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The large distance behavior of weakly bound three-body systems is investigated. The Schrodinger
equation and the Faddeev equations are reformulated by an expansion in eigenfunctions of the
angular part of a corresponding operator. The resulting coupled set of effective radial equations
are then derived. Both two- and three-body asymptotic behavior are possible and their relative
importance is studied for systems where subsystems may be bound. The system of two nucleons
outside a core is studied numerically in detail and the character of possible halo structure is pointed

out and investigated.
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I. INTRODUCTION

The asymptotic behavior of halo nuclei [1-3], i.e.,
weakly bound and spatially extended nuclear systems,
was recently discussed theoretically both for two-body
systems [4] and for three-body systems where all subsys-
tems are unbound [5,6]. More complicated halo struc-
tures have also been anticipated [7-9]. These three-body
systems have mean square radii which at the most diverge
logarithmically with vanishing binding energy in contrast
to two-body systems, where divergences are stronger and
more abundant. This difference is rather peculiar, since
a continous variation of the potential strengths clearly
would lead from one type of asymptotics to the other.
Thus a continous transition from two- to three-body
large-distance behavior must exist.

The interplay between the various asymptotics has to
the best of our knowledge not been studied although the
connection in principle is contained in the Faddeev equa-
tions [10-12]. Many, often very detailed, investigations of
nuclear three-body systems have been published; see, for
example, [13-17]. However, the proper mixture of two-
and three-body asymptotics is very difficult to include
in practice for weakly bound systems. This insufficiency
may be rather serious for halo nuclei where a mixture
of two- and three-body behavior at large distance might
be essential. Perhaps this plays a role in the astrophys-
ically interesting 8B nucleus [18]. This mixture is in-
cluded in the treatment of the long-range (attractive and
repulsive) Coulomb interaction in loosely bound atomic
systems [19-21]. However, the short-range nuclear inter-
action may behave differently. We shall employ the new
procedure recently developed to study the Efimov effect
in the coordinate space Faddeev equations [9].

The purpose of this paper is primarily to investigate
the transition from two- to three-body asymptotic behav-
ior for weakly bound three-body systems and second to
advocate for more efficient methods [9] than previously
used to solve the general three-body problem. As in our
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earlier papers [4-6], we want to establish the general fea-
tures, qualitatively or quantitatively as best we can, and
apply the results on realistic examples. We shall again for
convenience assume that all three particles are inert and
spinless. Thus all core degrees of freedom are frozen and
all forces are assumed to be spin independent. Our model
is therefore only an approximation of real systems in na-
ture, but hopefully useful as a reference model, where the
essential properties are exhibited.

The present paper is the second (after [6]) in a series
of papers discussing various aspects of three-body halos.
After the introduction we sketch in Secs. I and III prac-
tical theoretical descriptions based on the Schrodinger
equation and the Faddeev equations, respectively. The
proper mixture of two- and three-body asymptotic be-
havior for any system is then discussed in Sec. IV.
Illustrative numerical examples of this formulation are
presented in Sec. V. Finally, we give the conclusions in
Sec. VI. Some of the mathematical definitions are col-
lected in an appendix.

II. SCHRODINGER PICTURE

The asymptotic large-distance behavior of three-body
systems can be extracted from the general Faddeev
equations [10-12]. However, the Schrodinger picture is
much simpler and, as we shall see, also able to describe
the three-body asymptotics correctly for configurations,
where at most one binary subsystem is bound. We shall
therefore in this section sketch a general method, based
on the Schrédinger equation and well suited for univer-
sal applications. The method was used in atomic physics
[19], but the asymptotics for short-range potentials were
not investigated in detail. Recently also the triton was
studied by use of the method [22].

A. Radial equations

The Hamiltonian of the system, where the center of
mass kinetic energy is subtracted, is given by
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where m;, r;, and p; are mass, coordinate, and momen-
tum of the ith particle, V;; are the two-body potentials, P
and M are the total momentum and the total mass, and
r;; = r; —r;. The most convenient coordinates for the
system are the Jacobi coordinates basically defined as the
relative coordinates between two of the particles (x) and
between their center of mass and the third particle (y).
The precise definitions are given in the Appendix, where
the corresponding three sets of hyperspherical coordi-
nates (p,a,82, 2, are also defined. Here p (= 1/z2 + y2)
is the generalized radial coordinate and o, in the interval
[0,7/2], defines the relative size of x and y , and Q, and
2, are the angles describing the directions of x and y.
One of these sets of hyperspherical coordinates is in prin-
ciple sufficient for a complete description. The volume el-
ement is given by p5dQdp (dQ2 = sin® & cos? adadQ,dQ,)
and the Hamiltonian in these variables is

3
i>j=1
where the kinetic energy operator T is
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and A2 is the generalized angular momentum operator,
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expressed in terms of the angular momentum operators
12 and 12 related to the x and y degrees of freedom.

The total wave function ¥ of the three-body system
(excluding the center of mass degrees of freedom) can
now be expanded in terms of the hyperangular functions

V= S A9, )
PR

where ®,(p,2) for each value of p is a complete set as
a function of the variables Q = {a,Q;,y}. These func-
tions must be chosen to describe correctly the asymp-
totic behavior of the wave function and in particular the
behavior corresponding to possible bound two-body sub-
channels.

These requirements are convemently met by the eigen-
functions of the operator A2, the hyperspherical harmon-
ics [25], in two cases, where the three-body binding en-
ergy is either large or small without bound subsystems.
In the first case, the binding energy is large enough to
confine the system to a size of the same order as the
(short) ranges of the interactions [16]. In the second
case, also with short-range potentials, the binding en-
ergy is small, but since each of the binary subsystems
alone is not bound or nearly bound, the hyperspherical

harmonics provide the proper asymptotics [6].

If at the most one of the binary subsystems has bound
or nearly bound states, the above requirements are met
by the eigenfunctions of the operator A defined by

Z Vi (6)

1>j=1

A=A%+ 2mp

where the eigenfunctions and eigenvalues A then are re-
lated by

2(p, ) = Ap)2(p, Q) - (7)

The expansion in Eq. (5) is general and the particular
choice in Eq. (6) may be altered. If all potentials are
omitted in the A operator, the procedure is simply iden-
tical to the hypersherical expansion method [16]. The
crucial point for our purpose is to include in A the po-
tential, which is able to bind the respective subsystem.

The Schrédinger equation which determines the total
energy E and the wave function ¥ may now by use of
Egs. (2)—(7) be rewritten as a coupled set of “radial”
differential equations, i.e.,

+ —1; (A(p) + 14—5>} r

+ Z ( 2P,\x— - QAA') fx=0, (8)
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where the functions P and Q are the following angular
integrals:

Pa(o) = [ d983(5,0) L5 (5,0), (9)
dp

o) = [#8360 e, ()

As mentioned already the procedure would not change
if some of the terms in J, for example, one or two of the
potentials, were left out and instead, after integration
over angular variables, were included in the p equation.
The convergence rate and accuracy as such determine the
optimal choice. However, we can already emphasize that
the strongest of the potentials should be included in )
if we want to catch the corresponding two-body asymp-
totics. This is in contrast to the frequently applied ex-
pansion in hyperspherical harmonics, where all three po-
tentials are left out in the ) operator [16,25]. This results
in either divergence or very slow convergence of the ex-
pansion in Eq. (5), when the binding energy is small and
one of the binary potentials is strong enough to hold a
bound state.

B. Angular eigenvalue equation

The angular wave functions &, may now be expanded
on the complete set of spherical harmonics for the direc-
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tions of x and y in one of the sets of Jacobi coordinates.
The expansion coefficient ¢ then depends on p and «,

where L and M are the total angular momentum and its
projection on the z axis. The wave function Y is obtained

ie., by coupling I, and I,:
oem (0, Q) = ——— Z¢Al L, L(p, ) YEY (22, 9y) YEM(Q.,9,) = [V, (Q) - Vi, ()] oa - (12)

(11) The coupled set of equations for ¢, 1, is then

J

ly(ly +1) _
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where the effective potentials W are obtained by averaging the two-body potentials over all directions, i.e.,

2mp Z ll zly’
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One of the potentials is in this coordinate system a function of x, whereas the other two potentials depend on both x
and y. Therefore by using a finite number of angular momentum components in Eq. (11) only one of the potentials
can be accurately treated in Eq. (13). A bound two-body state in one of the other potentials is then impossible to
describe, since many angular momenta are required in the chosen set of coordinates.

C. Asymptotic behavior of the angular equation

The set of equations in Eq. (13) obviously decouples at p = 0. Furthermore, in configurations with at most one
bound two-body subsystem (corresponding to the x coordinate), the different angular momentum channels are also
decoupled at p = oo assuming short-range central potentials. The asymptotic properties of systems, where two of the

potentials are weak, can therefore be obtained by considering each set of angular momenta separately, i.e.,

2mp?

52 + (I +1) + Ly(ly + 1)
" da2 sin? o cos? a k2

The expansion in Eq. (11) implies that ¢(p,a = 0) =
é(p,a = m/2) = 0 corresponding to infinitely high po-
tential walls at these boundaries.

The characteristic properties of a short-range poten-
tial are as usual easiest illustrated by use of a square well
potential. However, the results are correct for all short-
range potentials in the limits of p — 0 and at p — oo.
We assume that Eq. (15) includes only the strongest po-
tential which is given by V(z) = —S¢©(x < Xo), where
Xo = a, Ry is given in terms of the original square well ra-
dius Ry and a, is related to the reduced masses of the sys-
tem; see the Appendix. The effective potential W in the
a variable is then also a square well potential easily seen
to be given as —p?k20(a < ag), where k2 = 2mS,/h?
and ap = arcsin(Xo/p) or 7/2, when Xo/p respectively
is less than 1 or larger than 1.

We shall now consider the simplest case, I, =1, =0,
and study the quantized solutions for a given value of p.
The wave function is given by

sin (ay/ k3% + X,

sin [(a - F/Z)\/X], a > ag,

a < g,

#(p, @) x (16)

w,*

1.1,

a(pa)—4— )*(P)) dat,1,L(p, ) =0. (15)

I

where the eigenvalue equation for A = A + 4 is found by
matching at oo which immediately gives

\/ K3p% + Acot(aoy/K2p? + )
= Vcot [(ao—w/Z)\/ﬂ . (17

It is then easily seen that for p < Xy, where ag = 7/2,
the eigenvalues are

An(p) = 4n® — k2p%, n=1,2,3,..., (18)

which in the limit of vanishing p equals 4n2. Thus the
spectrum of the eigenvalues, A\, = K (K +4), is the usual
hyperspherical spectrum correspondmg to the quantum
numbers K = 2n — 2. The result in Eq. (18) is valid for
any short-range attractive potential when «3 is defined
as the value obtained from the potential at the distance
xz =0.

In the other limit of large p, we obtain a square well
potential with decreasing radius (o = Xo/p), increasing
depth (Sop?), and entirely within the allowed interval
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between zero and 7/2. The lowest positive eigenvalues,
where ),/p? approaches zero, are by expansion to first
order in o found from Eq. (17) to be

< 4
An(p) = 4n? (1 - %‘1) , n=1,2,3,.., (19)

which holds for any short-range potential, when a is the
scattering length, which for the square well potential is

given by
_ tan (ko Xo)
a = Ro ( K,OXO 1) . (20)

As in the limit of vanishing p, the eigenvalue A converges
again towards 4n? for p — oco. Only one of the three
scattering lengths enter Eq. (19) which again shows that
the Schrodinger picture is unable to describe all three
two-body subsystems on an equal basis.

When the scattering length is infinitely large a singu-
larity appears at large p. The eigenvalues A converge
in this case towards (2n — 1)% for p — oo as seen from
Eq. (17).

It is now straightforward to extend this discussion to
finite values of [, and I, which introduces a repulsive po-
tential in the o degree of freedom. The effective Hamil-
tonian is then changed by the two additional angular mo-
mentum terms. The general solutions are hypergeometric
functions both below and above ap. Matching provides
the eigenvalue equation analogous to Eq. (17). As for
lo =1, = 0, the positive energy solutions again have the
hyperharmonical spectrum for both small and large p,
but now with K =2n -2+ 1, +1,,.

Negative eigenvalues of ) also sometimes occur at large
distances p, where g is small, cosa ~ 1, and sina ~ a
inside the well. The differential equation for such solu-
tions may by use of Eq. (15) be rewritten as

2 m
(< + D 4 e

1
- L0, ()

where the variables are changed to z = pa and A —
ly(ly + 1) = 2mp?E, /A® and where we assumed that p
is large compared to the characteristic radius Ry, where
the potential has vanished. Equation (21) is valid to
an accuracy of Ro/p, since W vanishes for large a and
z = z for small a. The boundary condition ¢(z = 0) =
¢(z = pm/2 = 00) = 0 then completes the equivalence to
the corresponding problem for two interacting particles,
where the negative eigenvalues A now are related to the
two-body bound state energy E.,.

The effective potential in o space has, in the limit of
large p, exactly the same number of bound states (per-
haps none) as the original two-body potential. These so-
lutions lead to finite negative asymptotic values of :\/ 0?
and the bound state wave functions are similar to the
corresponding two-body solutions, oscillating inside and
decaying outside the square well. The actual wave func-

2375

tion is for [, = I, = 0 obtained from Eq. (16) by allowing
a negative value of A, which changes the sine function in
the outer region into a hyperbolic sine function.

Inclusion of the previously neglected two-body poten-
tials modifies the effective potential in A. For small values
of p, where all distances also are small and ag = 7/2, the
individual potential strengths simply should be added
and the eigenvalues are again given by Eq. (18) with 2
substituted by the sum of all three contributions. In the
other limit of large p, where the potentials in o space
become narrow and deep (width o 1/p, depth o p?),
eigenvalues and wave functions remain unchanged. It is
not possible in the Schrodinger picture to describe the
asymptotics related to more than one binary bound sub-
system. The reason is that components in the wave func-
tion corresponding to both bound binary states are nec-
essary. The Schrodinger equation is formulated by use of
one set of coordinates and the description of one bound
two-body state expressed in terms of another (“not natu-
ral”) set of Jacobi coordinates requires a large number of
angular momentum components. This number increases
linearly with p and as a consequence infinitely many an-
gular momenta would be needed for p — co.

The analytical results obtained here for the square well
are typical for any short-range potential. All arguments
are identical if “outside the square well” is replaced by
“outside the range of the potential,” i.e., at a distance
much larger than the characteristic falloff length of the
potential. Thus we conclude that for a three-body system
interacting via short-range potentials and with at most
one subsystem strong enough to hold bound states the
asymptotic behavior of the angular spectrum is hyper-
harmonic at both small and large p. In addition there is
at large p, for every bound binary subsystem, a parabol-
ically diverging angular eigenvalue 2mE,p?/h%?. When
the scattering length is infinitely large the hyperharmonic
spectrum at large p is shifted downwards by one unit in
the K quantum number.

A long-range repulsive two-body potential propor-
tional to 7™ (v < 2) contributes basically to the ef-
fective angular potential by a term proportional to p2~¥;
see Eq. (13). The contribution to the angular eigenvalue
A vanishes then at p = 0 and the hyperspherical spec-
trum remains. At large distances we must again dis-
tinguish between positive and negative values of A. As
for short-range potentials we arrive for bound states also
now at the asymptotic equation in Eq. (21), where the
effective potential W includes the contribution from the
long-range potential. Thus the parabolic divergence to-
wards —oo and the bound state energy remain related
in the same way. The positive eigenvalues are increasing
as p>7 in the asymptotic region as seen from Eq. (15),
where the strength of the effective potential now is pro-
portional to this quantity.

III. FADDEEV PICTURE

There is an intriguing variety of possible structures of
a quantum mechanical three-body system. Very pecu-
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liar configurations may arise especially at small bind-
ing energies, where large spatial distances of the system
are allowed. For example, if two of the subsystems can
form weakly bound states, one configuration in the three-
body system is a coherent superposition of two different
(mutually exclusive) configurations, where two particles
are close and the third far away. An efficient descrip-
tion of such states demands at least two components in
the total wave function, one for each of the asymptotic
two-body configurations. In general three components
are needed. Each of the components can be rather sim-
ple, while the total wave function has a very complicated
structure due to the coherent interplay of different com-
ponents. These subtleties are better described in the Fad-
deev equations [10-12] and we shall in this section sketch
a general method, which is well suited for universal appli-
cations as well as investigations of asymptotic properties.
It has already been applied on systems with all angular
momenta equal to zero [9].

A. Radial equations

The total wave function ¥ of the three-body system
is therefore written as a sum of three components each
expressed in terms of one of the three different sets of
Jacobi coordinates:

3
V= ZW”(th@‘)- (22)
i=1

This three-component wave function is flexible and allows
a description of different three-body structures by means

39 (0, Q)= —
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of rather few angular momenta in each component. These
wave functions satisfy the three Faddeev equations [10]

(T — E)Yp® + Vi (v + 9@ +9p*))y =0,  (23)

where E is the total energy, T is the kinetic energy op-
erator, and {4, j,k} is a cyclic permutation of {1,2, 3}.
All solutions of the Faddeev equations satisfy, via
Eq. (22), also the Schrodinger equation. Clearly ¥ can
vanish identically even when the three components ()
individually are nonzero functions. In fact, these ad-
ditional solutions are the trivial solutions of the corre-
sponding Schrodinger equation. The Faddeev equations
and the Schrodinger equation provide the same solutions,
if only the total solution ¥ = 1! 412 4 93 is considered.
Each component is now for each p expanded like in
Eq. (5) on a complete set of generalized angular func-

tions <I>f\')(p, ;). The radial expansion coefficients fx(p)
are component independent, since p is invariant for all
three Jacobi sets. If furthermore the angular functions
are chosen as the eigenfunctions of the angular part of the
Faddeev equations, we arrive again at the coupled set of
radial equations in Eq. (8). The only difference is that
& in the scalar products of Egs. (9) and (10) now should
be substituted by the sum of the three components, i.e.,
® =%+ o2 + 3.

B. Angular eigenvalue equation

The wave functions <I>&') can be expanded on the com-
plete set of spherical harmonics for the directions of x
and y. The expansion coefficient ¢ then depends on p
and oy, i.e.,

Z ¢AI,,I p(p o) YEN (R0, Q) (24)

where Y is defined in Eq. (12) and L and M are the total angular momentum and its projection on the z axis. The

coupled set of equations for ¢E\i,)‘_: Ly L is found to be

o2 l,;m (liz + 1) liy(l,‘,y + 1) (3) 2mp i) )
(— 8a? * sin? o * cos? a; —4-A0) ¢>"i=’-'vL(p’ a) = - R? ]z—;zzz "J'= wL(p’ a‘)(ﬁ«\'nlnlz(p’ ai),
- 1"y
(25)
where ¢\9™%) is defined by
> 65, 1(p ) YL (e, R5y) = Zd&‘;f;”L (P, @) Y (ier Qiy)- (26)
v
This transformation “rotates” from the jth to the ith Jacobi coordinate system.
The effective potentials W; are obtained by averaging the two-body potentials over all directions, i.e.,
W:, ll Llpyos) = /dﬂdeyY,. (R, 2y ) Vi(py iy e, Oy )Y, 1, M(Q., Q) , (27)

where V; is the potential acting between the two particles different from that labeled i.
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C. Asymptotic behavior of the angular equation

The quantized solutions of Eq. (25) clearly decouple at p = 0. For short-range potentials they also decouple at
p = oo when l;; > 0 (see Sec. IIC) and the asymptotic properties of such systems can for each component therefore be
obtained from Eq. (15). The remaining coupled equations, where l;, = 0 in all three subsystems, are very essential as
they provide the dominating part of the large-distance behavior. However, eigenvalues and eigenfunctions are rather

simple in both limits of large and small p.

2

For small p, square well potentials and [, = 0, we obtain again for each @@ the solutions in Eq. (16), where x2 now
is the sum found by adding the three potentials at zero distance. Clearly the form in Eqgs. (17) and (18) then follows
immediately. At large p the solution for square wells and all I;, = 0 is instead of the form

¢(i) (p’ ai) o8

where k? = 2mS;/h?, a;o = arcsin(X;/p), and the nine
coefficients a;, c;, and b; are related by six linear con-
straints obtained from Eq. (25). Matching conditions at
a0 then provide positive eigenvalues, which asymptoti-
cally behave like Eq. (19), where the scattering length a
times a, now must be replaced by the sum of the three
individual quantities [9].

Again negative eigenvalues \ at large distances p also
sometimes arise from the matching conditions as the
signature of either bound binary subsystems or two or
three infinitely large scattering lengths. The effective
potential in a space still has exactly the same number
of bound states (perhaps none) as all the original two-
body potentials together. These solutions are decoupled
at p = oo and lead to finite negative asymptotic values
of A/p?* = 2mE, /h? corresponding to the energy E, of
the bound subsystem.

A long-range repulsive two-body potential propor-
tional to r~ (v < 2) changes the effective potential
at large distances. The strength as well as the posi-
tive eigenvalues increase proportional to p?~* whereas
the negative eigenvalues diverge parabolically.

IV. ASYMPTOTIC LARGE-DISTANCE
BEHAVIOR

The asymptotic properties of the wave functions can
now be extracted by use of the information in the pre-
vious subsections. The radial set of equations in Eq. (8)
is valid both in the Schrédinger and the Faddeev pic-
tures. They are decoupled in the limit of large p as seen
from the fact that the nondiagonal parts of both P and
Q approach zero faster than p~3. The decisive quantity
A(p) is obtained by solving Eq. (13) or (25), which has
the hyperspherical eigenvalue spectrum at p = 0, i.e.,
A = K(K + 4), where K is a non-negative integer. The
spectrum at large p depends on the number of bound
states in the binary subsystems.

The sequential structure of our procedure suggests def-
initions of partial energies, E.(p) = #2)\/2mp?, and
E,(p) = E — E,, related to the “angular” and radial
degrees of freedom. They are both functions of p, but

b; sin (a;4/K2p? + :\) + ¢; sin (ai \/i) , a; < ayo, (28)
a;sin [(ai - W/Z)\/z:\] ,

a; > Qjo,

[

added up they must result in the total energy E, which
in our considerations almost exclusively is assumed to be
negative corresponding to a three-body bound state. The
decay constants connected with the energies are given by
k3 = —2mE, [K?, k2 = —2mE, /h?, and k? = —2mE/H2.

A schematic overview of the various possibilities for a
three-body system interacting through two-body poten-
tials of varying strengths is shown in Fig. 1. Instead
of showing a three-dimensional contour diagram, we pro-
jected on the two different planes defined by one vanish-
ing potential and two identical potentials. In region I,
where all potentials are weak, all energies, total as well
as partial, are positive for all p and the system and its
subsystems are all unbound. This is not an interesting
region in the present context. The other regions will be
discussed in the following subsections.

A. No-bound binary subsystems

In region II we have a bound three-body state of en-
ergy E (< 0), whereas all the two-body potentials are
too weak to support bound states. The X spectrum at
infinity is identical to that of p = 0, i.e., Ap(p = 00) =
An(p = 0) = K(K + 4). The partial energies E, and
Ey for the lowest eigenvalue with the quantum number
in question are, respectively, negative and positive in at
least an intermediate region of p values. The asymptotic
form of the related (diagonal) radial equation [see Eq. (8)]
is then

2
(_3_ R2 4 (K +3/2)(K +5/2)
dp? p?
We are left with the same asymptotic structure as found
by expansion in hyperspherical harmonics.

The asymptotic behavior for vanishing binding energy
(towards region I in Fig. 1) of the radial moments (p™),
(z™), and (y™) are derived and discussed in [6]. We shall
not repeat this derivation here, but only quote a few per-
tinent results. The asymptotic potential has the form

of a centrifugal barrier term with angular momentum
quantum number {* = K + 3/2. The behavior of the

)f,\=0. (29)
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moments is therefore determined by the relative size of n
and 20* — 1; see [4,5]. The moments converge or diverge
respectively for n < 2K + 2(= 2/* — 1) or n > 2K + 2.
Thus the first (n = 0,1) moments of unnormalized wave
functions are always convergent, which means that the
probability distribution is confined to finite distances.
Divergences of the second moments only occur when all
angular momenta are zero and then the divergences are
logarithmic. This is the genuine three-body asymptotic
structure.

2
KR S (2)

v

I

W,R S, (b)

ZS
MSRB 3

FIG. 1. (a) Schematic contour diagram of the bound
three-body state as function of the decisive depth and ra-
dius combinations. One of the potentials is assumed to be
identically zero. The depths, radii, and reduced masses are
denoted, respectively S, R, and p with indices for the differ-
ent coordinates. The solid curve is dividing the regions where
the three-body system is either bound or unbound. In region
I the system as well as all subsystems is unbound. In regions
III and IV one subsystem is bound, whereas two subsystems
are bound in region V. The total three-body system is also
bound in regions II and IV. In region III one subsystem is
bound and the third particle unbound. The dark circles are
the special points where the asymptotics is determined by
the direction of approach. The shaded circle indicates the
singular Efimov point. (b) The same as (a) when two of the
potentials are identical. All three subsystems are bound in
region VI and the Efimov singularity is now indicated by the
horizontal shaded rod.
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The eigenvalues A are smaller than the hyperspheri-
cal result (4 for zero angular momenta) for intermediate
value of p, see Egs. (18) and (19). The closer we are to
a bound subsystem (towards the region IV or V in Fig.
1), the smaller is the minimum value of X. In the equiva-
lent hyperspherical harmonical expansion this results in
a much slower convergence and a need for many terms,
because the asymptotic region then only is reached at
very small binding energies. The three-body state al-
ready begins to “feel” the bound state and consequently
diverges stronger with energy (as two-body systems) be-
fore reaching the (slower) extreme three-body asymptotic
region.

When a bound state of zero energy eventually is
reached and the scattering length is infinitely large, the
asymptotic form of the radial equation still remains as
Eq. (29), but with K shifted downwards by 1. Thus the
lowest value K = —1 corresponds to an effective angular
momentum [* of 1/2, which means that the wave function
itself diverges logarithmically and the second moment as
1/[-Eln(-E)].

A long-range repulsive two-body potential propor-
tional to 77 (v < 2) changes the angular eigenvalues at
large distances into functions increasing like p>~”. This
in turn confines the wave functions and leads to finite
mean square radii even for vanishing binding energy.

B. One bound binary subsystem

In the regions III and IV, where only the strongest
potential is able to hold a bound state, we have for
the lowest solution that E < 0, A(p — o0) < 0, and
E.(p = o) < 0. As seen from Egs. (16) and (21), the
angular wave function in Eq. (15) is exponentially decay-
ing, i.e., ¢(p, ) x exp(—apk;). This is for small o the
exponential tail, exp(—zk.), of a two-body bound state
for a system with coordinate z, energy E., and reduced
mass m or equivalently a system with coordinate z/a.,
energy E., and reduced mass ma,?2.

When one subsystem has bound states of energies
E., the lowest A values diverge as A(p — o0) —
—|Ez|p?2m/k2%, where the possibly different E. values
each correspond to one eigenvalue. The coordinates x
and y now refer to the set of Jacobi coordinates in which
z is the relative coordinate of the bound subsystem. The
higher lying A values again converge to the hyperspher-
ical spectrum for p — co. The asymptotic form of the
related (diagonal) radial equation [see Eq. (8)] is then

? (1, +1
(—5—p—2+n2——ni+y—(%))f)\=0, (30)

where the “centrifugal barrier height,” [,(l, + 1), may
be found by a perturbation treatment, which in both
Egs. (8) and (21) must include terms up to the order
p~2. Equation (30) is the asymptotic form of a radial
two-body equation describing the relative motion of a
particle of angular momentum [, and “reduced” energy
K2 — K2,

When E (p - o) = E — E, is positive (region III),
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the lowest solution of Eq. (30) is unbound, which means
that the ground state of the three-body system is a bound
two-body state in the = degree of freedom, while the third
particle recides at infinity or takes up the remaining pos-
itive energy in a continuum state. This is a rather unin-
teresting solution in the present context.

In region IV, where E, = E — E, is negative for large
values of p, we obtain immediately from Eq. (30) that
the bound state f is exponentially decaying at large dis-
tance, i.e., f « exp(—pky). The total wave function ® at
large p and small «, where p = y, is then behaving like
f¢ x exp(—zk. —yky). This is the asymptotic form of a
three-body wave function, when a two-body subsystem is
bound; see Ref. [11]. It describes the tail of two asymp-
totically independent bound states: one for the z and
one for the y degree of freedom. (Use of the correct re-
duced masses with the related coordinate changes leaves
this expression unchanged.) In fact this asymptotic be-
havior is correct for large p and arbitrary «, since a large
a implies a large ¢ and consequently a vanishing f¢.

The small binding limit in region IV (towards region ITI

in Fig. 1) now means that the total three-body energy E
approaches the energy E, of the bound two-body system.
The radial moments of interest in this case are (z™) and
(y™), which as seen from Eq. (30) and the asymptotics
described above, independently behave like in a two-body
system [4]. Thus (z™) approaches its value for the bound
state while (y™) converges for n < 2l, — 1 and diverges
for n > 21, — 1, i.e., for example, (y?) =~ (p?) — 1/E, for
l,=0.
Y In particular, let us focus the attention on the sin-
gular points in Fig. 1, where the regions I, II, III, and
IV are touching each other. The asymptotic behavior
of the wave function depends on the region from which
the point is approached, i.e., either two- or three-body
asymptotics. On the other hand when moving from re-
gion II to region IV all quantities are smooth. When
one singular point is approached exactly on the dividing
line between II and IV, where the scattering length is in-
finitely large, the radial equation has to be modified as
described in Sec. IV A.

It should be emphasized in general that E, is always
positive at smaller values of p, even when a two-body
bound state is possible. This in turn influences the be-
havior at smaller p of the solution f to the differential
equation, which once more then resembles the equation
arising after the expansion in hyperspherical harmonics.
Thus, when the binary subsystem is bound, we find two-
body asymptotics at large p, whereas the usual three-
body behavior smoothly is obtained by decreasing p. The
method using the Schrédinger picture is apparently able
to describe the proper mixture of these two types of large-
distance behavior. On the other hand, it is also essential
to realize that, even if all three two-body potentials were
included in the operator ), only the possible two-body
asymptotics in one of the subsystems can be picked up
by solving Eq. (13).

A long-range repulsive two-body potential propor-
tional to 7™ (v < 2) changes the angular eigenvalues
at large distances into functions increasing like p?~, ex-
cept for the lowest lying values (where the p?~* contri-
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bution is overrun by the main term proportional to p?)
corresponding to the total number of bound states in all
the binary subsystems. The total wave functions behave
accordingly; i.e., they are spatially confined for all the
upsloping values, all radial moments are finite, and their
asymptotics remain unchanged for the downsloping val-
ues.

C. Two or three bound binary subsystems

In regions V and VI, where two and three binary sub-
systems, respectively, are bound, we have for the low-
est solution that E < 0 and E,(p — o0) < 0. The
angular wave function in Eq. (25) is exponentially de-
caying as in the previous case of one bound subsystem.
However, now several decoupled (at large p) solutions
exist each corresponding to the bound states of differ-
ent binary subsystems. The lowest A values diverge as
A(p = ©0) = —|Ez|p?2m/k2, where the possibly differ-
ent E, values correspond to the eigenvalues in the bound
subsystems. The higher lying A values again converge to
the hyperspherical spectrum for p — oo.

The total wave function is like in region IV then asymp-
totically decaying as a product of two independent sub-
systems corresponding to the appropriate Jacobi coordi-
nates = and y. However, now several different solutions
exist each related to the different two-body bound states.
Moving across the lines separating region V from the re-
gions IV and VI all wave functions are smooth and con-
sequently also the radial moments are smooth functions
of the binding energy.

An interesting anomaly, the Efimov effect, is present
when at least two of the potentials simultaneously have
bound states at zero energy or equivalently infinite scat-
tering lengths. Then one A(p — oo) approaches a neg-
ative constant, which in turn leads to infinitely many
bound state solutions to Eq. (8); see Ref. [9]. As indi-
cated in Fig. 1 these regions appear as series of infinitely
long rods in the three-dimensional space spanned by the
strengths of the short-range potentials. This structure
will be discussed in detail in a forthcoming publication
[23].

When a long-range two-body potential is present, the
asymptotic behavior is characterized exactly as in the
case where one binary subsystem is bound. The Efimov
effect is prohibited by the presence of such a potential.

V. NUMERICAL RESULTS

We shall in this section illustrate the actual numeri-
cal behavior of three-body systems in various regions of
Fig. 1. The general analytical conclusions in the pre-
vious subsections were explained by use of square well
potentials, but in the numerical illustrations we shall as-
sume Gaussians, —S exp[—(r/b)?], for all the short-range
two-body potentials. This may be viewed as a slight im-
provement, which at the same time will demonstrate the
generality of our arguments. We shall confine ourselves
to two nucleons outside a heavier core.
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The potential parameters basically only enter in spe-
cific combinations. The range parameters can, for exam-
ple, be compensated by adjusting the strength parame-
ters and we shall therefore choose b,, = 1.8 fm and the
other two identical ranges b,. = 2.55 fm as appropriate,
respectively, for the nucleon-nucleon and the nucleon-
core potentials; see Refs. [13,24]. The related strengths
are left to vary the partial energies of the (sub)system(s).
The Coulomb potentials are obtained by assuming point
charges for the nucleons and a Gaussian charge distribu-
tion for the core. The potentials are then, respectively,
proportional to e?/r and e?/r erf(r/bn.). This suffices
for our purpose, but needs perhaps adjustments in fu-
ture accurate applications.

A. Effective radial potential

The crucial quantity in our formulation is clearly the
angular eigenvalue spectrum or the effective radial po-
tentials. Their behavior as a function of p for the dif-
ferent angular momentum quantum numbers determine
the structure of the three-body system at both small
and large distances. The characteristic properties of the
eigenvalue spectrum is shown in Fig. 2(a) for two neu-
trons outside a core of mass 9. The hyperspherical spec-
trum K (K + 4) arises at p = 0 as well as at p = co. The
neutron-core potential has, unlike the neutron-neutron
subsystem, a bound state at —0.72 MeV, which results in
the parabolic divergence of the lowest eigenvalues. They
correspond asymptotically to the bound binary subsys-
tem with the third particle far away in orbits of angular
momentum respectively, zero and one.

The imposed symmetry of the spatial wave functions of
the two neutrons removes two other asymptotically iden-
tical and orbitally asymmetric states. The divergences
leave room for the lowest hyperspherical levels at p = oco.
They are replaced by other levels originating from higher
lying levels at p = 0.

The signature of a binary bound state is further illus-
trated in Fig. 2(b), where the attractive neutron-neutron
potential artificially is made strong enough to hold a
bound state at —2.1 MeV. This produces additional two
parabolically (faster) diverging levels corresponding to
the bound binary subsystem and the core far away in
orbits of angular momentum zero and one. The replace-
ment of all these diverging levels must now originate from
even higher lying levels at p = 0. The slopes of the levels
are also seen to be correspondingly larger.

Inclusion of the Coulomb potential qualitatively
changes the eigenvalue spectrum. An example is shown
in Fig. 2(c), where a deuteronlike neutron-proton system
interacts with a core by means of a short-range nucleon-
core potential with a bound state at —0.72 MeV, and a
Coulomb potential which makes the proton-core system
unbound. More levels now appear due to the absence of
symmetry constraints on the wave functions. However,
asymptotically it is still the same four parabolically di-
verging eigenvalues corresponding to the binary bound
subsystem. The positive eigenvalues diverge as expected
linearly towards +oo.
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FIG. 2. (a) The angular eigenvalue spectrum A as func-
tion of p/po for the nucleon-nucleon and nucleon-core range
and strength parameters, respectively, given by b,, = 1.8 fm,
San = 31 MeV, b, = 2.55 fm, and S, = 15 MeV.
The conserved total (orbital) angular momentum is 0 (solid
curves) and 1 (dashed curves). These potentials repro-
duce the free neutron-neutron low-energy scattering data
and correspond to a neutron-core bound state at an en-
ergy of B, = 0.72 MeV. Only orbitally symmetric states
in a nucleon-nucleon interchange are exhibited. Thus a total
spin zero is implicitly assumed. (b) The same as (a) with
Snn = 52 MeV corresponding to a nucleon-nucleon bound
state at an energy of Bn, = 2.1 MeV. (c) The same as (a)
when the charge of the core and one of the nucleons are, re-
spectively, 3 and 1 unit of charge, which makes one of the
nucleon-core systems unbound and the neutron-proton bound
with energy B,, = 2.1 MeV. Both orbitally symmetric and
antisymmetric states are now exhibited.



B. Asymptotic behavior

The radial moments characterize the spatial extension
of a system. For the three-body problem the two lengths
corresponding to = and y are in principle both needed
for a complete description. In the numerical examples
we shall only discuss the moments of second order. The
natural unit of length when Jacobi coordinates are used
is the hyperradius p and we shall illustrate the structure
by the moments of p. The substructure is conveniently
illustrated by the “angular” expectation values

@h = [aaersl, of) = [aiEpd, @
which are functions of p.

The characteristic structure of a zero angular momen-
tum state can be seen in Fig. 3, where these expecta-
tion values are shown for two different sets of potentials.
When no binary subsystem is bound the radial moments
of all Jacobi coordinates diverge proportional to p2. For
a given hyperspherical quantum number K the ratio is
then constant, e.g., equal to unity for K = 0. When one
subsystem is bound, the corresponding (z2) converges to-
wards the finite value for the binary bound subsystem.
This reflects the fact that the long-distance asymptotic
behavior is decribed by two independent exponentially
decaying wave functions in the z and y degrees of free-
dom. The remaining, diverging part of p? is correspond-
ingly taken up by (y2).

The structure of the angular expectation values for
finite angular momenta is now also easily understood.
When no binary subsystem is bound all radial moments
of any set of Jacobi coordinates are similar, i.e., diverge
or converge in roughly constant ratios as discussed in de-
tails in Ref. [6]. When one binary subsystem is bound
in a state of zero angular momentum, the large-distance
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behavior is characterized as a two-body system where the
third particle is carrying the total angular momentum of
the system in its orbital motion. Thus the angular ex-
pectation values are asymptotically identical to those of
Fig. 3.

The mean square hyperradius for a zero angular mo-
mentum state is shown in Fig. 4(a) as function of binding
energy for different systems. The logarithmic divergence
is seen for the Borromean system (no bound subsystems)
whereas the two-body asymptotic behavior arises when
one or more of the subsystems are bound. The inverse
proportionality with the binding energy when only short-
range interactions are present and the finite value due
to the Coulomb confinement are both reached at about
10 keV. Both asymptotics are needed for binding ener-
gies above 10-50 keV when a binary subsystem is bound
by 2 MeV. The influence of angular momentum is shown
in Fig. 4(b) for different cases of angular momentum one
states. Both three-body and two-body asymptotics are
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FIG. 3. The “angular” expectation values of z2,, and y?,m)c
for an angular momentum zero state as function of hyperra-
dius p for Spc = 7.8 MeV (no bound state), S,, = 31 MeV
(no bound state, solid curves, where the lowest corresponds
to 2?), and S,n = 52 MeV (one bound state of binding energy
2.1 MeV, dashed curves, where the lowest corresponds to z?)
corresponding to regions II and IV in Fig. 1(b). The upper
curve (short dashed) is p? = z? + y2.

Binding energy (MeV)

FIG. 4. (a) The mean square hyperradius (p?) for a zero
angular momentum state as function of binding energy for
two nucleons outside a core of mass 9 and charge 3. The
parameters Spn = 31 MeV (no bound state, solid curve),
Snn = 52 MeV (one bound state of binding energy 2.1 MeV,
long-dashed curve, compared with the asymptotic two-body
behavior inversely proportional to the binding energy dotted
curve), and Sn, = 52 MeV (one bound state of binding energy
2.1 MeV, short-dashed curve) corresponding to regions II and
IV in Fig. 1(b). The curves are found by varying Sy., the
short-range interaction, between the nucleons and the core.
(b) The same as (a) for an angular momentum one state.
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seen with the respective converging and diverging behav-
ior.

It is important to realize that the concept of halo struc-
tures is not restricted to the ground states of the systems.
Excited states exhibiting halo properties are probably
much more abundant. The asymptotic behavior of such
states is fortunately easily explained, since the low energy
dependence is identical to that of the ground state. Thus,
when the normalization as well as the radial moment in
question diverge, the normalized radial moment is deter-
mined entirely by tail properties and is therefore identical
for ground and excited states. When conversely the nor-
malization converges and consequently is determined at
smaller distances, the size of the tail, but not the decay
rate, might differ for the two states. Thus, any radial
moment has the same functional energy dependence, but
the proportionality constants are different.

The vanishing binding energy for the excited state can
be achieved by varying either S, or S,., i.e., respec-
tively, horizontal or vertical variation in Fig. 1(b). The
arguments above are valid for states outside the shaded
region in this figure. The approach of the Efimov region
(varying S,.) brings in a very different type of asymp-
totic behavior [9,23].

VI. SUMMARY AND CONCLUSIONS

We have recently investigated the asymptotic proper-
ties of nuclear three-body bound states arising through
weak binary interactions, which are unable to bind the
individual subsystems [6]. These investigations are ex-
tended in the present paper to include three-body sys-
tems, where one or more of the binary subsystems are
bound. The major complication is due to the mixture
of two- and three-body asymptotic large-distance behav-
iors.

We first generalized the previous method of the kinetic
hyperspherical expansion, where the complete basis set
is the eigenfunction of the kinetic energy operator in Ja-
cobi coordinates. The basis set is now the angular eigen-
function of kinetic energy plus (at least) the strongest
of the two-body interactions. The proper asymptotics is
then obtained in this Schrodinger formulation provided
the two weakest two-body potentials are unable to bind
their respective subsystems.

When more than one of the binary potentials have
bound states, Faddeev equations are needed and we for-
mulate and exploit a new method, where the angular part
of the wave functions first is computed for each of the
three components. The set of coupled radial equations
is the same in the Schrodinger and the Faddeev formu-
lations. All possible asymptotics, including the Efimov
anomaly, can now be described and the many different
cases are then catalogued and discussed.

When none of the subsystems have bound states, we
recover all the results previously obtained; i.e., the mean
square radius is at most logarithmically divergent. When
exactly one subsystem has a bound state of energy E;
and the total three-body energy approaches E,, the sys-
tem behaves as one particle in the common field of the
two-body state; i.e., the asymptotics and the related pos-
sible divergences are those of a two-body system. Radi-
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ally excited states above the two-body threshold E; are
sometimes possible and their asymptotics are of genuine
three-body nature, as if the bound subsystem did not ex-

ist. Angular momentum and Coulomb barriers influence
such systems in accordance with the two- or three-body
nature of the states as described in previous publications
[4,6].

When at least two subsystems have bound states, the
halo structure is not possible in the ground state, which
necessarily is too strongly bound and consequently spa-
tially confined. The most spectacular structure arises in
excited states, when at least two of these bound state en-
ergies simultaneously approach zero. These are the spa-
tially extended and weakly bound Efimov states. They
are strongly hindered by finite angular momenta and
prohibited by Coulomb potentials. Apart from the Efi-
mov singularity other more ordinary halo structures may
arise in excited states, where the three-body energy ap-
proaches zero and the structure is of genuine three-body
character.

The actual rate of divergence and the related nuclear
structures are numerically investigated in detail for two
nucleons outside a core. When one binary subsystem is
bound by 2 MeV the two-body asymptotics is reached at
about 10 keV. A mixture of two- and three-body asymp-
totics is necessary at somewhat larger energies. Less
binding in the subsystem decreases the three-body bind-
ing energy below which only two-body asymptotics is
needed.

When two nucleons outside a core is the ground state
of a nucleus and furthermore is weakly bound, we are
on the drip lines. Here the residual interaction plays an
important role and the “core plus one nucleon” systems
are almost always unbound; i.e., we are in region II in
Fig. 1. The exceptions — °C and 3O on the proton
drip line, 23N and 240 on the neutron drip line — are
typically bound by several MeV and interesting effects
are more likely to occur in excited states. For excited
states we would in general expect the good cases to be
just below the two-nucleon threshold, but above the one-
nucleon threshold, i.e., in region V in Fig. 1(b). Close
to stability such states, however, lie in an energy range
where the level density is high and the states are therefore
more easily mixed with other states. Further towards
the drip line such states have not yet been reached in
experiments.

In conclusion, weakly bound nuclear three-body sys-
tems may exhibit a halo structure either in ground states
or in excited states. Various types of both two-body
and three-body character are possible depending on the
bound states of the two-body subsystems. This investiga-
tion has attempted a classification of the possible nuclear
halo structures.

One of us (DVF) acknowledges support from the Dan-
ish Research Council.
APPENDIX: JACOBI HYPERSPHERICAL
AND HYPERANGULAR COORDINATES

We consider a system of three particles with masses m;
and coordinates r;. The Jacobi coordinates are defined
as
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Xi = QjkTjk, Yi = Q(k)iT(5k)i»

1/2
1 mjmy /

Qjpe =\ ————— ’
mm; + my

mm1+m2+m3

( 1 (mj +mg)m; )1/2
QGkyi = | ————————— )

Tjk = Tj — Tk, T(jk)i =

where {2, j, k} is a cyclic permutation of {1,2,3} and a?k
is the reduced mass of the jth and kth subsystems in
units of m, which is a normalization mass chosen to be
equal to the nucleon mass.

The hyperspherical variables [25] are introduced as

Py Mg, = xi/lxil, n, = yi/b'i‘, g, (A2)
where a, in the interval [0,7/2], is defined by
P’ =x2+y:% |xi|=pcosai, |yi|=psina;. (A3)

We omit the indices where we need not emphasize the
particular set of Jacobi coordinates. Note that p is inde-
pendent of what set is used.

The hyperangular coordinates are now defined by

mM;ir; + MgTg
m; + my
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(A1)

1)

r

{p, %} = {p, @i, iz, iy}, where Q;, and €;, are the
angles describing the directions of x; and y;.

The relation between three different sets of Jacobi co-
ordinates is given by

Xk = X; cos @i + Y; sin Pk,

Yr = —X; sin ¢z + y; cos P, (A4)

where the transformation angle ¢; is given by the masses
as

m;(my + mg + m3)

¢ix = arctan (—1)‘”\/ ,

mEm;

(A5)

where (—1)? is the parity of the permutation {3, k, j}.
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FIG. 1. (a) Schematic contour diagram of the bound
three-body state as function of the decisive depth and ra-
dius combinations. One of the potentials is assumed to be
identically zero. The depths, radii, and reduced masses are
denoted, respectively S, R, and g with indices for the differ-
ent coordinates. The solid curve is dividing the regions where
the three-body system is either bound or unbound. In region
I the system as well as all subsystems is unbound. In regions
III and IV one subsystem is bound, whereas two subsystems
are bound in region V. The total three-body system is also
bound in regions II and IV. In region III one subsystem is
bound and the third particle unbound. The dark circles are
the special points where the asymptotics is determined by
the direction of approach. The shaded circle indicates the
singular Efimov point. (b) The same as (a) when two of the
potentials are identical. All three subsystems are bound in
region VI and the Efimov singularity is now indicated by the
horizontal shaded rod.



