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Quadrupole-quadrupole plus pairing interaction application to transition charge
density calculations in some even-even palladium nuclei
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Here we report the microscopic variational model calculations for the recently available experi-
mental data on transition charge densities (TCD) of ' ' ' Pd nuclei employing "quadrupole-
quadrupole plus pairing interactions" operating in the 2p&gz, 1g9gz, 2dsgz, »zgz, 2d3]Q) 1g7/Q)
1hgg(g valance spaces. Results for difFerent p-n interaction strenghts are also given. It is seen that
TCD, being sensitive to the strength parameters, can act as one of the best means for the fixing
of these parameters accurately. The results of TCD calculations, for quadrupole excitations, using
the p-n interaction strength parameter y „=—0.0231 MeV b, are in excellent agreement. The
calculated static properties Rom the Hartree-Fock-Bogoliubov (HFB) model, employed for TCD
calculations, are also in good agreement. Deivation in the TCD results for hexadecupole transitions
points toward the need for some modifications so as to simulate the other interaction efFects.

PACS number(s): 21.10.Ft, 21.10.Ky, 21.60.Jz, 25.30.Dh

I. INTRODUCTION

For many years medium znass nuclei have been the cen-
ter of activities due to the observed variety of phenomena
displayed by them. Theoretical atteznpts are continu-
ously going on for the understanding of these phenom-
ena. The success of the microscopic znodels is very much
dictated by the two-body interactions used in the calcula-
tions. Microscopic attempts for the description of spec-
tra, transition probabilities, and moments in the mass
region A = 100 have proved to be satisfactory through
the "quadrupole-quadrupole plus pairing effective inter-
action. "

Electron scattering has some special features [1] that
makes it one of the best tools for nuclear structure stud-
ies. The electron interacts with the nuclear charge and
current distribution through the "well known and weak"
electromagnetic interaction. The charge and current dis-
tribution, which determine the electron scattering cross
sections, are also responsible for gamma-ray transitions,
although the higher multipolarity states can rarely be
investigated with the help of these transitions. On the
other hand, in the case of electron scattering [2,3] the
peaks, corresponding to higher /-value transitions, dom-
inate the spectrum at sufficiently high values of znomen-
t»m transfer q. With the availability of electroexcitation
data for 0+ -+ 4+ transitions recently, it has been possi-
ble to observe [4] that the rotor model formula does not
apply to hexadecupole excitations as such.

Transcription [5—13] of inelastic electron scat tering
cross section data to the transition charge density, in a
model-independent way, for some f pand s-d-g-h s-hell
nuclei, has made the comparison of theoretical calcula-
tions with the experiments more effective. For low=lying
collective excitations, where microscopic eKects are not

dominant, one expects simply a peak in the transition
charge density at the surface of the nucleus.

Frequently the sensitive questions regarding the valid-
ity of (a) the two-body interaction and (b) the specific
microscopic model through which theoreticians calculate
the properties of the nuclei, start becoming controversial.
Here calculations of the transition charge densities can
play an iznportant role since small changes in the system
dynamics are very sharply refiected in the magnitude of
the surface peak as well as the interior transition charge
densities of the nucleus. Such an observation became a
reality through the experimental inelastic electron scat-
tering data [13] on germanium nuclei.

By comparing results of znodel calculations based on
different valence spaces with the experimental values, one
can investigate the basic properties of the model, like the
configuration mixing, which in turn depends on the resid-
ual interaction used. Nuclei in the mass region 100 have
shown some anomalous features in their properties. One
expects that the transition charge density which is the
best meeting ground for the theoretical and experimen-
tal results on any specific transition, will act as one of
the best probes in providing us with a clear picture of
the underlying dynamics [7].

Data for transition charge densities have started be-
coming available for some Ge, Mo, Sr, Zr, Cd, and Pd
nuclei [5—10]. The useful shell model calculations are
not possible for most of these nuclei and here we have
attempted variational model calculations for even-even
palladium nuclei. Apart from some calculations of tran-
sition charge densities in s-d and f pshell nucle-i with
restricted configurations [11—13] and the theoretical pre-
diction with the Hartree-Fock (HF) approximation for
the 0+ —+ 2+ transition in Gd by Negle and linker
[14], there have been no reports of microscopic calcula-
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tions in other regions. In the medium mass nuclei, the
only attempts that have been made are with the inter-
acting boson model (IBM), but this formalism uses a lot
of experimental data for parametrizing density functions.

Recently [5,6], data on the transition charge densities
for quadrupole and hexadecupole excitation have become
available in the case of some palladium nuclei. Here we

report the calculations for xo4, &06,ios, xioPd nuclei by the
variation after projection method (VAP) in the Hartree-
Fock-Bogoliubov (HFB) framework. This is the first time
that a microscopic calculation for transition charge den-
sities (TCD's) has been done in this region and the effect
of p-n interaction has been studied. It is seen that tran-
sition charge density calculations act as a sensitive guide
for the role of diferent parts of the interactions.

(U;. + V,.-b,'. 5,'. )lo),

where

gt y ~mim / ji jm&
2

bt = ) (—1)~ C, at

2

(2)

Here, the index i is used to distinguish between different
states with the same m, and j labels the spherical single
particle orbitals. The wave function in Eq. (1) can be
reduced to the form

II. CALCULATIONAL FRAMEWORK

The single-particle energies (SPE's) that have been
employed are (in MeV) e(2pqy2) = —0.8, e(lgsg2) = 0.0,
e(2dsyz) = 5.4) e(3ag)2) = 6.4) e(2ds)r2) = 7.9, e(lg7/2)
8.4, and e(lhqqgq) = 8.8. The same set of SPE's has been
employed in a number of successful shell model as well as
variational model calculations for static properties in the
mass 100 region by Vergados and Kuo [15] and Federman
and Pittel [16] as well as Khosa, Tripathi, and Sharma
[17].

The pairing part of the two-body interaction can be
written as

with

l(to) = Nexp -') f patap~ l0)
aP

f ~ =) C,. ;. C,,',. (V,. -/U, .)b

) = N f dod p/ )rxP p(e) /rr~rr&[0), (5)
)

where a denotes the quantum numbers (j m ) and N is

the normalization constant.
The state with angular momentum J is given by

V = —(G/4) ) S)sS at at a)sap,
aP

where

F p =).).d'. .(8)d ', , (8)A. ..~y, (6)
where n denotes the quantum numbers (nl jm). The state
6 is the same as n but with the sign of m reversed. Here
S is the phase factor (—1)& ". The q-q part of the two-

body interaction is given by

I Im p

The expression for the overlap (go lgo ) is given by (apart
&om the normalization N)

v.—.= -4/2) ).).(~lq,'l~)(&lq'„l~)
aPpb p

x (—1)"at a&~asa~,

where

~(e) = (&o l&o) = [det(1+ M(e))1'"

M(e) = s(e)yt.

(7)

(8)

2is given.where the operator q„ by
= (16~/5)'~'r'I'„'(8, y).

The strengths for the like particles n-n and p-p com-
ponents of the q-q interaction are taken as y (= y„,, ) =
—0.0105 MeV 6 and the effect of the n-p components
of the interaction has been checked for three values of
y „=—0.0231, —0.0250, and —0.0300 MeV 6 . Here b

is the oscillator parameter. These values for the strengths
of the q-q interactions are comparable to those suggested
by Arima [18] on the basis of an empirical analysis of
the effective interactions. The strength of the pairing
interaction was fixed (through the approximate relation
G = 18/A) at G = 0.18 MeV.

The axially symmetric intrinsic deformed HFB state
with K = 0 can be written

ZJ —— aesineaoJo ~ h, ~ de sinedoJo (8)n(e)
~~

The intensities of the various angular momenta contained
in the intrinsic wave function are given by

a& ———(21 + 1) n(e)doo(e)sine de.
0

(10)

The overlap integral h(8) is given by

The energy of a state with angular momenta J can be
written as
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&(8) = (8) ): -[M/(I+M)l-+-.').( ~IV. l~b)
l CX apy8

x(2[M/(I + M)]~s[M/(I + M)]sp + ) [M/(1+ M)]»E~s[1/(1+ M)]„ f„'p)
VP

and the overlap integrals n(8) and M(8) are given by
Eqs. (7) and (8).

The VAP procedure involves the selection of an ap-
propriate intrinsic state for each yrast level through a
minimization of the expectation value of the Hamilto-
nian with respect to the states of good angular momen-
tum. We Erst generate self-consistent HFB solutions

P(P), by carrying out HFB calculations with the Hamil-
tonian (II —PQo). The optimu~ intrinsic state for each
yrast level, P &t(Pg), is then selected by ensuring that
the following condition is satisifed:

[(4(P)IIIP'. 14(P))/(4(P) I&' 14(P))] = o.

The transition charge density pr, (r), the reduced ma-

trix elements of p&~, is given by

p~(r) = (Jelling'll J*). (12)

Making use of the general expression [19] for the ma-
trix elements of an irreducible tensor and Eq. (5) for the
projected HFB wave functions, we obtained the following
expression for transition charge density:

pL, (J; ~ Jy) = (n ~n ') ~ (2J, +1) ) '
O

d „o(8)n(8) ) eI,R„& (r)
P hap

xR zzz(r)(alY MIP)M(8)[l+ M(8)] sin(8) d8, (13)

n(8) = (det[1+ M(8)])'~'. (15)

The expression for the reduced transition probability
for the electric 2~-pole, B(EL,O+ ~ 2+) and the static
quadrupole moments for the L+ state, qL,+, are given by

B(« o' ~ L') = (I/16~) l(@0 llqo Ii@0)I' (16)

where

QL; = (@L,lqo I@i')

where R„~(r) is the radial part of the harmonic oscillator
state lnl) and the normalisations are given by

~/2
n~ = n(8)d~~o(8)sin8d8,

0

The initial guess for the wave functions involved in
HFB iterations was generated by diagonalizing the Nils-
son Hamiltonian and the wave functions 1$) are obtained
by carrying out the HFB calculations. The results of
HFB calculations are summarized in terms of the ex-
pansion coefficients C, and the amplitudes (V;, U; )
appearing in Eq. (1).

These values were used first to calculate f defined by
Eq. (4). We next calculate the matrices I", [1 + M(8)]
and [1+M(8)] ~, appearing in the Eqs. (6), (7), and (8),
respectively. Finally we compute the matrix element for
transition charge densities and transition probabilities in
Eqs. (13) and (18).

q„= (16m/2L+ 1) ~ r Y„(Q). (17)

m/2

(J~lqoIJ') = In"n'] "
0

)- J; L Jy

xd~„o(8)n(8) ) eg(n 1 lr Inplp)!s.p

«(~l&NIP)~".p(~)I «'«« (18)

The expression for reduced matrix elements of transi-
tion probability

6

X
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UJ
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0+
Exp

104~
Th

4

2+

o+

Exp Th
106~

4

2+
pt

Exp Th
108~

4

2+
0+

Exp Th

110p~

where the density matrix is given by

p(8) = M(8)/[1+ M(8)]. (19)

FIG. 1. Experimental spectra of lour-lying states of
Pd isotopes along arith theoretical results in the

VAP on HFB states.
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TABLE I. The intrinsic quadrupole moments of the HFB
states in some doubly even-even PD isotopes. Here (Qo)
((Qo) „)gives the contribution of the protons (neutrons) to the
total intrinsic quadrupole moment. The quadrupole moments
have been computed in units of b .

W//PA Plotofls

Neutrons

Set No. Nucleus
104pd
106pd
108pd
110pd

@HFB

31.92
44.04
58.31
72.62

(Qo)HFB

57.12
58.59
61.76
63.32

22 ~ 11
21.99
22.52
22.79

(Qo)-
35.01
36.59
39.24
40.53

lh
lyl2 -0

3
'g V, ~o

Io
3

2
3s 1y CO

2 4

2dsy2,
O ~
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III. RESULTS AND DISCUSSION

Here, in this section we compare the experimental
results on static properties, like energy spectra, tran-
sition probabilities, and static moments, and the re-
cently [3,4] available data on the transition charge den-
sities for quadrupole and hexadecupole excitation for

Pd nuclei, with our theoretical results by
the VAP in the HFB &amework. This is the first time
that any microscopic calculation has been attempted for
studying TCD's of these nuclei. In the shell model calcu-
lations, the number of con6gurations that can be taken
into account must be limited for computational reasons.
The only attempt made for the description of TCD is
with the IBM formalism where large experimental data
sets have been used for parametrizing the density func-
tions.

A. Yrast spectrum, static quadrupole moments, and
transition probabilities

The results of calculations of the yrast spectrum for
Pd nuclei are shown in Fig. 1, and it is seen

that they are in good agreement with the experimental
results.

In Table I we have given the calculated HFB values for
total energy (EHFn) and quadrupole moment ((qo)HFB)
along with the separate contribution of protons as well
as neutrons. Here we see that the quadrupole moment

o &~

1/2 C M I

104
Pd

VA

106
Pd

FN I

108
Pd

VA

110
Pd

FIG. 2. Theoretical results of subshell occupation numbers
in the ground states of Pd isotopes.

shows a regular increase in going from Pd to Pd.
These changes can be understood in terms of the occu-
pation numbers of protons and neutrons in the different
shells. We notice &om the Tables II(a) and II(b) that in
going from Pd to Pd, there is not much transition
of protons into different orbits and additional neutrons
keep distributing into the d5/2, g7/2, and h»/2 orbits.
Figure 2 makes these observations very clear.

Next, we have a look at the res:sits for reduced tran-
sition probabilities B(E2) which are given in Table III.
Here, we see that the effective charges, which incorpo-
rate the core polarization in a simple way, provide quite
satisfactory matching with experimental results for very
reasonable values; 0.4 for Pd and 0.5 for other Pd
isotopes. The results for static quadrupole moments
for 2+ states are presented in Table IV. Here, one no-
tices the similar behavior as seen in the case of the
B(E2;0+ + 2+) values for these nuclei.

TABLE II. The calculated values of the occupation numbers of various orbits in the ground
states of some Pd isotopes for (a) protons and (b) neutrons.

Set No. Nucleus
104p
106pd
108pd
110pd

»1/2
0.06
0.06
0.07
0.08

2P1/2

2.00
2.00
1.99
1.99

(a)
283/2

0.03
0.03
0.03
0.04

285/2

0.71
0.70
0.75
0.79

1gg/2

0.04
0.04
0.05
0.05

1g9/2

5.14
5.17
5.08
5.04

1h11/2

0.00
0.00
0.00
0.00

104pd
106pd
108pd
110pd

0.69
0.75
0.84
0.96

1.99
1.99
1.99
1.99

(b)
1.34
1.40
1.48
1.56

2.29
3.36
3.64
4.02

1.51
1.95
2.50
3.00

9.83
9.84
9.85
9.87

1.64
2.69
3.68
4.58
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Set No. Nucleus
B(E2,0+ m 2+) x 10 e (cm )

Calculated Expt.
e,~
0.5 0.60.4

104pd

106pd

108pd

110pd

49.97 63.40 78.41

51.80 65.93 90.00

56.33 71.94 89.44

59.08 75.58 94.11

51.0 + 5.0
53.0 + 3.0
61.0 6 6.0
62.0 + 4.0
70.0 6 7.0
73.0 6 5.0
82.0 + 8.0
86.0 + 6.0

G. Rip)ra, Adv. Nucl. Phys. 1, 183 (1968).
Alan Christy and O. Hausser, Nucl. Data Tables 11, 281

(1972).

TABLE III. Comparison of the calculated and observed

B(E2,0+ -+ 2+) values in some Pd isotopes .The effective
charges have been used such that for protons the efFective
charge is e = 1+ e 8 and for neutrons it is e„= e g. The
values of the oscillator parameter have been calculated from
the relation b = 1.014 fm.

B. Transition charge densities

Our transition charge density results for the 0+ m 2+~

transitions of Pd isotopes, as seen &om Figs. 3 and 4,
have a characteristic surface peak at 5 fm and some small
Buctuations in the interior. The only available experi-
mental results for quadrupole excitation of Pd are
also plotted. One observes that the results for Pd are
in excellent agreement with the recent experimental ones
for y „=—0.0231 MeV b . The experimental results
[20] in case of ~MPd have been extracted from the en-

ergy transfer data between 0.6 and 1.8 fm only. Here,
one can only compare the surface peak of TCD's and we
again notice excellent agreement with the same value of

The experimental results of other Pd isotopes are
not reported in the literature; we expect these results
also to agree well with experiments. The energy spectra
also show such features, but in the case of the transition
charge density, the results are more prominent.

The hexadecupole states projected Rom the same HFB
wave function, used for quadrupole excitations were also
used to calculate the transition charge densities for 0+ +

4+~ excitations. The experimental as well as theoretical

=2

TABLE IV. Comparison of the calculated and observed
Q(2+~) values in some Pd isotopes. The effective charges
have been used such that for protons the efFective charge is
e = 1+e,~ and for neutrons it is e„=e,g.

Q(2~+) x e (fms)
Calculated Expt.

e,g
0.1 0.2 0.3 0.4

Pd —0.39 —0.48 —0.56 —0.63

Pd —0.40 —0.49 —0.57 —0.55

Pd —0.41 —0.50 —0.59 —0.67

Pd —0.42 —0.51 —0.60 —0.69

—0.25 + 0.12
—0.47 6 0.10
—0.25 + 0.12'
—0.21 6 0.07
—0.49 + 0.06
—0.52 + 0.12'
—0.56 6 0.08
—0.54 + 0.06
—0.51 6 0.06
—0.60 6 0.12'
—0.60 + 0.12
—0.55 + 0.08
—0.72 + 0.14'

Alan Christy and O. Hausser, Nucl. Data Tables 11, 281
(1972).
S. Landsberger, R. Lecomte, P. Paradis, and S. Monaro,

Phys. Rev. C 21, 588 (1980).
'A. M. Kleinfeld, private communication to L. Hasselgren,
Uppsala University, Institute of Physics Report No. UUIP
987, 1979 (unpublished).
M. F. Nolen, J. Hall, D. J. Thomas, and M. J. Throop, J.

Phys. A B, 57 (1973).
'A. Bockisch, private co~munication to L. Hasselgren, Upp-
sala University, Institute of Physics Report No. UUIP 987,
1979 (unpublished).
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FIG. 3. Transition charge densities for 0+ ~ 21 excita-
tions of ' Pd isotopes in the HFB framework. Solid,
dashed, and dashed lines with single dot represent the curves
for y „=—0.0231, —0.0250, and —0.0300 MeV 6, respec-
tively. Curve with dash and double dots represents the ex-
perimental result for Pd.
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FIG. 5. Transition charge densities for 0+ —+ 4+~ excitation
in the case of the Pd nucleus. Solid line represents the
curve for y „=—0.0231 MeV b . Curve with error bars
represents the experimental results.

nuclei. Some of these ideas are under study and will be
reported in future.

IV. CONCLUSIONS

FIG. 4. transition charge densities for 0+ ~ 2~ excita-
tions of ' Pd isotopes in the HPB framework. Solid,
dashed, and dashed lines with single dot represent the curves
for y „=—0.0231, —0.0250, and —0.0300 MeV b, respec-
tively. Curve with error bars represents the experimental re-
sult for Pd.

results for 0+ ~ 4z transition charge densities of Pd
isotope are shown in Fig. 5. We notice some interest-
ing features in the interior of this nucleus. Theoretical
results too exhibit these features qualitatively, character-
ized through one negative peak around 4 fm and one posi-
tive peak around 6 fm. However, theoretical results show
shifting of the peaks by approximately 1 fm t;o the left.
The eKect of changes of y, y „, and pairing strength
was also tried. It is observed that there is change only
in magnitude of the peak, but the shift in the peak is
not affected at all. Here we have not shown the results
for hexadecupole excitations for other isotopes, since the
results also show similar deviations in all the cases. The
yrast spectra for these states are in good agreement with
the experimental values and hence it does tell us that the
dynamic properties, in contrast to the static properties,
do need deeper studies of the model and the interactions.
Some of the possibilities are the inclusion of the higher
multiplole interactions, like hexadecupole-hexadecupole
interactions, and renormalizations of the cores which do
not show any eff'ects on the quadrupole properties of these

The results discussed above clearly show that
t;he "quadrupole-quadrupole plus pairing interactions, "
which have been used extensively for the calculation of
static properties, are also successful for the calculation of
transition charge density for the quadrupole excitations
to a great extent, but show some discrepancies for hex-
adecupole excitation in the case of palladium isotopes.
From these results it can be concluded that the realistic
interaction is expected to be mainly of this type, whereas
some part of it is missing which has given rise to the dis-
crepancies for the hexadecupole excitations. It has been
pointed out in some of the earlier observations [21,22]
of medium mass nuclei that the contribution of higher
multipole interactions with di8'erent neutron-proton in-
teraction strength plays some important role. This can
be true for the nuclei under our consideration too. The
contribution of the secondary eKects of subnucleonic par-
ticles to the realistic interactions may also be affecting
the transition charge density results.
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