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Calculations of polarized neutron-polarized He scattering are presented for the transverse and
longitudinal total cross-section difFerences EcrT and boi. in the energy range E = 0.1 to 10 MeV.
Predictions made &om phase-shift analyses, R-matrix analysis, and a multichannel resonating group
model calculation are compared. The predictions are in qualitative agreement and shower that po-
larized neutron-polarized He scattering is sensitive to the level structure of He in the excitation
energy range 20—30 MeV.

PACS number(s): 21.45.+v, 24.70.+s, 25.10.+s, 27.10.+h

I. INTRODUCTION

In the past two decades the four-nucleon system, par-
ticularly the o. particle, has received a great deal of ex-
perimental and theoretical attention [1]. Of all nuclei,
4He is the lightest system that possesses both bound and
excited states. As such it represents a unique laboratory
for understanding few-nucleon dynamics.

Exact four-body calculations of the 4He ground
state using realistic nucleon-nucleon potentials have al-
ready been performed with considerable success by the
Bochum [2] and Groningen [3] groups. Efforts to extend
these calculations to the continuum are currently under-
way [4] but are expected to be considerably more difBcult.
Whereas the 4He ground state is an extremely symmet-
ric and tightly bound system, the continuum states are
surprisingly complex. A recent, comprehensive R-matrix
analysis of four-nucleon scattering and reaction data 6nds
evidence for as many as 15 resonant levels 20—30 MeV
above the He ground state [1,5]. None of the excited
states are bound. That is, each of the above mentioned
15 states is unstable against break-up into the p- H, n-
He, d-D, or three- or four-body channels. Additionally,

P- and D-wave scattering play an important role in the
structure of the He continuum, and the degree of isospin
mixing between the T = 0 and T = 1 states is not fully
understood.

Polarization observables are essential for the unique
determination of few-body scattering amplitudes. A
polarized-target —polarized-beam experiment is being
conducted at the Triangle Universities Nuclear Labo-
ratory (TUNL) to measure the spin dependence of the
total neutron cross section of 3He. In preparation for
the experiment, calculations of the spin-dependent total
cross-section difference b,o have been performed based
on the resonance structure of Ref. [5]. Calculations are
presented for spin geometries in which the target and pro-
jectile spins are longitudinal (Ao L, ) and transverse (b,o T )
to the beam momentum. Additionally, calculations have
been made based on two partial-wave analyses of n- He
scattering [6,7], as well as on a microscopic resonating
group model (MCRGM) analysis of 4He [8].

II. FORMALISM

The formalism for the scattering of polarized neutrons
&om a polarized or aligned target has been presented
elsewhere [9,10]. In the former, the coupling of angu-
lar momenta is expressed in the "j-spin" representation,
whereas in few-body systems the "channel-spin" repre-
sentation is standard. The latter article is not consistent
with the Madison convention [11] in its definition of sta-
tistical tensors describing the polarization state of the
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beam and target. Also, [10] expresses cross sections in
terms of the partial neutron width amplitudes p~, which
are ill-suited for broad, overlapping levels such as those
displayed in the He nucleus. We present an exact for-
mula for the total neutron cross section in terms of scat-
tering matrix elements using the channel-spin represen-
tation. For the special case of spin-1/2 targets, the to-
tal cross section is expanded in terms of the integrated
partial-wave cross sections, and methods of extracting
information on specific partial waves are discussed.

To describe the polarization states of the beam and tar-
get, we use the statistical tensors, ts~(I ) and t~q(I~),
respectively, defined according to the Madison conven-
tion [ll]

t~q(I) = I) (—1) p (I)(IIm' —m[KQ). (1)

Here I is the spin of the target (or neutron), I = /2I + 1,
and p i (I) is the density matrix of magnetic substates.
With this definition, too is equal to 1. This equation can
be easily inverted to write the density matrix in terms of
the statistical tensors

p (I) = I) (—1) taq(I)(IIm' —m~KQ). (2)
KQ

Typically, a polarized target or beam is prepared such
that there is an axis of cylindrical symmetry (the "spin
axis"). If this axis is chosen as the z axis, then the spin
tensors calculated in this coordinate system, tKq, are
diagonal, and the only nonvanishing elements are those
with Q = 0. Additionally, the Q = 0 components are
real quantities. The spin tensors calculated in a diferent
coordinate system (for example, one in which the z axis
is along the beam direction) can be expressed in terms of
the tKO by the rotation

t~q(I) = Yz (/31, A)taco(I)

= CIcq(PI, Pr)tao(I),

where Pr and Pl are the polar and azimuthal angles that
the spin axis makes in the new coordinate system and

YJr (Pr, Pi) is a normalized spherical harmonic [12]. This
coordinate system is shown in Fig. l.

The spin-dependent, elastic-scattering amplitude, with
the z axis along the incident neutron beam direction k,
can be written as [13]

f '„.(&, p) = t'v && ) l(IgI mgm~~sm, )(lsOm, ~Jm, )(I~I m&m' ~s'm, )(l's'm, —m, , m, ]Jm, )m&mo
J)l )li

s)s )tnsI

gj Y)))~ )n~i
(g P)— (4)

where A = li/pv (p is the reduced mass and v is the
center-of-mass velocity), and l and l' are the incoming
and outgoing orbital angular momenta. Likewise, s and
8' are the incoming and outgoing channel-spin momenta,
and m„etc. , are their z components. S&,&... is the scat-

tering matrix element for transitions kom the initial neu-

tron channel (Jls) to the final channel (Jl's'). The an-

gular momentum coupling order is

J = l+ (I~+ I )

=1+8.

The total cross section crq q can be expressed in terms
of the forward elastic-scattering amplitude via the gen-
eralized spin-dependent optical theorem [14]

z

FIG. 1. The coordinate system defined according to the
Madison convention [llj. Here z is along the incident beam
direction k. The y axis is along the k x k' direction {k' is
the direction of the scattered beam), and the z axis is defined
so as to make a right-handed coordinate system. The "spin
axis" I is defined to be that axis in which the polarization
tensor tI,q is diagonal. A similiar coordinate system is defined

Jh

for the target spin axis I~.

ag g ——Im 4~4 p „p 0

I ITvt ~ vvt

where p „and p are the density matrices for
the target and beam, respectively, and Im indicates the
imaginary part of the complex argument. Substitution of
Eqs. (2) and (4) into Eq. (6) yields the following formula
for the total neutron cross section:
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o«t ——Re 2zA ) ) ) ( 1—)
"+ " ll'I& I (I~I~mz —m~~KQ)(I I m' —m~~kq)(I~I m~m~~sm, )

nsA no~
ssl kq na~~ na~

x (laOm,
~

Jm, ) (1'a' m, —m, m, (
Jm, ) (I~I~m&m~)s'm, )tJr@(I~)ts~(I ) b~ ib, , —S~,~, (7)

Equation (7) can be reduced to a slightly less cumbersome form by the use of standard angular momentum coupling
relations [12]. The final form contains no summation over the magnetic quantum numbers m . We write the total
cross section as an expansion in terms of the polarization tensors calculated in the "spin-axis" coordinate system,

o = ) t (I )t (I )
kK

where

vlcK = Re 2z A ) ) Fq(Jlsl's') bu b„—S),)... Crrq(P~, Px)CIe~(P, P )

8 ~

(9)

'I s Ig'
Fq(Jlal a ) ) ( 1) ( 1)~ lAI I~ll sa k(AkOq~Kq)(l lOO~AO)W(a al l'AJ) ( I s IA

A k A X
(10)

Here W(s'sl'l; AJ) is a Racah angular momentum cou-
pling coefBcient, and the expression in the curly brackets
is a 9-j symbol [12]. A is the orbital angular momentum

transfer / —l.

III. PARTIAL-WAVE DECOMPOSITION FOR
SPIN-I. /2 PARTICLES

For the speci6c case in which both target and projec-
tile are spin-1 j2 particles, the expression for the total
cross section can be greatly simpli6ed. In particular, the
expansion in Eq. (7) contains only four terms

&tot = ooo + ooltio(IA) + %10tyo(Io) + 0'lltlo(IA)tlo(Ia).

The middle two terms are parity-violating contributions
to the total cross section and may be ignored here. ~00
is simply the unpolarized total cross section (henceforth
written as oo). aii is the contribution to the cross section
arising fmm spin-spin interactions and is often referred
to as the spin-spin cross section. Since the polarization
tensor for the beam (or target) tio changes sign whenever
the spin is reversed, the spin-spin cross section can be
determined &om the total cross-section diHerence Ao'

The (+) and (—) signs are used to indicate the relative
orientation of the beam and target spins with respect
to their respective spin axes. Experimentally, b,o may
be determined from the "spin-spin asymmetry" ass. To
measure ass, polarized neutrons are transmitted through
a polarized target. The neutron spin (or target spin) is
periodically reversed and the corresponding 0' yields are
compared according to

AoL, = cry i(A) —crt i(+-),
&or = oi i(tt) —oa t(N),

(14)
(15)

N(++) —N(+ )—
N(++) + N(+ )—

1= —tanh —Acr w~ t~ tA
.2

Here N(++) is the neutron yield at 0', and N(+ ) is the-
same yield after one of the spins has been reversed. 7~
is the thickness of the polarized target in units of atoms
per barn.

Typically, such experiments are performed with the
beam and target spin axes parallel. The most common
spin geometries are those in which the spins are parallel
(longitudinal) or perpendicular (transverse) to the inci-
dent beam direction. The corresponding 60's can be
pictorially represented in the following manner:

~cod(++) —~i ~(+—)
tio (I~)t io (Io)

tio(I~)tio(Io)

(12)
where it is understood that 40.L, and Ao.z are normalized
to unit beam and target polarizations.

Both 00 and Oqq can be decomposed into partial
waves as follows. The cross section corresponding to the
(J/st's') S-matrix element is
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o(J/sl's') = Re 2n8 b&cb„—S&s...j ).2I +1 2I~+1 (16)

In general, these "partial-wave cross sections" make different contributions to the unpolarized and spin-spin total
cross sections, and must be weighted accordingly by the angular momentum coupling coefficients F~(Jlsl'a'). If we
substitute k = K = 0 into Eq. (10), we find Fo = hi) b„ for all values of q and J, and one obtains the familiar result
that the unpolarized total cross section is simply a sum over the diagonal elements of the scattering matrix

o.p ——) o(J/ala).

One of the consequences of working in the channel spin representation is that channel spin is a conserved quantity
in the forward elastic scattering amplitude, and so F~ = 0 whenever s g s. The spin-spin cross section, however,
does include contributions &om the off-diagonal S-matrix elements that mix orbital angular momenta L and L + 2.
Expressed in terms of the partial-wave cross sections, the spin-spin cross section is

ocs = ) s(S)srs)(Fo(S)sl's) cos(ps) eos(p ) + —(F (Zl )s' )+sFss(Z)sl's)] sin(ps) sin(p ) cos(b)s —8 ) }, (18)
Jll' s

AoL, = 2 ) F()(Jlal's)o(Jlal'a)
Jll' s

(19)

where the explicit forms for Ciz(P, bt)) in Eq. (10) have
been substituted.

The longitudinal and transverse geometries correspond
to P~ = Po = 0' and P~ ——Po = 90', respectively, and
so

Aoz = 2 ) Fi(Jlal'a)o(Jlal'a),
Jl1' s

(20)

since F i(Jlsl's) = Fi(Jlsl'a). Explicit values of Fp and
I"q up to L = 3 are given in Table I.

To aid in the following discussion of n- He scattering,
we write the explicit forms of 00, AOL„and 60.~ in terms
of partial-wave cross sections up to L = 1:

and o ()
——o.( S()) + cr ( S,) + o.('Pi)
+ o ('P() ) + o.( Pi) + o.( P2), (21)

(2s+ 1)LJ Fo(Jlsls) Fi (J la l s)

TABLE I. The angular momentum coupling coefFicients
Fo(Jlsl's) and Fi(Jlsl's) of Eq. (10) up to l = 3. The sub-
scripts 0 and 1 correspond respectively to the longitudinal
and transverse spin geometries. The coupling coefficients for
mixed orbital angular momentum states t' = l + 2 are listed
at the bottom.

and

EcrL, = —2cr('Sp) + -o( Si) —2o('Pi)
3

—2o ('Pp) + 2o (sPi) + —o ('P2)
5

+—y 2o.( Si —Di),3 (22)

'So
S

Pp
3P

'D
D1
D2
D3
1F
3F
3F
3F

(2s+1)L (2s+1)L &J J

—1
1
3—1

1
1
5—1
1
3
1
1
7—1
1
5
1
1
9

Fo(Jlsl's)

—1
1
3—1

0
2
5—1
2
3
0
3
7—1
3
5
0
1
3

Fi (Jlsl's)

b,oT = —2o ('S()) + —o ( Si) —2o.('Pi)
3

+ 2a( Pp) + —(r( P2) ——v 2o.( Si —Di).3 4 s 2 3 3
5 3

(23)

IV. CALCULATION OF Lo FOR n- He
SCATTERING

Here o ( '+iLg) refers to the o (Jlsls) partial-wave cross
section defined in Eq. (16). Extension of these formulas
to include higher partial waves follows from Table I. In
the next section we shall discuss how this partial-wave
decomposition may be used to extract information about
the contributions of specific partial waves.

S1 — D1
P2 — F2

The He level scheme obtained &om a comprehen-
sive, charge-independent B-matrix analysis of n- He, p-
H, and d-2H scattering and reaction data [5] is shown
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FIG. 2. The level scheme of He as determined by the
R-matrix analysis of Hale and co-workers [1,5]. The vertical
bar on the left marks the position of the levels in the n- He
laboratory frame, and the positions of the two-, three-, and
four-body breakup thresholds are shown on the right.

in Fig. 2. The isospin-1 parameters are taken from a
Coulomb-corrected analysis of p- He data. This analy-
sis finds evidence for a series of 15 excited states lying
some 20—30 MeV above the He ground state. They do
not appear as sharp, well-isolated resonances in the n-
He cross sections, but are instead broad, overlapping

structures. Any theoretical description of the 4He ex-
cited states must reproduce the positions and widths of
these levels. Experimental determination of the states is
hindered by the width of the levels and by the degree to
which they overlap.

To investigate the sensitivity of the spin-spin cross sec-
tion to the excited states of the a particle, we have cal-
culated 6+I, and Acr~ for n- He data. The transmission
of polarized neutrons through polarized sHe has been
measured previously [15,16]. Both experiments were per-
formed using thermal neutrons and hence were only sen-
sitive to S-wave scattering amplitudes. It is worth noting
that the experiment of Paschell and Schermer [15] con-
firmed that 100% of the sHe(n, p)sH reaction proceeds
through the iSo partial wave at 0.11 eV. In this section
we shall examine the sensitivity of polarized-neutron po-
larized He to the P-wave amplitudes as well.

The S-matrix elements used in the calculations were
obtained from four sources: (1) Hale's R-matrix anal-

TABLE II. Parameters describing the S-matrix elements
used in the n- He cross-section calculations. In the case of the
R-matrix and MCRGM calculations, elements were obtained
at laboratory energies separated by approximately 0.25 MeV
below 1 MeV and by appoximately 2 MeV above 1 MeV. In
these cases the phase shifts (both real and imaginary parts)
varied smoothly and slowly, so that a cubic spline interpola-
tion routine could be used to obtain phase shifts at intervals
of approximately 0.1 MeV.

Analysis Ref. Energy range (MeV) / „J
R matrix [51
MCRGM [8]
Lisowski PWA [6]
Jany PWA [7]

0.1—10.0
0.14-12.14
1.0—23.7
1.0-3.7

ysis [5]; (2) the single-energy partial-wave analysis of
Lisowski et aL [6] (Lisowski PWA); (3) the single-energy
partial-wave analysis of Jany et aL [7) (Jany PWA);
(4) a preliminary, multi-channel resonating group model
(MCRGM) calculation of the 4He continuum [8].

The R-matrix analysis is a global parametrization of
the A = 4 system. That is, the R-matrix parameters
are varied to obtain simultaneous best fits to all A = 4
scattering and reaction data. In contrast, the two sets
of partial-wave analyses are attempts to describe only
the n- He two-body channel. The MCRGM matrix ele-
ments result &om a microscopic, variational calculation
that utilizes a Gaussian-parametrized version of the Bonn
nucleon-nucleon potential [17]. We include two sets of
partial-wave analyses (PWA's) because the PWA of Jany
et al. is the most recent partial-wave analysis of n- He
scattering in the few MeV energy region, but it does not
cover as broad an energy range as that of Lisowski et
al. Also, the Jany PWA used the R-matrix phase shifts
as its starting parameters. One would therefore expect
these latter two analyses to give similiar results. Table
II compares many of the relevant parameters for the four
sets of S-matrix elements.

The total (unpolarized) cross section is shown in Fig. 3.
The R-matrix and phase-shift analyses describe the to-

tal cross section about equally well, whereas the MCRGM
calculation does not quantitatively reproduce the exper-
imental values above 1 MeV. As this is the region where
/ = 1 scattering begins to dominate, the inadequacy of
the MCRGM calculations can probably be attributed to
insufficient P-wave amplitudes. Comparing the individ-
ual matrix elements, we find the greatest discrepancy
between the R-matrix and MCRGM results in the 3P2

partial wave.
The R-matrix partial-wave contributions to the total

cross section are shown in Fig. 4. According to the R-
matrix analysis, partial waves corresponding to l & 2
contribute less than 4% of the total cross section between
0.1 and 10 MeV and thus are not shown in Fig. 4 [18].
The dominant partial waves below 100 keV are the two
S waves, S0 and Sq. Scattering through the Sq par-
tial wave is mostly elastic, whereas the large Sp partial
wave indicates the presence of the 0+ resonance located
20.2 MeV above the 4He ground state. This resonance
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4.0

3.5

3 0

2.5

2. 0

1.5—

I ~ I s II a I s I I

0.3 0.5 10.1 3 5 10

E~ (MeV)

FIG. 3. The total (unpolarized) n- He cross section calcu-
lated using the four sets of S-matrix elements detailed in the
text. The ENDF/B-VI [22] fit to the experimental values is
also shown (x's).

is unstable against breakup into the p- H channel and is
responsible for the enormous thermal neutron cross sec-
tion of He. The 0+ resonance is customarily described
as a breathing-mode oscillation.

The Pp partial-wave cross sections are obviously re-
lated to the series of negative parity states in Fig. 2
between 21 and 25 MeV, beginning with a 0 level at
21.0 MeV. De-Shalit and Walecka have pointed out that
these low-energy states may be viewed as (1s) (1p) ex-
citations in a simple shell model of 4He [19]. The spin
of one of the nucleons is flipped, and it is elevated to
the (lp) orbital. The resulting nucleon-trinucleon cluster
then has quantum numbers l = 1, s = 1, J = 0, 1, or
2, and isospin T = 0 or T = 1. These negative parity
levels belong to the (15}dimensional representation of

2. 0

1.5

m 1.0

0

0. 5

0. 0

I a I i I

3 5 100. 3 0. 5 1
En (MeV)

0.1

FIG. 4. The dominant R-matrix partial wave contributions
to the n- He total cross section.

SU(4) [20]. Another negative parity state with quantum
numbers 8 = 0, l = 1, J = 1, and T = 0 belongs to the
(15}representation as well. Spin-dependent forces and
charge-symmetry breaking are responsible for breaking
the degeneracy of the (15}supermultiplet.

We now describe how the spin-dependent total cross-
section differences Ao.l. and Aol reflect the excited
structure of He and how these observables may be used
to delineate speci6c partial-wave information.

Calculated values of Kerr. and DOT using the four
groups of matrix elements are shown in Fig. 5. At low
energies ((500 keV) both 60L, and b,oT are large and
negative, indicating that scattering primarily occurs be-
tween antiparallel spins. At these low energies the to-
tal cross section is dominated by the 0+ resonance at
20.2 MeV in the 4He system. A 0+ resonance must
have F(Jlsl's) = —1 for either the longitudinal or trans-
verse geometry. Therefore the contribution of this state
to the unpolarized cross section is doubled when the
cross-section differences ho'I, and 6o'T are calculated [see
Eqs. (22) and (23)]. As F„ increases, the ratio of triplet-
to-singlet S-wave scattering increases, which along with

1 — (a)

I a I I i I

0.3 0. 5 1
I a I I I

3 5 100.1

EII (MeV)

I s I ~ I ~ a

3 5 100.3 0.5 1
E„ (MeV)

0.1

FIG. 5. Calculated values of (a) Aor, and (b) AoT using
the four set of 8-matrix elements detailed in the text.
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the emergence of P waves causes both 401. and AoT to
cross through zero near 1 MeV.

Above 1 MeV, we see considerable disagreement in the
various predictions of both Lo.L, and LoT. The main
contributors in this energy region (according to the R
matrix) are the Sq, Pq, and P2 partial waves. However,
the P1 partial wave cannot contribute to A+T because
Fq( Pq) = 0. Therefore Aor is mainly a measure of the
P2 strength in this energy region, with some contribu-

tion from the So and P1 partial waves. Correspond-
ingly, between 1 and 5 MeV (where the Pq wave is at
a maximum) the calculated values of EaT disagree by
as much as 1.5 barns. This would indicate that there is
no consensus as to the strength of the P2 partial wave.
Comparing the individual matrix elements, we find sim-
ilarity between the P2 waves of the Lisowski PWA and
the MCRGM calculation, but the R-matrix and Jany sP2

waves are considerably stronger. This explains why the
latter two analyses predict higher values of b,oT as well,
since the P2 wave makes a positive contribution to EuT
(see Table I). The Lisowski (PWA) prediction of b,o'z is
noticably lower than the other three predictions. The
difFerence is the unusually strong Dp partial wave of
Lisowski [18],which lowers 60'T by as much as one barn.

The sensitivity to the sP2 wave is reduced by half in
the longitudinal geometry (see Table I), and therefore,
slightly better agreement is observed in the values of
AeL„particularly above 2 MeV. The efFect of the P2
partial wave may be removed entirely using the linear
combination (3 60'L, —Any ). At the same time, this
linear combination magnifies the P1 contribution by a
factor of 6.

The difference (6o~ —b,or, ) for the four sets of cal-
culations is shown in Fig. 6. All S-wave and spin-singlet
contributions to the total cross section are removed by
this linear combination of b,o L, and b,crT [21]. Therefore,
this combination is extremely sensitive to the low-lying
negative-parity states shown in Fig. 2. The large difFer-

2. 0

(25)

boL, + boT -4o('So) + —o( Sg).
3

(26)

To illustrate this point, we have included the B-matrix
Pp partial wave in Fig. 6 (dash-dotted line) . It is evident

that the scattering amplitudes for these lowest partial
waves can be completely and uniquely extracted from a
complete measurement of Arrl, and A+T below 1 MeV.

Finally, we see in Fig. 6 that there is essentially no dif-
ference between the calculated values of 60'I, and 6+T
when the phase shifts of Lisowski et al. are used. Re-
ferring again to Table I, we find this indicative of strong
S-wave and spin-singlet scattering amplitudes. Exami-
nation of the individual partial waves agrees with this
conclusion. The S1 and D2 partial waves are consider-
ably stronger in the Lisowski PWA than in any of the
other three analyses.

The sensitivity of 601, and 60'z to the l & 2 scat-
tering as well as the amplitudes corresponding to mixed
orbital angular momentum can be determined &om Ta-
ble I. However, in the energy range under consideration,
such contributions to the total cross section are relatively
un~mportant in comparison to the S- and P-wave ampli-
tudes (an exception is Lisowski's D2 partial wave [18]).
Linear combinations of ciao, AcrL„and Acr~ can be made
to emphasize these partial waves at higher energies once
the efFects of l = 0 and l = 1 scattering have been well
determined.

ence around 700 keV is a result of Po scattering (a 0
resonance at 21.0 MeV). For the Po partial wave, scat-
tering only occurs between antipcrullel spins in the longi-
tudinal spin geometry (Fo ———1), whereas the opposite is
true for the transverse geometry (Eq ——+1). Therefore,
the contribution of the 3PO partial wave is magnified by
a factor of 4 when the difFerence (b,o'T —b,oL, ) is taken.
Combinations utilizing the unpolarized cross section oo
can be made to exploit other partial waves as well. In
particular, we find that below about 1 MeV,

DoT —Lh, og 4 o ( Pp), (24)
1020o+ b,or, - —0( Sg),
3

1.5
V. SUMMARY AND CONCLUSIONS

0+ 1.0
I

0

0. 5

0. 0

0.1
I ~ I s I, a I

0.3 0.5 1
I I I

3 5

E11 (MeV)

FIG. 6. Calculated values of the quantity (boT —Kerr, )
using the four sets of S-matrix elements detailed in the text.
Symbols same as Fig. 5. Also shown (dash-dotted line) is 4
times the Ps cross section from Fig. 4, 4cr( Ps)

The formalism for the spin-dependent total cross-
section difFerence 40 has been derived. For the partic-
ular case of spin-1/2 —spin-1/2 scattering, a partial-wave
decomposition has been performed. Using four indepen-
dent analyses of n- He scattering, the polarization ob-
servables AoL, and 407 have been calculated. The re-
sults re6ect much of the resonant structure of He. Com-
parison between the four sets of calculations indicates
qualitatively good agreement. However, difFerences ex-
ist that in most cases can be traced to one particular
scattering amplitude.

With a complete measurement of era, AO.L„and Ao.z
below about 500 keV, one can in principle uniquely de-
termine the partial-wave amplitudes for So, S1, and Po
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scattering. The situation at higher energies is compli-
cated by the presence of additional partial waves. How-
ever, linear combinations of oo, AoL, , and 407 may be
used to enhance the sensitivity to one particular partial
wave while diminishing the effect of another. In this man-
ner the spin-dependent total cross section can determine
speci6c partial-wave scattering amplitudes, and in turn,
information about the He scattering states.
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