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The problem of heavy-ion fusion reactions in the one-dimensional barrier penetration model
(BPM) has been reexamined in light of supersymmetry-inspired WKB (SWKB) method. Motivated
by our recent work [Phys. Lett. A 184, 209 (1994)] describing the SWKB method for the coxnpu-
tation of the transmission coefficient T(E), we have performed similar calculations for a potential
barrier that mimics the proximity potential obtained by 6tting experimentally measured fusion cross
section o z(E) for the light-light and light-heavy systems. For illustration, we have first dealt with an
analytically solvable potential which interpolates between two well-known nuclear barriers such as
the Morse and the Eckart for two limiting values of the free parameter of the potential. Comparison
of the predicted T(E) with the exact analytic ones reveals that the present scheme yields consistently
better results than those obtained from the WKB approximation. Furthermore, in contrast to the
WKB method, analytic continuation of our SWKB transmission coefBcient for the corresponding
potential well (obtained through the inversion procedure) leads to exact energy eigenvalues. We
have further studied the energy dependence of the total fusion cross section for difFerent processes

0+i~C 9F+ ~C 60+aospb and i Q with even isotopes of Sm, using a parametrize
potential barrier suggested by Ahmed. The predicted cross sections are in agreement with values
obtained from the WKB method and with direct experimental measurements for the beam energy
near and above the Coulomb barrier. In the case of sub-barrier fusion, our results are substantially
better than those given by the Hill-Wheeler parabolic approximation which overestimates oF(E),
especially for the light-ion systems.

PACS nuxnber(s): 24.10.—i, 25.70.Jj

I. INTRODUCTION

The study of heavy-ion fusion has received wide atten-
tion in recent years due to the fact that the fusion cross
section 0~ can give information on nuclear structure as
well as on the formation of quasimolecular resonances
[1—4]. In the past, such studies were not possible due to
the experimental difBculties in measuring very small val-
ues of o.~ for sub-barrier fusion. In recent experiments,
the fusion cross sections can be measured with good ac-
curacy for nuclei with a wide range of mass numbers and
energy of the projectile. Experimentally large numbers
of data are now available for light-light and light-heavy
nuclei in both the sub-barrier and above-barrier fusion
[4-8].

To the theorists it remains a challenge as to how well
the experimental data can be explained by potential
model calculations. Obviously, the theoretical models
are bound to be complicated due to the complex nature
of the structure of the colliding nuclei and the presence
of many different reaction channels [9—ll]. For exam-
ple, it was observed [5,12] that the fusion cross sections
of very similar systems differing &om one another by
one or two nucleons only, such as C+ C, C+ C,
and C+ C, exhibit substantially different energy de-
pendence of o'p(E) at sub-barrier energies. This clearly

indicates that one must consider details of the nuclear
structure, namely, the effect of permanent deformation
of interacting nuclei, zero point oscillation of the nuclear
shape, neck formation, etc. so as to explain the behavior
of the fusion excitation function correctly at low energies
[13-15].

The simplest theoretical way of understanding the fu-

sion of two nuclei is the barrier penetration model (BPM)
where the projectile ion is assumed to penetrate through
the mutual potential barrier between two interacting nu-

clei and to form a composite nucleus. The effective in-

teraction barrier is given by

V,tr(r) = V~(r) + V~(r ) + V„„l,(r),

which is composed of nuclear, Coulomb, and centrifugal
interactions. The shape of the barrier depends on the
choice of the nuclear and the Coulomb potentials. The
main trick in the theoretical approach lies in obtaining
an optimum form of the nuclear potential which is the
only component in (1.1) that contains free parameters.
Several attempts [1,16,17] based on model calculations
were made to explain the measured cross sections. The
standard potential of Woods-Saxon form with deep real
and imaginary parts was first obtained by Reeves [18]
by 6tting the C+ C low energy data. However, this
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model did not work out nicely for other systems, such
as isO+isO, indicating that different global potentials
xnay behave diH'erently with change in the atomic and
mass numbers, Z and A. Subsequently, Blocki et aL [19]
proposed a form of Vrv(r) known as proximity poten-
tial derived in a very general way for leptodermous (thin
skinned) systems. The gross structure of the fusion cross
section may be well accounted for by assuming

(1.2)

where the partial wave cross section is given by

o'pi(E) = ~A (2l+1)T&(E). (1 3)

Here A is the reduced de Broglie wavelength of the pro-
jectile ion and T~(E) is the transmission coefficient for
the lth partial wave. For all analytic calculations for
fusion cross sections, one needs to calculate Tj(E) very
accurately.

For simplicity of theoretical calculations, Hill and
Wheeler (HW) [20] suggested that the potential in the
barrier region may be approximated by an inverted
parabolic shape. In such a procedure, the parabola is fit-
ted to reproduce the position, height, and the curvature
of the real barrier and one obtains the analytic expres-
sion for the transmission coefficient. Parabolic barrier is
a good approximation for energies above the top of the
barrier. However, it is clear that this approximation is
inadequate at energies well below the top of the barrier
since the tail of the Coulomb interaction intersects the
energy of the incoming particle at a point far away &om
the location of the potential maximum. To overcome this
deficiency, Avishai [21] prescribed a model in which the
V,g(r) is assumed to have two difFerent forms on either
side of the barrier top: the parabolic plus centrifugal bar-
rier on the left and just the Coulomb potential between
the two point charges on the right. A xnodification of
Avishai's model was subsequently proposed by Dethier
and Stancu [22] to take into account the centrifugal term
on both sides of the barrier. This approximation leads to
an analytic expression for Ti(E) using the WKB method.

An interesting study of tunneling through a one-
dimensional potential barrier appropriate for nucleus-
nucleus fusion has been made recently by Ahmed [23].
He invoked a new parametrized potential barrier which
admits simple WKB penetrability factor. His three pa-
rameter potential profile mimics the effective interaction
potential barrier for almost the entire range of variable
r (internuclear separation) as shown in Fig. 2. Thus it
seems to be a good candidate for a satisfactory reproduc-
tion of experiLnental data. Rmthermore, this potential
resembles very well the Natanzon class of exactly solv-
able potentials [24] and hence is useful for comparing the
semiclassical calculations for the transmission coefficient
with the exact ones.

During the last decade, a new quantization pro-
cedure based on supersyxnmetric quantum mechanics
(SUSYQM) [25] has emerged. The supersymmetry-
inspired WKB (SWKB) quantization rule [26] not only

yields exact bound state spectra &om the leading or-

der quantization formula for all shape-invariant poten-
tials [27], but also gives frequently better results than
the usual WKB method for non-shape-invariant poten-
tials [28]. In case of tunneling through solvable one-
dixnensional barriers such as the Eckart, the SWKB
method has been shown [29] to give much improved re-
sults for the transmission coeKcient as coxnpared to the
WKB method. This feature encourages us to undertake
the present investigation of BPM for fusion reactions in
the context of SWKB method. Our motivation is not to
suggest a new potential model for fusion processes but
to demonstrate that SWKB procedure can predict ac-
curate transmission coefficients and fusion cross sections
working with the realistic potential model suggested by
Ahmed. To the best of our knowledge, SWKB method
has not so far been used to such a physically relevant and
interesting area of nuclear physics.

In Sec. II we illustrate our method through the appli-
cation to an exactly solvable one-dimensional potential
barrier of the Natanzon class which resembles closely the
profile of the actual fusion barrier. Comparison of SWKB
transmission coefficient with the corresponding WKB re-
sults reveals that the present scheme is distinctly better
than the conventional one. In Sec. III the SWKB method
has been used to analyze the fusion excitation function
of the reactions Q+ C F+ C, and Q+ Pb an
the values have been compared with the calculations
based on HW and WKB approximations. For sub-barrier
fusion for the light-heavy system, we display graphically
our predicted results for 0+ Sm along with the experi-
mental data. Our results are substantially lower than the
experimental values; this appears to be due to the defi-
ciencies of the potential model considered in our analysis.
Section IV is devoted to a short summary and conclu-
sions.

II. SWKB METHOD FOR TUNNELING
THROUGH A HYBRID POTENTIAL BARRIER

To begin with, we study the hybrid potential barrier
belonging to the Natanzon class as suggested by Ahmed
[23],

2

V( )=Vo 1 —
~ ~, 0& &1, (21)(1+cexp(z/a))

for which the Schrodinger equation admits exact ana-
lytic solution. It is interesting to note that for the
limiting values of the parameter c, such as c = 0 and
c = 1, the potential (2.1) corresponds, respectively, to
the Morse V(z) = VQ(2e ~ —e2 ~ ) and the Eckart
V(x) = Vasech (x/2a) barriers. In our earlier paper [29],
we have discussed the SWKB approach for computing
the transmission coefficient for the Eckart barrier. We,
therefore, mention here only the salient steps for the gen-
eral potential (2.1). For this purpose, we construct a pair
of potentials
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V{+)(z, Vp) = W (x, Vp) p W'(x, Vp),
2m

(2.2)
where B is a constant. It may be seen that if we write a
superpotential function

where V() is the height parameter and W(x, V()) is the an-
alytically continued superpotential function for the barri-
ers. In other words, when one converts the barrier to well

by replacing Vp ~ —Vp, the corresponding W(x, Vp) is re-
lated to the ground-state wave function of the V{ ) (x, V())
well. The SWKB transmission coeKcients for these po-
tentials are computed &om the expression

W(x) = (2.6)

Eq. (2.5) can be written in the form of (2.2) if one sets
the following parameters:

T{+ (E) = [1+exp(2K{+))] (2.3) a= [Bc + (c —l)V()]')

where K{+) is the penetrability integral given by [29]

/2mK + = /W2(z, V ) —Edz hier/2. (2.4) E= fP/(2ma ) (2.7)

Here zi and z2 are the turning points satisfying the re-
lation W (z, Vp) = E.

To recast the potential (2.1) in the form of V{ )(z),
we begin with

with

1 —(c2 —4(c+ 1)2V /6j'~'B=A
2(c+ 1)

2

V{-)(.)=V, 1
I

'- "P(*/) il +B
]) 1+cexp(x/a) j (2.5) Using (2.6) in (2.4) and evaluating the integral [30] one

gets the transmission coefficient for the barriers V{+)(z),

—1

Tte~(E) = 1+exp —())+ ()) —S)'& ]+ —(ee —(ee —e S)'~ ])See)c
(2.8)

TswKB (E) = [1 + exp(2~ (g —s —f))] (2.9)

where

f= QE/6„
)'V l )'1 l 1

I

—'
l l

-+1
I

——
) 4

( g
- 1/2

'= f'+
I

—,—1I (Vp/&)
] c' (2.10)

For the sake of comparison, we cite here also the exact
and the WKB results [23]

To obtain the transmission coefBcient for the original po-
tential (2.1) which difFers from V{ ) (z) in (2.5) only by a
constant B, one requires to rescale the energy E —+ E+B
in the expression of T{ )(E) in (2.8). One thus obtains
the required transmission coefBcient for the hybrid po-
tential barrier (2.1)

ger = (1/c+ 1)QVp/A.

Careful observation reveals that although the transmis-
sion coefficient in (2.9) looks very similar to the WKB
result in (2.12), a few noticeable qualitative and quan-
titative differences arise due to the disappearance of the
(1/4) factor in the definition of g~ as compared to g.
These differences may be listed as follows:

(i) In the semiclassical limit when 6 (( E, Vp, the exact
transmission coefficient in (2.11) tends to the analytic
expression of TSWKB(E), i.e.,

Texact(E) TSWKB(E) 0 TWKB(E). (2.13)

(ii) The bound states of the well corresponding to the
barrier in (2.1) can be obtained by analytic continuation
procedure [31]. To achieve this, one has to change Vp M
—VD and E + —E . These imply the following change
of parameters:

f miF„, F„=gE„/6„
sinh(2' f)sinh(2ms)

cosh[s'(g+ s+ f)]cosh[~(f + s —g)]
'

(2.11)
s miS„, S„= F„+ I

——1
I

(Vp/+)

- X/2

(2.14)

TwKB(E) = [1 + exp(2m'(g~ —s —f)j] (2.12)

with

- X/2
t'1

g ~iG, G = (Vp/d)
I

—+1
I

+—
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in Ts~KB. The transmission function corresponding to
the well is then given by

T = [1+exp(2n. i(G —S„—F ))] (2.15)

Locating the poles of the transmission function on the
upper half of complex k plane (k = /2mE/h) one gets

F„=G —S„—(n + 1/2), n = 0, 1,2, . . . (2.16)

The bound state energies can be easily obtained from
(2.16),

(Vo/b, ) (1/c —1) —[G —(n + 1/2)]
2[G —(n + 1/2)]

(2.17)

which is identical to the exact result given in Eq. (27)
of Ref. [23]. This differs from the WKB result [obtained
from Eq. (2.12) through similar inversion method]

in Table I along with the percentage errors, shown in the
last two cob~mns. It is found that our SWKB formalism
gives in general better results than the WKB method for
wide variation of the parameter c ranging the potential
(2.1) between two standard forms such as the Morse and
Eckart barriers. In this respect, the present calculation
may be considered as the generalization of our earlier
work [29].

When the energy of the incident particle just grazes
the top of the barrier, i.e., E = Vp, the WKB method
leads to very large error for the transmission coefficient
T for c 1. This is clearly seen &om Fig. 1 in which
we display the variation of percentage error of the pre-
dicted transmission coefficients with the parameter c. It
is interesting to note that while the error involved in the
WKB method grows with increasing value of c and be-
comes about 33% for Eckart barrier (c = 1), the error
associated with our SWKB approximation is minimal.
In fact, it remains almost constant (at the level 0.5—1%)
for the entire range of c.

(Vp jb,) (1/c —1) —[gw —(n + 1/2)]
2[g~ —(n+ 1/2)l

(2.1S)

This distinctive feature of our method as compared to
the WKB theory was reported earlier [29] for the special
choice of c = 0 and 1 which correspond to the Morse and
the Eckart barriers, respectively.

(iii) To identify the quantitative distinction of our cal-
culation &om the WKB approach, we compare numeri-
cally TS~KB and T~Kg with Te„~,t for diferent values of
the parameter c with Gxed values of Vp and a. For each
value of c, we consider several values of the relative energy
(E/Vo) of the incident particle so as to demonstrate the
efFect of sub-barrier and superbarrier penetrations. We
take Vp = 3.0 and a = 0.5 and the results are presented

III. APPLICATION TO HEAVY-ION FUSION

V~(r) = 4npbC( —3.437) exp[ —(r —Cq —C2)/0. 75b]

ZZG+ + l(l + 1)h /2mr (3 1)

with

Presently we discuss the applicability of the SWKB
method described in the previous section to a realistic
potential that broadly describes the experimental data
on light-light- and light-heavy-ion fusion processes. We
consider the proximity potential of Blocki et a/. modi-
fied by Baz and Alexander [32] for two colliding nuclei of
atomic weight and mass numbers, (Aq, Zq) and (A2, Z2),

TABLE I. Transmission coefficient (in units of 5 = 2m = 1) for the hybrid potential in (2.1)
with Vo = 3.0 and a = 0.5 for difFerent values of the parameter c and relative energy E/VO. The
exact, WKB, and SWKB results are computed from Eqs. (2.11), (2.12), and (2.9), respectively.

Parameter

0.25

E/Vo
0.1
0.5
1.0
1.5
2.0

Transmission coefBcient (T)
Exact WKB SWKB

0.01488 0.01285 0.01537
0.14741 0.12603 0.14747
0.54536 0.50000 0.54537
0.85099 0.82641 0.85099
0.95713 0.94901 0.95713

Percentage error
WKB SWKB
13.66 —3.20
14.50 —0.05
8.32 —0.00
2.89 0.00
0.85 0.00

0.50

0.1
0.5
1.0
1.5
2.0

0.00857
0.12005
0.57569
0.89919
0.97903

0.00654
0.09140
0.50000
0.86796
0.97176

0.00886
0.12010
0.57570
0.89919
0.97903

23.68
23.86
13.15
3.47
0.74

—3.20
—0.05
—0.00

0.00
0.00

0.75

0.1
0.5
1.0
1.5
2.0

0.00401
0.09081
0.59743
0.92922
0.98860

0.00279
0.06309
0.50000
0.89844
0.98317

0.00414
0.69085
0.59744
0.92923
0.98860

30.29
30.53
16.31
3.31
0.55

—3.21
—0.05
—0.00

0.00
0.00
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FIG. 1. Percentage error for the predicted transmission co-
eFicient versus the parameter c for the hybrid potential (2.1)
with Vo ——4.0 and a = 0.2. We have taken the energy of the
projectile grazing the top of the barrier, i.e. , E/Vo ——1 and
5 = 2m = 1 throughout. The solid line and the dashed line
correspond, respectively, to the present (SWKB) method [Eq.
(2.9)] and WKB method [Eq. (2.12)].

Here Vj is the maximum value of the barrier height and
r~ is the position of the barrier top. We should empha-
size here that all the parameters, Vj, rI, a, c, and d are
E dependent. Conventionally the s-wave peak value Vo
is called the Coulomb barrier height V~. The HW ke-
quency (~g) takes care of the curvature near the top of
the barrier and the parameter c 6xes the position of the
tail part of the potential. For the best matching of the
two potentials in (3.1) and (3.3) over the entire range of
r, we have required that both the potentials must have
identical height as well as location of the peak. Also the
tail portion has been matched at r = 25 fm. The extreme
closeness of the analytic potential (3.3) and the fusion po-
tential (3.1) can be seen from Fig. 2 for F+~ C system
for the s wave (l = 0). The matching of these potentials
has also been done for higher partial waves. The depen-
dence of the parameters on the values of l for F+ C
can be seen fxom Table II. For illustration, we depict the
optimum values of the parameters only for a few partial
waves.

To apply our method to the potential (3.3), we follow
the procedure stated in Sec. II. The potential can be
recast in the standard SUSY form

( )
1 —exp{(rg —r)/a)

(( 1 —c exp{(rg —r)/a) )
where

R;= [1.28A, —0.76+ 0.8A; + AR](fm),

C;= [R, —b /R;](fm),
C= CgC2/(Cg + C2).

(3.2)
1 —{c2—4(c —1)2V /bg, )'~D= A

2(c —1)

b, = h /(2ma ).

1 —exp{(rg —r)/a) lVr =Vg
(1 —cexp{(r, —r)/a) )

(3.3)

with

Here A = (Aq + A2) and Z = (Zg, + Z2) are the mass
number and atomic number, respectively, of the compos-
ite system and AR is the modi6cation of the efFective
sharp radius R; The surf.ace width b in (3.1) has the
approximate value 1 fm. Since the potential in (3.1) is
not analytically solvable, the HW parabolic fitting [1] is
often used to calculate the Tg(E) which is directly related
to the measurable quantity oz(E). Except at the top of
the barrier, the parabolic potential fails to account for
the tail part of the effective fusion potential. For this
reason, Ahmed has suggested a three-parameter poten-
tial barrier [23,33] which matches with the potential (3.1)
for a suitable choice of the parameters. Furthermore,
the parametrization is done in such a manner that the
l-dependent centrifugal term is no longer needed. The
potential is

IO

~ 6-
0

0

0
0

l

50
I

20

r(fm)

I

I

I

t

f 0
I ~~
I
l

0
0

I

)0

a = d/(1 —c),

d = [(5 /2m)4Vg/(hcug) ]
g

h~ d Vy (r)
fA dT

FIG. 2. The s-wave potential profile as a function of r for
the F+ C system. The dashed line represents our barrier
model, Eq. (3.3), and the solid circles denote the experi-
mental fusion interaction barrier given by Eq. (3.1). The
arrow denotes the Coulomb barrier. The fitting parameters
are t p = 8.32 fm, Vp = 8.50 MeV, hcuo ——2.65 MeV, and
c = 1.062.
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The potential (3.4) can be obtained using (2.2) if one

takes

W(r) = P exp((r, —r)/a) + q
1 —cexp((r( —r)/a)

where

P = [Dc + (c —1)Vi] ~,

Using the superpotential function (3.5) in the transmis-
sion coefficient (2.3) and evaluating the penetrability in-

tegral [30], one gets

l
0
1
2
3

5
6
7
8
9

10

r( (fm)
8.32
8.30
8.27
8.23
8.17
8.10
8.02
7.93
7.84
7.75
7.65

Vi (MeV)
8.50
8.59
8.75
9.00
9.35
9.78

10.31
10.94
11.67
12.52
13.48

M( (MeV)
2.65
2.67
2.73
2.80
2.90
3.02
3.17
3.34
3.53
3.73
3.96

C

1.062
1.060
1.056
1.049
1.042
1.032
1.022
1.011
0.999
0.987
0.976

TABLE II. Parameters of the analytic potential (3.3) for

several partial waves obtained by our matching procedure for

the F+ C system.

T, (E) = 1+ exp [c(E—Q ) ~ +is(P+ cQ)c~a
with

s = sgn(c —1).
- —1

(c2E ——P2)'~2] + in. (3.6)
For obtaining the transmission coefBcient for the poten-
tial (3.3), we rescale the energy E ~ (E + D) in (3.6)
and obtain

Tj ——[1+exp (2ns[(E/b, ) ~ —((E/6, ) + (1/c —1)(V)/6)) ~ —s((1/c —1) (V)/6) —I/4)~~2])] . (3.7)

The corresponding expression for the WKB transmission coefficient as given in Ref. [23] is as follows:

T) ——[1+ exp (2n's[(E/b) ~ —((E/b) + (1/c —1)(V)/6)) ~ + (1/c —1)(V)/b) ~ ])] (3.S)

As before, our TP
wKB differs from T&wKB by a factor 1/4 appearing in the last term of (3.7).

Using the transmission coefficient in (3.7), we compute o~~(E) and ay (E) for light-light and light-heavy nuclei.

TABLE III. Comparison of predicted fusion excitation function with measured data for 0+ C,
F+ C, and 0+ Pb fusion reactions. Experimental data have been taken, respectively, from

Refs. [5—7].

System
160+12C

Vc = 788
(MeV)

Lm
(MeV)

6.99
7.99
8.99
9.S9

11.99
12.87
13.99

@lab
(MeV)

16.33
18.63
20.99
23.31
27.98
30.03
32.63

HW

18.37
99.23

260.07
413.67
634.56
704.87
777.96

11.49
90.91

250.14
402.14
623.80
694.75
768.62

10.05
82.65

237.55
389.54
612.84
684.47
759.12

ay(E) (mb)
WKB 8&KB Expt.

13.2+2.5
80.5+8.5
195+19
327+28
540+46
632+52
773+60

12C+19F

Vc = 8.50
(MeV)

160+208Pb

Vc —75.36
(MeV)

19.4
24.5
29.4
35.6

74.3
77.1
81.7
83.6
89.1
94.7

120.0

50.0
63.2
76.0
92.0

80
83
88
90
96

102
129.6

1043.71
1154.05
1207.60
1239.45

9.95
101.42
334.27
420.64
655.24
858.48

1520.01

1036.88
1148.73
1203.19
1235.88

9.37
100.59
333.08
419.46
654.12
857.41

1519.13

1030.07
1143.41
1198.85
1232.38

9.13
99.48

331.89
418.29
653.00
856.33

1518.25

1040+15%
1150+15%
1070+15%

36+4
108+10
350+40
377+50
685+70
844+90
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IV. CONCLUDING REMARKS

The main emphasis of the present investigation cen-
tered on the computability of the transmission coefficient
for one-dimensional potential barrier using the newly
emerging semiclassical (SWKB) technique. The barrier
penetration model is quite popular for studying the broad

'~0+ASm

IOO

X
O
o+ 10

148sm 150Sm '5'2sm ' '54sm

O
4Xo

It is crucial to decide how many partial waves really con-
tribute meaningfully to a reaction process for a particu-
lar energy of the projectile. For this purpose, we refer to
Fig. 34 of Ref. [4] in which the variation of 0'~~ (E) with l
for different system energies are displayed. We have also
found that for energies far above the Coulomb barrier,
a~~ increases almost linearly with l up to a value l
since in this energy region T~(E) —1 due to the step-
function-like behavior [29]. For I beyond certain max-
imum value l, Vj & E and T~ becomes nearly zero.
Consequently, o~~ falls off sharply. For lower values of
E, the maximum value of op~ is reached for a lower value
of L. In this domain, the quantal effect becomes promi-
nent.

We have calculated the total fusion cross section for
various systems but for the sake of brevity, we present
in Table III our SWKB results only for a few typical re-
actions such as 0+ C F+ C and 0+ Pb for
which reliable experimental data are available for both
sub-barrier and above barrier penetration regions [5—7].
Our results are compared with those obtained &om the
WKB and the HW approximations. As expected, all
three theoretical predictions are more or less compara-
ble. However, for low Z~Z2 reactions, the SWKB pre-
dictions are closer to the measured data particularly for
the energy below the Coulomb barrier. In these cases,
the HW method overestimates o I;(E) due to the neglect
of the Coulomb tail effect. A visual display of the calcu-
lated fusion cross section as a function of the energy of
the projectile for the reaction of 0 with even isotopes
of Sm (A = 148 to 154) is presented in Fig. 3. Although
the SWKB results are lower than the experimental val-

ues, the general trend of the variation is maintained over
a wide range of the bombarding energy.

features of nuclear fusion reactions as it gives a moder-
ately good fit to the measured data. Before the work
of Comtet et al. , it was customary to use either the Hill-

Wheeler method or the WKB approximation to calculate
the fusion cross section theoretically. With the advent
of the supersymmetry-inspired WKB method which has
been found to be quite successful in analyzing the bound
state problems, it is believed that this scheme may work
equally well in the continuum domain of the scattering
processes. The present analysis certainly substantiates
this hope and may motivate others to examine different
processes involving tunneling phenomena.

Our work has proceeded in two steps: first, we have
presented an illustrative calculation for the transmission
coefficient for an analytically solvable hybrid potential
which resembles closely the true fusion interacting bar-
rier. We have been able to show that our SWKB method
gives consistently better results than the WKB method
both for sub-barrier and superbarrier penetrations and
for the entire range of the free parameter c. This com-
parison has been possible due to availability of the ex-
act expression for T(E). One may therefore consider
this part of the work as a model calculation for assess-
ing the accuracy of the SWKB scheme. In the second
part (Sec. III), we have shown how our method may be
used to the realistic barrier problem in the context of
heavy-ion fusion. It indicates the fact that although the
SWKB transmission coefficient for one particular angu-
lar momentum quantum number may be superior than
the corresponding WKB value, the cumulative effect in
the total cross section (summed over all partial waves) is
more or less the same for both the methods. But it is to
be mentioned clearly that even then it is advantageous
to use the SWKB method because it restores the correct
energy eigenvalue spectrum &om the transmission coeffi-
cient under the analytic continuation procedure through
inversion of parameters as discussed in Sec. II.

Finally, we would like to remark that whatever discrep-
ancies have been noticed between the SWKB predictions
and the experimental data may be attributed to too sim-
ple a structure of the fusion potential (3.3) used for our
analysis. It is now well established that fusion cross sec-
tions in heavy-ion reactions at energies near and below
the Coulomb barrier are considerably enhanced over the
predictions of the BPM model (see Fig. 3). In fact,
the barrier penetration model neither accounts for the
spin distribution of the fused composite systems, which
is responsible for the sub-barrier fusion enhancement, nor
considers the complex structure of the interacting nuclei
such as the deformation of the nuclear shape, neck forma-
tion, etc. , which are dominant effects in the sub-barrier
region.

0 1
i I i l I ., I i i I r I I l i I ,I

30 50 70 50 70 50 70 50 70 90
E l~b ( MeV )

FIG. 3. Fusion cross sections predicted by the SWKB
method (solid line) for 0 and even isotopes of Sm

(A = 148—154) are presented along with the experimental
data (points with error bar) taken from Ref. [8j.
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