
PHYSICAL REVIB%"C VOLUME 50, NUMBER 1 JULY 1994

Finite Sm cut appreximatien far the 7r2V2V form factor

A. A. Bolokhov
Sanest Pe-tersburg State University, Sankt P-etersburg, 19890$, Russia

N. Zovko
Ruder Boskovic Institute, Zagreb, Croatia

(Received 4 January 1994)

Assuming the length of the 3x cut to be finite and approximating the integrated 4x amplitude by
a constant, we derive an expression for the ~NN form factor which is very close to that given by a
simple pole. The specific predictions of the obtained form factor for the region of small momentum
transfer are compared with existing eff'ective pole formulas and discussed along the lines of the
Goldberger- Treiman relation.

PACS number(s): 13.75.Cs, 13.75.Gx, 14.20.Dh, 14.40.Aq

I. INTRODUCTION

The problem of determining the m NN vertex with the
pion off its mass shell has been open for about 30 years
and as yet has had no reliable solution. There exist a
few model calculations for zero-mass pions or very close
to this limit. Being designed for the spacelike region only,
these models have little chance for any extrapolation.

In the spacelike region it is legitimate to parametrize
the form factor (FF) by means of an effective pole, dipole,
or even an exponential. The eff'ective mass A, as ex-
tracted from variety of models [1],refiects a strong model
dependence: 0.6 GeV ( A ( 1.5 GeV.

To some extent, such an inconclusive situation is un-
derstandable from the point of view of analytic functions.
The very fact that a cut is approximated by a pole has
different impact on models dealing with different sectors
in the momentum transfer plane. What seems obvious
is that the position of the effective pole should move to
lower values as the momentum transfer range under con-
sideration approaches the cut along the no-cut region. In
other words, smaller eff'ective mass corresponds to mod-
els like those dealing with chiral pions, whereas larger
mass is consistent with, e.g. , N-N potential models. As
extensively discussed in Ref. [1], a clear-cut conclusion
cannot be drawn.

The increased accuracy of determination of the pion-
nucleon coupling constant [2—7] raises also expectations
for improvements in determining the entire FF as well.
Therefore, any attempt to clarify the structure of the
vrNN form factor is timely and of importance.

In what follows we present the derivation of a modified
pion-nucleon FF based on its analyticity properties in the
timelike region where the form factor develops an imag-
inary part (Sec. II). While performing the integration
over the (dominant) three-pion cut, we assume that the
off-shell behavior of 4' and 3+NN vertices is determined
by the existence of an effective cut of finite length. Then
approximating the structure of the 4' vertex simply by
a constant, we arrive at the expression for the form fac-
tor (Secs. III and IV). Its specific features are mostly

of kinematical origin. Instead of a simple pole, a more
general one-parameter formula is obtained. It reduces to
the effective pole when the length of the cut shrinks to
zero. Its properties are discussed in Secs. V and VI.

II. TIMELIKE REGION

In the timelike region there is no experimental infor-
mation about the pion-nucleon form factor. Therefore
the main formula of dispersion theory,

1 „,Im G(r')

(as well as any variant with the suitable number of sub-
tractions), was practically of no use.

Already the first unitarity diagram for the imaginary
part contains an insurmountable diKculty in handling
the inelastic amplitudes. However, the situation might
seem less desperate if we observe that the NN pair may
be considered as an effective pion very far away &om
its mass shell (m„. = 2 GeV). Intermediate pions are
physical pions by the very fact that in unitarity diagrams
the intermediate set of states is always on the mass shell.
So, in essence, the evaluation of the imaginary part will
include the product of two pion-pion elastic scattering
amplitudes, each of them containing one pion off the mass
shell.

Let us now attack the 3m cut along these lines. The
conventional expression for the mNN vertex in the NN
annihilation region has the form

(2)

where

G~~N(r) = g~~G(r), r = q
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with g N being the pion-nucleon coupling constant, and
the form factor G(7.) is normalized by

G(m'. ) = i;

other notation is obvious.
The unitarity condition for 8 = 1+iT, after straight-

forward manipulations, in the 37r-cut approximation has
the form

»~"(p+ p' —
&)

I(")(p')~»u(") (p)~."p [G.N~(~) —G;~~(~)]

) (NNiTin)(niTtiz. )

N" pNp" p' Tx~ k1xbkg xc k3
tl Qq

&(~-(k~)~s(k2)~. (k.) IT'I~'(~))

"~ (2tr) s 2k();
(2~) b( (p+p' —kg —k2 —ks)M '" (NN m sz)abc

x (2z.)4h 4
(q —k& —k2 —ks) M's, d(n. -+ sar)

= (2~)43t4~(3+3' —q) f dqqq M ~~ ""(NN m'3q)M;~ ~(q -+ 3w),

where

3 (q —3& —3q —3q) —= f dq4
~ ~2tr 2k(),

After dropping the h functions, the unitarity condition in the 37r intermediate-state approximation becomes

23 '
(2')iqqu "~(3)~~ Ixaa„&d(7) = f dAq M q,

" (NN w 3'q")M;q,~(q -+3~).

(6)

In order to form an isospin pion state in the left-hand-
side (LHS), we have to multiply it by the factor 7d,
The antiparallel-spin nucleon wave functions should be
used for representing the pion state. For this purpose,
we simply multiply both sides by

'"'(p) ~ '"'(p') (8)

M...„.—= --) -) M.-~„""(NN~s~)
Pa p, v

&(-( )(p) p „( )(p )

we 6nally obtain

and perform a summation over p, v to remove the spinor
structure. Denoting

III. INTEGRATION OVER 3m PHASE SPACE

Let us now consider the integration over the 3m phase
space. Following the standard definitions and conven-
tions, we first convert the integration over the internal
pion momenta into the integration over the scalar invari-
ant variables [8]:

f 1 ds1ds2dt1 dt2

(2z)'2 A2(t. , m, m )

where A4 is the Gram determinant,

I pp I' p k1 p. &3

I I'.pJ'-p' J' k1 p' k3
k k . 'k . k k k1 P 1 P 1 1 1 ' 3
k3 .p k3 .p' k3 - k1 k3 ~ k3

1
Im GqqNN (+)~dd' dII322Mq3bcd' Mqqs~d. (io) (12)

Here we should note that the most important property
of our FF comes &om the (ijv) multiplier in the expres-
sion for ImG ~N. One should stress that it is not the
factor (1/x) in expression (9). Indeed, the latter must
be contracted in the major spinor structure of the vertex
M s 'd""(NN ~ 32r) in the explicit form, and in all the
other structures after the F3 integration.

and the scalar variables are those used in Ref. [8],

sg ——(kg+ k2), s2 = (k2+ ks), ~ = (p+p')
tz = (p —kq), tz ——(p' —ks)

(is)
The region of integration is limited to that where A4 & 0
B,nd g = 7 + 97K~.

We shall take advantage of introducing two other vari-
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d03~ = ds (15)

where

Sp ——4m,

1 2 Q(s —4m2 ) (s —Si ) (s —S2)
2

+ s~
8

Si2 ——(—~r+m ) .

ables and renaming the rest. In terms of the relative
nucleon momentum P = p —p', the suitable invariant
variables are

t', = P(ki+. ks), t'2 = P(ki —ks), t = si, s:—s2, 7..

(14)

Here s and t are the usual Mandelstam variables of the
4x vertex and w is the mass of the heavy pion.

There are two important properties of the t1,t2 vari-
ables. First, the 4x vertex does not depend on them.
There are also grounds to consider the dependence of
the amplitude M(NN ~ 3m) on these variables to be
negligible: The full kinematics data [9, 10] on the cross
reaction vr+p ~ x+m n show no dependence on these
variables apart from the dependence coming from the
phase space. The analysis [11] of recent measurements
also con6rms this observation.

Thus we can rely upon the fact that the integrated
expression in (ll) is free of explicit ti, tz dependence.

Second, the integration domain of t1,tz is an ellipse in
the t1,t2 plane, and so the above integration can be easily
performed.

Finally, our 3'-phase-space integral (11)takes the form

dsdt ~M(z., m 3z.)]2

where the overall constant KK' must be determined by
the normalization, G N~(m ) = g N.

If the double integral including the factor 1/r' is ap-
proximated by the constant, we obtain the (normalized)
form factor

in[(r —7 )/(7.p
—r)]

in[(7~ —m )/(7o —m )]' (20)

If the value of the cutoH' parameter 7 is close to wp, then
the FF (20) and the FF we shall be dealing with later on
are practically the same and are very close to the form
of a simple pole.

In the limit 7 ~ oo, expression (20) is a constant
(= 1) . When approximating the inner integral in (19) by
a sequence of 0 function times some simpler expansion,
the weight of the term giving rise to expression (20) must
vanish at large cutoK Otherwise it will give rise to the
form factor containing a hard core. In our opinion, one
would like to exclude this possibility.

The approximation we have made is very rough, but it
leaves us with a single free parameter v . One can realize
that inclusion of further dynamical details immediately
converts the form-factor problem into a multiparametric
one.

Therefore, in the approximation of a constant ampli-
tude over the cut of finite length, our normalized form
factor assumes the form

This result; contains all q = w dependence in the ap-
proximation when the amplitude M in the integral (10)
is taken to be a constant.

with

G(r) = —ln (21)

gp =
2m~

1—m~ /7-~ln 1—m~ /~p

IV. BEYOND THE EFFECTIVE
POLE APPROXIMATION

If the efFective pole formula [see Eq. (23) below ] tol-
erates A —~p = 9m, it means that the farm-factor
behavior is determined by the very fact of the presence
of the cut from ~p to in6nity. If the structure of the am-
plitude M(m, -+ 3m. ) in Eq. (10) is essential too, then

))7p.
In this case it might be convenient to introduce the

notion of the efFective cutoff r in the amplitude M(m, ~
3m) such that any integration of the amplitude squared
is equivalent to the 6nite-range integration of some mean
value. If this holds, then a meaningful approximation
could be obtained in the following way:

A'- m'
P(r) = (23)

We leave aside the detailed comparison with other
broadly used kinds of FF's such as a dipole

(A2 —m.2) 2

(p2 7)2 (24)

The most important properties of the expression (21),
to be pointed out immediately, are (1) r = 0 is not a
singularity; (2) for r -+ —oo, it decreases as 1/w, as in
the case of a simple pole.

In what follows we investigate the properties of the FF
(21) mainly by comparing it with those of the well-known
form of a (simple) pole,
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or an exponential

P~ —m' )
E(7.) = exp

I A,' (2s)

gp 1 —r/~ ~p —m
lim —ln

&m ~To 7 1 —T/'rp Tp —r (26)

It is a simple algebraic exercise to identify the parameters
of the FF's in question at 7. = 0. On the other hand, of
the quoted FF's, only (21) and the monopole are alike in
the asymptotic region ~ ~ —oo.

The origin of the similarity of these two FF's might be
clarified by considering the limiting case r -+ 7p In.this
limit, because of the normalization condition (4), the FF
(21) assumes the form

the asymptotic region when w ~ —oo. Let us now pro-
ceed along these lines.

V. xNN FORM FACTOR
AT SMALL MOMENTUM TRANSFERS

The region of small 7 is of great importance since the
experimental quantities measured here meet the theoret-
ical predictions of chiral dynamics. Therefore, we com-
pare the FF's (21) and (23) in terms of the Goldberger-
Treiman relation (GTR) [12] .

Let us first briefly recall the usual derivation of the
GTR. Identifying the G ivy form factor in the matrix
element of the pion-field source j
(+(&')Ij (0) IN(si)) = iG ivy(q )u(p')os7 u(p), (28)

So the effective monopole shape of the pion-nucleon FF
might indeed be the natural one and its efFective mass is S'=(S+q) p' =p =miv q'=2p. q

/2 2 (29)

A = ~r() ——3m = 0.414 GeV. (27)

The most important regions for comparison of the FF's
in question when w g 7p are the region of small 7. and

one converts, in the standard way, the matrix element

(28) of the pionic source j (0) into the pion field and
then into the partially conserved axial current as follows:

P(p+q)lj (O)ISV(p)) = (—q +m )(»+ql4 (O)IS')
—q +m

(p+ ql&i5„lu)

2 2

u(p+ q)its~ [2mivg~(q ) + q hz(q ))u(p)) (3o)

where the notation is straightforward and conventional.
After comparing (28) with (30), we obtain G'(0) = [2mivgg(0)+m hg(0)]+ g&(0).m'f 2

—2+ m2
gm pfG(q') = [2mivg~(q') + q hA(q )].m2f 2

(31)
The GT relation and h~(0) from (33) make the brackets
vanish, so that we finally obtain

This relation holds in a limited region of q2 where the
pion-field-to-axial-current identity holds. Provided that
the axial form factors g~(q2) and h~(q ) can be mea-
sured or calculated, it defines the off-shell behavior of
the pion-nucleon coupling. At q = 0 the Goldberger-
Treiman relation follows, g~iv f G(0) = ~2mivm2gg(0).
We rewrite it for the intercept Gp = G(0):

G'(0) g'(o)
G(o) g~(o)

(3s)

Expressions (32) and (35) are the tools for compari-
son of FF's at w = 0 since any physically acceptable FF
must provide a reasonable value for the discrepancy of
the GTR as well as for the nucleon size. Let us now
expand the FF's in question around ~ = 0:

mN +A0— )E. g.- (32) a2- m' X'- m'
P(~) =, = [1+~/A'+ . ), (36)

where G~ = 2g~(0) = 1.261 + 0.004 [13] and I'
f ~2 = (92.6 + 0.2) MeV [14] .

As g~(q ) receives no contribution from the pion pole,
we can evaluate the slope of the form factor G(q ) at
q2 = 0 by using the pion-pole contribution to h~(q ):

7m —Vp 1 7m + ~p
G(~) gp

™ 1+~— +.. .

Vms'

p 2 Vm50

( 2)l
fmgmNY 2

q —m

resulting in

(33)

2mx

ln 2 /T

The terms of zeroth order then give the intercepts Pp and
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Gp of the monopole and the modified FF, respectively,
entering the GTR:

A2 —m2

A 3m. & a & 3&2m. (47)

is again remarkable since it maps all the allowed regions
of 7, ~p & w & oo, into the small enough interval of
the positions of the effective pole:

7m &p
p

Trna

2m~
+p T~ fA~( T —tnt (4o)

OI

0.414 GeV & A & 0.585 GeV. (48)

Here the first diH'erence in the features of the con-
sidered FF's appears. The monopole FF can in prin-
ciple tune any, even unphysical, value of Pp &om zero
to unity. In contrast to this, expression (40) predicts
a very narrow interval of Go values from Goo= 8/9 to
G = [9 ln(8/9)]

0.889 & Gp & 0.943, (41)

—1

&m7o )
(42)

and to find the interval of A describing the same region
(41):

3m & %&420m (43)

or

spanned under the variation of 7 Rom 70 to infinity.
The 6%%uo discrepancy of GTR deduced in Refs. [15, 16]

by analyzing the chiral limits of all four quantities enter-
ing the RHS of Eq. (32) corresponds to Gs —0.94. This
at least means that there is no obvious disagreement of
assumptions underlying the FF (21) with the approach
of chiral perturbation theory. When compared with the
value of Gs ——0.954 +0.011 given by the GTR (32) at the
standard value of g iv = 13.40 6 0.08, the interval (41)
is found to be at the edge of consistency. The discrep-
ancy of GTR is lower at lower coupling —this has been
already discussed in Ref. [17 . Thus, in terms of the
GT relation, the lower value [2—7] of the coupling con-
stant at the present level of precision probably reffects
the importance of contributions beyond the 3m cut.

By virtue of relations (39) and (40) it is easy to express
the positions of the effective pole in terms of the cutoff'

parameter

This interval is practically the same as (43). The anal-
ogous calculation for the effective mass A~ of the dipole
(24) describing the axial vector FF which enters the RHS
of (35) provides

4v 7p
A )

&m+ &p
(49)

3v2m &Ag &6m, (5o)

or

0.585 GeV & A~ & 0.828 GeV. (51)

A straightforward comparison of this interval with the
experimental value [13]

A~ ——(1.032 6 0.036) GeV, (52)

VI. LARGE MOMENTUM TRANSFERS

In the asymptotic region the exponential and the
dipole FF's do not allow a comparison with the FF (21).
When ~w~ )) A and ~7

~
)) v, by equating the coefficients

of the leading 1/( —w) terms of expressions (21) and (23),
one obtains

m2 in[(~ —m2)/(rp —m2)]
in([~p/(7p —m )][(r —m')/r ]j (53)

Now the range of A values spanned under the variation
of w &om 7p to infinity is

results in the original impression that the prediction (50)
is inconsistent with the present experimental informa-
tion. To get some ideas on a possible interpretation of
this contradiction, let us consider the properties of FF's
in the asymptotic spacelike region.

0.414 GeV & A & 0.580 GeV. (44) 3m &A&oo. (54)

G'(0) P'(0)
G(0) P(0)

(45)

The solution of the latter equation for A,

We would like to postpone the discussion how this
meets the present experimental information on the posi-
tion of the efFective pole, in order to gather more details
to be discussed.

Now let us compare the FF's (21) and (23) in terms of
relation (35), which requires

Contrary to the previous relations (46) and (42), where
the singular character of mapping did not allow us to es-
timate the cuto8' parameter 7~ Rom the value of the ef-
fective mass exceeding the allowed regions (43) and (47),
relation (53) is helpful for getting an impression how large
the values of w might be. For the purpose of quick refer-
ence, we present a simple table reproducing relation (53)
at some points:

A (GeV) 0.414 0.450 0.500 0.600 0.700 0.800
~T 3m 3 6m 4 5m 73m 12m 20m

2 2TT7L Tp
)+m+ 70

(46) The straightforward use of the common value [3, 18—20]
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0.800 GeV provides the value of the cutofF 7 as
large as ~ —(20m )2.

The more moderate value A = 0.730 GeV deduced in
Ref. [15]&om the axial vector FF g~(q ) [13]corresponds
to 7 = (13.7m )2 = (2miv)2 . Probably the lowest
possible efFective mass is given in Ref. [21]. The value

A —3.16m ~ ~ —3.3m (ss)

is obtained by fitting the data on the pp -+ ppm reaction
at 800 MeV. It is precisely pointing to the region where
the monopole approximation (26) is being approved.

It is premature to make a definite statement on the
value of v as an experimental quantity: This should
rather be made by independent groups possessing the
original data. In this paper we would like to outline the
ambiguities of the direct translation of any form-factor
parameter to the effective mass of the monopole to be
used in (53).

The origin of a possible confusion might be clarified by
examining the properties of the FF (21), which has a real
chance to be closer to reality than the other parametriza-
tions discussed here. Namely, when approximating ex-
pression (21) with a monopole ansatz (23), in different
regions one inevitably obtains larger values for the efFec-
tive mass at larger scale of (—v) than that obtained at
small ~ .

The above mentioned value A 0.730 GeV is obtained
in Ref. [15] &om the dipole parameter A~ of the axial
vector FF g~(q ) as

A = A~/V2. (s6)

[A2 —m2]2 A2 —m2

[A2 —(—A2)]i A2 —(—A2)

should be

(57)

(58)

In view of relation (35), this is quite correct for values
obtained for small r Howeve. r, this is not the case for the
special example in question: The value (52) is obtained
by fitting the data at the scale of 7 up to 7 = —(1 GeV)2.

Certainly, the principal way is to make separate fittings
for every choice of the FF. Since this has not yet been
done, one might look for an approximate rule for quick
estimations.

To do this, let us examine the dispersion representation
(1). Suppose that the integral of the imaginary part can
be approximated by a dipole expression with the effective
mass A placed soznewhere nearby the left end of the cut
and that the remainder allows the approximation of the
same kind, but with the position of its effective mass
somewhere twice further.

Then the fitting by a single-term dipole at (—A2) (
(—vo) should reproduce the value of the efFective

mass corresponding to the closest term and the value
will become larger at larger scale.

With the rough empirical rule that the effective mass
A is obtained at the scale 7 = —A, the prescript for a
comparison of the dipole and monopole effective masses

rather than (56).
Following the conjecture of Ref. [15] that g~(q2) and

the xNN form factor should be of the same shape and
substituting the value A~/y3 &om (52) into relation
(53), one obtains

A —0.596 GeV, ~ = (7.3m ) . (59)

The continuation into the sxnall v region then results in
the relative slope of g~(q ) in (35) provided by the dipole
efFective mass

A~ = 0.765 GeV (A = 0.540 GeV). (60)

This is almost by 25%%uo smaller than (52) and practi-
cally consistent with the derivations of theoretical mod-
els, such as the Skyrme model (see, for example, Ref.
[22]).

It goes without saying that only the direct fittings of
the data as precise as possible at small 7 can help to
avoid the uncertainties of the presented speculations.

VII. CONCLUSIONS

In this paper we have derived a one-parameter expres-
sion for the n NN form factor, the only input information
being the existence of the cut in the timelike region, the
known position of its branch point corresponding to the
3m. intermediate state, and the assumption that the FF
has no hard core and that the cut has finite length.

The remarkable feature of the discussed FF in the re-
gion of small momentum transfers is the stability of its
prediction in respect to the variation of the parameter
(effective cutofF): G(0) is allowed to vary only within
5.5%. This means in particular that the departure from
the interval (41) might be used to probe the physics go-
ing beyond the assumptions listed above (provided the
efFect sufficiently exceeds experimental errors).

Another property of the FF (21) is better formulated
in terms of the effective mass of the simple pole interpo-
lating the FF (21) in the given range of momentum trans-
fer. Namely, the efFective mass determined in the region
of large momentum transfers is significantly larger than
the one at small momentum transfers. This property
might help to understand how the predictions of theo-
retical models (usually derived &om the theory of chiral
pions and, therefore, restricted to rather small momenta)
can meet the experimental information (which is more
accurate at larger energies and momentum transfers).

The incomplete list of problems being at present under
study and strongly relying on the ~AN coupling constant
and/or on the mNN form factor includes (i) pion-nucleon
elastic and inelastic scattering, (ii) nucleon-nucleon one-
pion-exchange potential, (iii) few-nucleon bound states
(the 8/D ratio of deuterium), (iv) pion photoproduction
and electroproduction, and (v) weak nNcoupling. '

The FF (21), discussed in this paper, can in principle
help to avoid some of the known ambiguities in the above
mentioned problems or at least to outline the relevance of
the n.NN coupling and/or FF to the problem in question.
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