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The probability of excitation of atomic electrons during various nuclear reactions has been calcu-
lated. Appropriate corrections to some experimentally determined threshold and resonance energies
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INTRODUCTION

In recent years, considerable efFort has been put into
the precise measurement of nuclear reaction energies,
particularly of those nuclear Q values which allow the
extraction of parameters relevant to Fermi superallowed
beta decay. The quoted accuracy of both (p, p) resonance
energies [1—3] and (p, n) threshold energies [4,5] has ap-
proached or even surpassed 100 eV, but so far, except in
one case [12], no attempt has been made to take into ac-
count the effects of energy loss to atomic electrons, even
though it is not obvious that such efFects would be neg-
ligible.

The present work reports calculations of energy loss
probabilities to individual atomic subshells for the par-
ticular (p, n) and (p, p) reactions which either have been
investigated or are likely to be, in the course of the super-
allowed Fermi decay program. In addition, the size of the
apparent energy shift in the various extracted resonance
and threshold energies is calculated, and the sensitiv-
ity to the actual method of analysis of the experimental
data is explored. Finally, the effects on some 27A1(p, p)
resonances and on the ~ A71(p, n) threshold are quoted.
Although these last will probably never be needed for
any absolute mass difference or Q-value determination,
they are commonly used for precise accelerator energy
calibrations, and have recently been remeasured [6].

ELECTRON EXCITATION PROBABILITIES

The theoretical description of atomic processes during
nuclear scattering is greatly facilitated by the fact that
the atomic and nuclear reactions are well separated in
space. This means that the atomic processes can be ac-
curately described using only asymptotic nuclear wave
functions. This leads to a well-defined 6rst-order atomic
perturbative approach, the "Blair theory, " for describ-
ing atomic excitation/ionization during elastic (resonant)
nuclear reactions (Refs. [7—10]). The formalism applies
equally well to discrete excitation and ionization, but the
latter process is the dominant cause of energy loss for the

reactions we are interested in (see below). The general-
ization of this theory to charge-changing reactions like
the (p, n) and (p, p) is straightforward [ll]. This gener-
alized theory extends the sudden approximation, approx-
imately corrected for K-shell Coulomb ionization, in the
form introduced by Feagin, Merzbacher, and Thompson
[12—14].

For conceptual clarity we shall initially consider the
general case of a projectile of charge Z~ causing a nuclear
reaction with the emission of an ejectile of charge ZE. It
is convenient to de6ne the atomic energy loss distribution
dPI, /dEI such that the total atomic energy loss during
a collision can be written

SEA ——AE; + LE' + ER

= &E, + (EI —E,) 'dEI + Nm, urt, (-1)
0 dEf

supplemented with the corresponding sum over 6nal
states in the bound spectrum. Here AE; = E(Z', K)—
E(Z, N) is the atomic ground-state energy shift, E(Z, X)
being the energy of an ¹lectron atom/ion, and Z' =
Z+AZ = Z+Z~ —Z@. Furthermore, Ef —E; is the ex-
citation energy of the daughter atom/ion relative to its
ground state, while vR is the recoil velocity of the atom
after the collision and m the electron mass. The explicit
inclusion of the electronic recoil energy Ett in Eq. (1)
means that the kinetic energy of the ejected electron,
included in the final state energy Ef, should be taken
with respect to the recoiling nucleus. This term is con-
veniently taken care of by using atomic masses instead of
the nuclear masses in all kinematical relations, and will
thus not be considered explicitly in the following. This
splitting of the atomic energy Ioss corresponds to describ-
ing the process in a coordinate system anchored to the
recoiling nucleus, which is convenient since it allows for
the simplest description of the atomic states [15,16,13].
This description is of course unitarily equivalent to the
space-fixed description, as used by Feagin, Merzbacher,
and Thompson [12].

Within 6rst-order perturbation theory where the per-
turbations are caused by one-electron operators, the ini-
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tial and final electronic (many-electron) states, l@';)z
and l%f)z, can differ at most by a single orbital. For
a charge-changing nuclear reaction one must in addi-
tion include the contribution caused by these states be-
ing eigenstates of difFereat Hamiltoniaas. Assuming the
atomic wave function to be a single Slater determi-
nant of mutually orthogonal one-electron orbitals, the
atomic energy loss distribution (which conventionally-
but inaccurately —is called the difFerential ionization
probability in the atomic physics literature) summed over
all initial states in a full atomic shell and all final mag-
netic substrates can be written (our notation generalizes
that of Ref. [10] corrected for some unfortunate typo-
graphical errors)

dI'fi 1 4x

dEf lT(Kp, K@,8)ls ) 2l+ 1

xRz~*,T(Kp, K@,8)
2

+( I)'&~—,sRp'i, , T'(Kp, K@,8) . (2)

Here the subscripts I = P, E refer to the projectile and
the ejectile, respectively, vI is the corresponding veloc-
ity, KI = MItlI the momentum (MI being the reduced
atomic mass), and EI the energy. Also

EI —(Ef —E*)i

M

are Legendre functions of the first and second kinds, re-
spectively, jl is a spherical Bessel function, and (X)f;
denotes a radial matrix element of aa operator X be-
tween initial and 6nal atomic orbitals of total aagular
momentum J~ (parity II;) and Jf (parity IIf), while (:::)
denotes signer's 3-j symbol.

With the exception of QIf'l, the contributions to (5)
arise &om the Coulomb potential of the projectile/ejectile
only. The additional terms are given by

A ~fa
sM z

0,

The two nonvanishing terms are the dom~iating ones
in the asymptotic high energy limit, and are the only
terms surviving in the (perturbative) sudden approxima-
tion [12,14] (in addition to EII). Each of them has a sim-

ple physical interpretation. The I = 0 term ("the sticking
amplitude" ) simply arises from the nonorthogonality of
l4'f)z and l%'l)z for a charge-changing collision. To see
this, notice that the difference between the initial and
final state atomic Hamiltonians is simply

N

bH = —bZe )
j ]

the snm running over all the atomic electrons. Thus we
have an overlap contribution to the transition amplitude
given by (i g f)

is the momentum of the projectile/ejectile after having
ejected an electron, so that

E'f E.
ql ——KI —KI (4)

is the minimum momentum transfer compatible with an
energy transfer of Ef —E; in a purely two-body colli-
sion. Pmthermore, 8 is the emission angle of the ejectile
with respect to the projectile and T(K, 8) the T-matrix
element for the nuclecr process of interest. If several
nuclear final states are involved, one has to snm (2) inco-
herently over these. Fiirthermore, the following notation
has been introduced:

I,l ( I,l+ QI, l) &

Ql
OO

qfz gf* ppf'q
l

gI
l

'qf,
I,1 I,L

0 ~8) I/

Z 8
+I,l = 2Jf +1 2l+1 2J;+1

i 0 i, l
—,
' [1 + (—I)'ll;Ilf],&Jf I J, 'l i

+l
' = (~l(-))f.fi

Here 'P denotes the principal value integral, Pl and Ql

1
z (Tffle')z =

E E z (eflEHle')z
Ef E.

i=l
+&((&Z)')

+ &((&Z)') (S)
b,Ze2

Ef E

where li) and
l f) are the single pair of one-particle or-

bitals by which l4;)z and l@f)z difFer. This amplitude

yields precisely QI'l.
On the other hand, one has that this term alone gives

rise to an energy loss EEz [since AE; is included explic-
itly in Eq. (1), it is not included in b,Ez]:

&Ez = ).(Ef —E') lz (@fl@*)zl' —&E'
f

= ) z(4;lbHlC'f)z z (4'fl@;)z —AE;
f

N 1—SZe z O; —4) —dE;rj=] 2 Z

b,Z
l

'
l

—E(Z+ EZ, N) + E(Z, N)

82EZN—(&Z)'I,'
I

+ &((&Z)')-
) N
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Here the Hellmann-Feynman theorem is used in the next
to the last step. This elegant result is due to Wilkinson
[14], who also pointed out that it can be used to extract
good approximations to LE& from tabulated values of
atomic ground-state energies. However, since the stick-
ing amplitude adds coherently to the Coulomb excitation
amplitude in Eq. (4), we shall use the latter expression
as a starting point for our numerical work.

The l = 1 terxn in Eq. (5) also has a simple physical
interpretation: It is the amplitude for ionization due to
the recoil of the nucleus. This term is actually present
in the leading order sudden approximation [12], but has
been mostly neglected since it causes dipole transitions
only. However, this term is always at least comparable
to the Coulomb dipole contribution for zero impact pa-
rameter [15], and so must be included together with the
Coulomb amplitudes.

The structure of our basic formula, Eq. (2), is readily
interpreted: The energy loss probability is a coherent su-

perposition of two amplitudes. One contains R&&, and
describes ionization caused by the incoming projectile,
so that the nuclear reaction takes place at a reduced in-
cident momentum K&, as described by T'(KJ„K@,8)
(amplitude for "ionization before the nuclear reaction").
The second amplitude describes ionization by the ejectile
(R&f'&), and hence the nuclear reaction takes place at the
full incident momentum Kp (amplitude for "ionization
after the nuclear reaction" ).

For the purpose of the present investigation, we are
only interested in neutral ejectiles (n, p), so Za = 0,
and hence there is no ionization by the ejectile, except
that which is caused by the recoil. Moreover, as long as
we are only interested in (p, p) and (p, n) reactions close
to the neutron threshold, the recoil of the ejectile is far
too feeble to cause any significant ionization. We can
thus safely neglect the first amplitude in Eq. (2), which
simplifies both the computational work and the analysis
of the experiments.

We have evaluated forxnulas (2)—(6) using a rewrit-
ten version of the code previously described in Ref. [10].
The atomic orbitals are relativistic one-electron eigen-
functions derived &om optimized effective atomic (OPM)
potentials [17]. The use of relativistic electron wave func-
tions gives only a minor improvement for systems as light
as those of present interest, but neither does it increase
the calculational complexity. The use of wave functions
derived from a realistic atomic potential is, on the other
hand, crucial for an accurate description of the outer
atomic shells.

The purely numerical accuracy of our calculations is es-
timated to be better than 5%. It is essentially limited by
the stability of the integration of the various oscillating
integrands in Eq. (5), in particular for outer shell wave
functions with many radial nodes. However, the actual
accuracy of the calculations is set by the limitations of the
theory employed. One obvious deficiency is our neglect
of discrete excitations. As a matter of fact, it has long
been known that (discrete) Coulomb excitations give only
a very minor contribution to ion-induced inner shell va-
cancy production cross sections [18]. It is also easily seen
to be true in the sudden approximation: The overlap am-

plitude (8) z (4y I@;)z tends to have its maximum when
the momentum distributions in the two wave functions
peak in the same range, i.e., at comparable kinetic ener-
gies. Thus the electrons tend to be ejected well into the
continuum. This can alternatively be seen from Wilkin-
son's formula (9), applied to a single-electron ion, so that
E(z, 1) = —Z2e2m, /2 and Ez ——(Az)2m, e2. For hy-
drogenic ground-state wave functions the total excitation
probability (including ionization) in the sudden approx-
imation becomes

(1 —AZ/Z)'~'

(1 —SZ/Z)s

3 (~z&'
bz/z &0 8 ( Z )

(10)

Thus the average energy transferred to an excited elec-
tron becomes

{Eg —E') = Ez/Pz: sz'm, e = 's IE(Z, 1)I.

TABLE I. Comparison of AE' from the present work with
the estimates from Ref. [14].

Reaction
' N(p, n)

Mg(p, n)
Al(p, n)
S(p, n)

"Ca(p, n)
Mg(p, p)

"Mg(p ~)
"A&(p v)
"Al(p, p)

S(p '7)
"S(p,~)

S(p, x)

Energy
(keV)
6300
5210
5800
6460
7400
1380
1590
990
1320
970
1540
1990

4E' (present)
(eV)
164
88
141
141
139
57
60
91
95
93
101
105

EE (Ref. [14])
(eV)
105
123
129
142
149
123
123
129
129
142
142
142

Thus the typical electron contributing to the atomic en-
ergy loss is ejected well into the continuum. The result
remains qualitatively correct for more realistic wave func-
tions.

As for other restrictions on the accuracy, it should be
noted that the valence electrons are not well described
by uncorrelated wave functions. Also, these electrons
are easily polarized by the incoxning projectile, and have
large ionization probabilities, so first-order perturbation
theory does not work too well. On the other hand, the
contribution from the outermost electrons to the total
energy loss is small (( 10%), so that inaccuracies in these
numbers are not likely to dramatically influence the total
estimated energy loss. Only the lightest atoms (Z ( 10)
are exceptions to this. Thus for N at 6.3 MeV the
three valence electrons contribute some 40% of the energy
loss, and all results based upon perturbative approaches
should be regarded with suspicion.

In Table I we compare the results of our full calcula-
tions of E' and Wilkinson's simple energy-independent
estimates, with the second derivative in (9) approximated
by second differences of tabulated neutral atom ground-
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state energies [19]. The systematics of the difFerences
between the results of Wilkinson's simplified method
[Eq. (9)] and the full calculations are easily explained,
as the addition of Coulomb and recoil amplitudes have
two opposite effects The monopole excitation amplitude
adds coherently to the sticking amplitude [Eq. (5)], but
has the opposite sign and so reduces Wilkinson s esti-
mate. The dipole amplitude (including recoil), on the
other hand, adds coherently to these results, and thus
always increases them. For slow collisions [the (p, p) re-
actions] the dipole contributions are small, and the main
effect is a significant reduction of the energy loss of the
monopole contribution. For the faster (p, n) reactions,
the dipole amplitude is large for the light target elements,
but decreases rapidly in importance with increasing tar-
get S (for fixed projectile speed).

It is seen that the simple energy-independent Wilkin-
son formula (9) works quite well for the higher energy

(p, n) reactions (except for Al, where the contributions
&om the valence electrons are large, and the results sen-
sitive to the details of the matrix elements), but not for
the lower energy (p, p) collisions.

Figure 1 shows the differential energy loss probabil-
ity, dP/dE, as a function of energy loss E of a proton
of energy 1.38 MeV, involved in the corresponding reso-
nance in the zsMg(p, p) reaction. Although P is spoken
of as a probability, a better interpretation is as the ex-
pected number of ejected electrons. The obvious steps
in the curve correspond to the ionization energies of the
different subshells, and both the dP/dE and E axes are
represented logarithmically for clarity. The integral of
dP/dE over E, i.e., the nnmber of electrons ejected per
proton, is 0.773. Also shown is a similar curve for the
case of protons of energy 5.20 MeV, appropriate to the
zsMg(J, n) threshold measurement at that energy. The
total number of electrons ejected per proton in this case
is 1.048. Not shown in Fig. 1, but quoted below in Table

II, is the evaluation for 1.59 MeV protons on magnesinm.
The curve is virtually identical to that for 1.38 MeV.

RESONANCE AND THRESHOLD YIELD
CURVES

Normally, when a precise energy determination is made
of a (p, 7) resonance, a narrow prominent resonance is
chosen, and the yield of the resonance, often manifested
as emitted gamma rays, is measured as a function of the
incident proton energy, using a target which is several
keV thick to the incoming beam. In the approximation
that the resonance is infinitely narrow and the beam mo-
noenergetic, this leads to a yield curve whose form resem-
bles a step function, and the position of the resonance
may be unambiguously determined.

In practice, several factors complicate this simple pic-
ture. A suitable resonance will be perhaps 100 eV wide
and Lorentzian in shape. The proton beam &om the
accelerator will have an energy distribution which, hope-
fully, can be determined. In the measurements reported
in Re&. [3—6], this was so, and it proved to be quite closely
symmetrically Gaussian, with a width of several hundred
eV. The inclusion ofboth of the above factors rounds the
corners of the step function, but the position of the res-
onance may be reliably extracted by interpolating in the
yield curve to Gnd the energy at which the resonance
yield is half that on the fiat top.

A third effect is that due to the nonuniform energy loss
of the protons as they traverse the target. That is, be-
cause the energy dependence of the cross section for the
collisions of the incoming protons with the electrons of
the target favors small energy losses, a "snapshot" of the
proton energy distribution at any moment would show,
not a uniform distribution &om the incoming to the out-

10 r

10

10

Cl
-410

'Z$

CL
'Zl

10

FIG. 1. DHFerential energy
loss curves for protons inci-
dent on magnesium. The
dashed curve is for the case
of Mg(p, n) with E. = 5.2
MeV, and the continuous curve
isfor Mg(p, p) withE„= 1.38
MeV.
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going energy, but rather an excess of particles near the
higher energy. This has an asymmetric effect on the yield
curve, producing the traditional "Lewis peak" [20], and
a procedure for extraction of the resonance energy must
be determined.

A fourth process which should not be neglected, and
which is the subject of the present report, is the ejection
of a bound electron &om the atom in which the nuclear
reaction is taking place, which makes it seem as though
more energy is needed for the nuclear process than is ac-
tually the case. Since the correction for this, as for the
three previously mentioned processes, is always of the
order of 100 eV or less, the evaluation of it will be con-
sidered independently of the others. As examples of the
two different kinds of reaction, the analysis of the yield
curves for one (p, p) resonance and one (p, n) threshold
will be considered in the next section.

Mg(p, p} AT E~ = 1.38 MeV

the further folding in of the appropriate atomic energy
loss curve of Fig. l. If the half-height is now established,
it is found that there has been a shift to a slightly higher
energy, as expected, in this case by 95 eV.

The shift quoted above was calculated as if each inter-
acting proton ejected one electron, for which the energy
loss probability distribution was given by Fig. 1. How-
ever, the total probability (the area under the continuous
curve of Fig. 1) is not unity, but rather 0.77. So the cor-
rection to be applied to the resonance energy extracted
from the yield curve is to subtract (0.77 x 95), i.e. , 73
eV.

The procedure was repeated for several analysis widths
ranging &om k2 to k5 keV, but the shift was insensitive
to this range. However, there is a slight dependence on
the FWHM of the Lorentzian. For FWHM's of 14, 50,
100, and 500 eV, the corrections were 62, 68, 73, and
85 eV, respectively. Because of this and since also the
data are in 10 eV steps, a conservative error of +30 eV
is uniformly assigned to the results.

In practice, a simple and reliable procedure for extract-
ing a resonance position from a thick target yield curve
is to establish the levels of the (assumed) flat top of the
curve, YT, and of the background below the resonance,
Y~. Then the position of the resonance itself is the energy
at which the yield is (Y~ + YT )/2. If the resonance has
a Breit-Wigner shape and the beam energy distribution
is symmetrically Gaussian, this procedure is unaffected.
Some account must then be taken of the Lewis peak, but
that will not be dealt with here.

In Fig. 2, the dashed curve shows artificial data, gener-
ated at 10 eV intervals by convolving a step function with
a Lorentzian of full width at half maximum (FWHM) 100
eV. The ratio of the resonance height to Bat background
is 5:1,which is typical for the cases to be quoted, and the
position of the resonance has been set at a relative proton
energy of 0 eV. The continuous curve shows the effect of

~sMg(p, n) AT E„=5.21 MeV

The cross section for a (p, n) reaction close to thresh-
old is expected to show the energy dependency of s-
wave neutron emission, i.e., o oc (E —Eo)o 5, where
Eo is the threshold energy, and so the yield curve for
a thick target has a form oc (E —Eo)t under the as-
sumption that the proton energy loss is uniform as it
traverses the target. Consequently the analysis of a yield
curve to extract the threshold energy is by employing
a nonlinear least squares procedure to fit the function
Y = A(E —Eo) t 5 +. B to the data, where B is a back-
ground which is assumed constant over the range of inter-
est. For recent work [4,6], data have been analyzed over
a range of &om k2 to +5 keV relative to the threshold.

Unlike the case for a resonance, the three ancillary ef-
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FIG. 2. Illustrating the ef-
fect of incorporation of atomic
energy losses into the shape of
a thick target yield curve for

Mg(p, p) with E~ = 1.38 MeV
and a resonance width of 100
eV.
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FIG. 3. Incorporation of
atomic energy losses into the
thick target yield curve for
the Mg(p, n) reaction near
the threshold at 5.2 MeV. The
dashed and continuous curves
represent analyses made using
two different assumptions (see
text).
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TABLE II. Calculated corrections to extracted threshold
and resonance energies for various reactions (see text).

Energy Correction
(keV) P
6300
5210
5800
6460
7400
1380
1590
990
1320
970
1540
1990

(—ev)
lss(7o)
lo2(ao)
100(30)
47(so)
82(30)
73(30)
82(30)
24(2O)
44(20)
33(2o)
35(2o)
37(20)

Reaction

"Ni(p, n)
Mg(p, n)
Al(p, n)
S(p, n)
Ca(p, n)

"Mg(J, v)
"Mg(p, v)

Al(p, p)
s Al(p, p)
"s(p ~)
-s(p, &)

S(p, '7)

2.83
1.05
1.13
1.41
0.90
0.77
0.86
0.77
0.86
1.10
1.12
1.15

fects, beam energy spread, nonimiform proton energy
loss, and atomic excitations, all produce an apparent
threshold shift. Only the last will be considered here. In
Fig. 3, circular dots indicate artificial data in 10 eV steps,
generated with the functional form Y above. The crosses
represent these data when the effects of the atomic exci-
tation curve of Fig. 1 are taken into account. The thresh-
old has been set at a relative proton energy of 0 eV. For
clarity, although the data were produced over the range
of (0 + 5 keV), only a small central portion is shown.
The continuous and dotted curves show the best analy-
ses, as outlined above, when the data are analyzed over
the range (0 + 2 keV) and (0 + 4 keV), respectively. The
threshold shifts are 93 and 102 eV. A further test of the
sensitivity of the procedure outlined was performed by
using finer step sizes of 1 eV, instead of 10 eV. The ex-
tracted threshold shifts were stable to 10 eV or better.

In this case, the number of electrons ejected per inter-
acting proton, P, is 1.05, and since the results quoted in

Table II are for an analysis range of (threshold +3 keV),
the shift is the average of 93 and 102 eV multiplied by
1.05, i.e., a subtraction of (102 6 30) eV.

RESULTS

In Table II are shown the evaluated corrections for the
(p, p) and (p, n) cases discussed in the introductory sec-
tion. The resonance FWHM for the former has been
taken to be 100 eV, while the range of analysis for the
latter is within +3 keV of the threshold, although the
sensitivity to both these parameters is small. As an-
ticipated, the magnitude of the efFects is small but not
negligible, with the largest shifts being of order 100 eV
for the (p, n) thresholds.

As particular examples of (p, p) and (p, n) cases which
are of interest in the superallowed beta decay program,
soine results from Refs. [3,4] may be quoted. The Q value
for the beta decay of the 0+, T = 1 ground state of Cl
to its analogue partner in 3 S may be given in terms of
the difference of the neutron separation and proton sep-
aration energies, S„and Sz, for 4Cl. The latter may
be measured by choosing one or more sharp, prominent
resonances in the sS(p, p) reaction and determining the
resonance energies and the corresponding excitation en-
ergies. This was done several times for each of three pro-
ton energies at roughly 975, 1544, and 1995 keV, with
beam energy widths of 200 ppm. The respective correc-
tions applied for atomic excitations, as discussed in the
present work, were —30, —40, and —40 eV, leading to res-
onance energies of 974.61(4), 1543.49(5), and 1994.86(7)
keV. When these were combined with the excitation en-
ergies, final values for S„of5143.27(9), 5143.27(6), and
5143.34(8) keV were obtained, giving excellent agreement
of 5143.29(7) keV.
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The Q value for the superallowed decay of Al to
Mg is directly given in terms of the threshold energy

of the Mg(p, n)2 Al reaction at around 5.21 MeV. As
described in Ref. [4], this yield curve near threshold was
studied six times. A typical case was &om —4 to +0.5
keV with respect to threshold, using a beam of energy
width 75 ppm, and the corrections applied for 6nite beam
energy width, nonuniform proton energy loss, and atomic
excitations were +0.04, +0.06, and —0.10 keV, respec-
tively. The Gnal threshold energy was determined to be
5209.46(12) keV.

CONCLUSIONS
Corrections to various extracted threshold and reso-

nance energies of interest in studies of superallowed beta
decay and for calibration purposes have been calculated
and have been shown to be small, but not negligible.
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