = p, + h,. The total preequilibrium emis-
sion is a sum of the above contributions for all preequi-
librium stages. Conservation of linear momentum, and
hence angle-energy correlation, is maintained for all or-
ders of scattering. As would be expected, the forward
peaking increases with incident and emission energy, and
decreases with increasing n as the incident momentum is
shared among more particles and holes.

Equation (6) has exactly the same functional form that
Kalbach used to describe the preequilibrium angular dis-
tributions. In our derivation the angular variation as an
exponential in cos 6 results from the Gaussian accessible
phase space, and the vector addition of momenta using
the cosine formula. Our model therefore explains the
general shape of measured continuum angular distribu-
tions [11] and its applicability to various projectile and
ejectile types. It also explains the observed independence
of target mass. While the Kalbach-systematics formula is
of the same functional form as our result, her expression
applies to the full preequilibrium spectrum whereas ours
applies to each preequilibrium stage component. The
variable “a” that she parametrized by comparisons with
many measurements can be understood as an averaged
value of our a,, over all preequilibrium stages.

Our model also provides a framework for understand-
ing other previously unexplained features of the system-
atic behavior of angular distributions: (1) Why the ap-
proximate independence of Kalbach’s a parameter on in-
cident energy below 130 MeV? This would arise by the
approximate canceling of the incident energy dependence
in our expression for a, with the increasing number of
preequilibrium stages (each with successively flatter an-
gular distributions) that contribute. (2) Why the ap-
proximate independence on projectile mass in nucleon-
emission reactions? In our approach, a, increases as the
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projectile mass increases, but this is (partly, at least)
compensated by the increased number of excitons n in
the preequilibrium cascade for complex-particle induced
reactions. Once the mechanism for reactions involving
complex particles has been established, the number of
excitons in the residual nucleus can be determined and
the angular distributions obtained.

There are similarities between our model and exciton
models which use the Kikuchi-Kawai angular kernel. If
instead of using our Gaussian (statistical) solution, the
state densities with linear momentum are determined
in a Fermi gas by convoluting single-particle densities
while conserving energy and momentum, the Kikuchi-
Kawai result follows for 1-step scattering [7]. But our
result for multistep scattering differs from a convolution
of Kikuchi-Kawai kernels since we do not make a leading-
particle assumption. We showed in Ref. [7] that the
Gaussian solution approximates the exact Fermi-gas re-
sult very well even when the number of excitons is small.
We are further encouraged to use the Gaussian solution
since Reffo and Herman [13] found that a Gaussian an-
gular momentum distribution described shell-model with
BCS pairing calculations well, even when there are just
two excitons.

We compare angular distributions predicted by our
linear-momentum conserving exciton model with a sam-
ple of experimental measurements for nucleon reactions,
where the reaction mechanism is well established. Even
though our model includes the quantum phenomena of
Fermi motion and Pauli blocking, it does not account
for other quantum effects such as refraction and diffrac-
tion from the nuclear potential, and finite-size effects.
At low incident energies these have been shown to be im-
portant for obtaining sufficient backward-angle emission
[2-4, 14], and result in a flatter angular distribution. A
simple applications-oriented way to account for these ef-
fects is to modify a, in Eq. (7) so that it is decreased by
an energy-dependent parameter (. Writing a, in terms
of channel energies we then obtain for nucleon reactions

3 \/(éin + Bin + €.)(€ + Berm + €,.)

a (8)
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FIG. 1. Calculated angular distribution of 20 MeV neu-

trons in the 45 MeV °°Zr(p, n) reaction compared with experi-
mental data [16]. Contributions from different preequilibrium
stages are shown, 2plh being the initial stage.
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FIG. 2. Calculated angular distributions in the 80 MeV

#0Zr(p, p') reaction compared with experimental data [17].

and we take the Fermi energy as 35 MeV. By analyzing a
few experimental data sets we have found that the sim-
ple parametrization ¢ = max(1,9.3//€), with ¢ in MeV,
works fairly well up to 80 MeV. This factor tends to 1
for the higher emission energies where the quantum ef-
fects become small, and increases to 2 at 20 MeV. Above
80 MeV, contributions from multiple preequilibrium pro-
cesses can be significant, and while our model can be
generalized to describe such processes, a more involved
treatment is needed. It can also be straightforwardly ex-
tended to include a distinguishing of neutron and proton
excitations in a two-component formalism.

We calculate exciton model cross sections using the
GNASH [15] code and analyze three different preequilib-
rium reactions which span a range of energies and nu-
cleon projectile and ejectile types. In Fig. 1 we show
calculated angular distributions compared with exper-
imental data of Galonsky et al. [16], for the 45-MeV
induced °°Zr(p,n) reaction. Contributions from various
preequilibrium stages are indicated for a 20 MeV emis-
sion energy. The forward peaking is seen to decrease
for higher-stage preequilibrium emission. Our model is
compared with the 80-MeV induced °°Zr(p,p’) reaction
measured by Cowley et al. [17] in Fig. 2 and the 26-MeV
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FIG. 3. Calculated angular distributions in the 26 MeV

93Nb(n,n') reaction compared with experimental data [18].
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induced °*Nb(n,n’) reaction measured by Marcinkowski
et al. [18] in Fig. 3, and is seen to account for the exper-
imental data well.

In summary, our model accounts for many features
of observed continuum angular distribution: the angu-
lar shape as an exponential in cos @ that is seen for all
projectile/ejectile types up to several hundreds of MeV;
the target-mass independence; and we give a theoretical
prediction for the a parameter which governs the degree
of forward peaking. Use of state densities with linear
momentum enables these distributions to be obtained us-
ing simple (and exact) expressions, and describes the de-
crease in forward peaking with increasing number of scat-
terings. The model is straightforward to apply computa-
tionally since the usual exciton model can be used for the

angle-integrated cross section, and describes measure-
ments well when modifications that approximate quan-
tum finite-size and refraction effects are included. We
have shown how momentum conservation is fundamen-
tal to the description of angular distributions in preequi-
librium nuclear reactions. This observation may be of
broader interest to other phenomena involving the evo-
lution of quantal systems towards equilibrium.

We gratefully acknowledge useful discussions with M.
Blann, C. Kalbach-Walker, and A. Kerman. This work
was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory
under Contract No. W-7405-Eng-48.

[1] Sun Ziyang, Wang Shunuan, Zhang Jingshang, and Zhou
Yizhong, Z. Phys. A 305, 61 (1982).

[2] C. Costa, H. Gruppelaar, and J.M. Akkermans, Phys.
Rev. C 28, 587 (1983).

[3] A. Iwamoto and K. Harada, Nucl. Phys. A419, 472
(1984).

[4] M. Blann, W. Scobel, and E. Plechaty, Phys. Rev. C 30,
1493 (1984).

[5] P. Madler and R. Reif, Nucl. Phys. A337, 445 (1980).

[6] M.B. Chadwick and P. Oblozinsky, Phys. Rev. C 44,
R1740 (1991)

[7] M.B. Chadwick and P. Oblozinsky, Phys. Rev. C 46,
2028 (1992)

[8] E. Gadioli and P.E. Hodgson, Pre-equilibrium Nuclear
Reactions (Clarendon Press, Oxford, 1992).

[9] H. Feshbach, Phys. Rev. C 48, R2553 (1993).

[10] K. Kikuchi and M. Kawai, Nuclear Matter and Nu-
clear Reactions (North-Holland, Amsterdam, 1968), p.
44; M.L. Goldberger, Phys. Rev. 74, 1269 (1948).

[11] C. Kalbach, Phys. Rev. C 37, 2350 (1988).

[12] F.C. Williams, Nucl. Phys. A166, 231 (1971); E. Betak
and J. Dobes, Z. Phys. A 279, 319 (1976).

[13] G. Reffo and M. Herman, Nuovo Cimento Lett. 34, 261
(1982).

[14] K. Sato, Phys. Rev. C 32, 647 (1985).

[15] P.G. Young, E.D. Arthur, and M.B. Chadwick, Los
Alamos National Laboratory Report No. LA-12343-MS
(1992).

[16] A. Galonsky, R.R. Doering, D.M. Patterson, and H.W.
Bertini, Phys. Rev. C 14, 748 (1976).

[17] A.A. Cowley, A. van Kent, J.J. Lawrie, S.V. Fortsch,
D.M. Whittal, J.V. Pilcher, F.D. Smit, W.A. Richter, R.
Lindsay, I.J. van Heerden, R. Bonetti, and P.E. Hodgson,
Phys. Rev. C 43, 678 (1991).

(18] A. Marcinkowski, R.W. Finlay, G. Randers-Pehrson,
C.E. Brient, R. Kurup, S. Mellema, A. Meigooni, and
R. Taylor, Nucl. Sci. Eng. 83, 13 (1983).



