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Constraint on time-reversal tests in fully chaotic nuclear systems
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In tests exploiting the unique sensitivity of a fully chaotic system like the compound nucleus,
the possibility exists that unknown resonance parameters and interaction matrix elements take on
values which preclude the observation of a violation of time-reversal invariance independent of the
strength of the time-reversal noninvariant interaction. A nontrivial constraint on time-reversal tests
is implied, namely, that the observable has to be sampled a minimum number of times M;„where
M;„)3. Several experiments purporting to be tests of time reversal do not satisfy this condition.
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There is now quite a diverse class of reaction tests
of time reversal exploiting the characteristics of the
chaotic quantum many-body system, the compound nu-

cleus (CN). This class includes traditional detailed bal-

ance (TDB) measurements in the strongly overlapping
resonance regime, most recently performed by Blanke et
aL [1], the capture-asymmetry shift (CAS) measurement
performed by Barabanov et aL [2], and the fivefold corre-
lation (FC) and threefold correlation (TC) measurements
proposed in [3]. Considerable effort is currently being
devoted to the realization of these FC and TC measure-
ments [4], while, motivated by [5], a quantitative survey
of prospects for TDB measurements in the isolated reso-
nance regime has appeared recently [6].

All these tests probe for the presence of an antisyrn-
metric contribution S& ) to the S matrix arising from the
coupling of CN resonances (p and v) by a time-reversal
noninvariant interaction V' (with the standard choice
of phase convention, matrix elements of V' are imagi-
nary; throughout, V„'„denotes this imaginary part). The
tests are of interest in that, as illustrated by the ex-
ample of analogous on-resonance parity-violation mea-
surements [7], they can benefit from considerable en-
hancements in sensitivity. Generically, there is (in the
terminology of [8]) resonance enhancement, referring to
the fact that (S( )).„,...„.„,./(S( l).tt,...„.„,.- D/I',
where D is the average spacing between resonances and
I' their average width (in the isolated resonance regime
of heavy nuclei D/F 10 —10s), and dynamic enhance-
rnent, referring to the fact that matrix elements V„'„ap-
pear in a combination [V„' /(E„—E ), where E„and E
denote resonance energies] which scales as v N, where N
is the number of principal single-particle components of
the states involved (typically, N 10s for the CN states
of interest).

Despite their sensitivity, it is unlikely that these reac-
tion tests of time reversal will do more than constrain
the magnitude of V'. In themselves, bounds on V' can
be instructive as the example of the limit on the elec-
tric dipole moment of the neutron illustrates. However,
for CN reaction tests, the extraction of a bound is not
straightforward. In the planning and implementation of
CN reaction tests of time reversal, it has been customary
to assume that it is enough to perform one measurement

at a suitably chosen energy. In this Brief Report, we

argue on the basis of statistical considerations that an
experiment involving only a single measurement cannot
usefully constrain the stength of time-reversal noninvari-
ant interactions.

The difEculties associated with the extraction of a
bound have their origin in the fact that the analysis of a
time-reversal test requires a stochastic treatment of the
underlying observable. To indicate the character of this
theoretical treatment, let us consider (for the sake of def-

initeness) the case of FC measurements. In a FC exper-
iment, a null measurement at resonance p constrains a
linear combination of the form [8]

v'
p —

I j ( Ynj ~ng ' 4g ' ~ng j (E

) A("l V„'„,

where the sum extends over adjacent resonances of the
same spin and parity (p„". denotes the partial width am-

plitude for emission of a neutron of spin j). The sum in

Eq. (1) is, in general, over very many resonances. Thus,
in common with other CN reaction test obervables, 6„
involves a large number of independent matrix elements

V& which cannot be determined individually from ex-

periment. Nor, because of the complexity of CN states,
can they be reliably calculated from a nuclear model.

The stochastic approach [8] circumvents this problem

by allowing for all possible values of the matrix elements

V&„. Fortunately, because of the fully chaotic character
of a CN system, the nature of CN matrix element dis-

tributions is simple. On general grounds [9], it can be
assumed that the distribution of values of CN matrix el-

ements V&„ for diferent pairs of resonances A and p is

a zero-centered Gaussian. A single parameter then suf-

6ces to characterize the distribution of matrix elements

V&„, namely, its variance e, and, in the corresponding
analysis of time-reversal test data, attention is focused
on extraction of information on this parameter.
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Within the stochastic treatment, the value of 4„ is
viewed as being drawn Rom a zero-centered Gaussian of
variance

v2 ) (A(i ))2 2 A2 v2
p

ambiguities concerning the choice of prior distribution
can be resolved). Nevertheless, we have found that a
simple-minded approach based on the use of "standard
errors" [ll] is instructive (the defect of this approach is
that it does not guarantee that estimates for v are posi-
tive). Supposing a data set (X,.) comprising M indepen-
dent measurements (i = 1, . . . , M) of a time-reversal test
observable X, we use

In the event that all the resonance parameters are known

(i.e., all the coefficients A&" are known), introduction of
the auxiliary observable b'„= 6„/A„ is indicated [10].
Like the matrix elements V&„, b„has a Gaussian distri-

bution of zero mean and variance v, a fact which can be
used to obtain v2. Should there be any unknown reso-
nance parameters, then the stochastic treatment can be
generalized accordingly [8]. The distribution of the auxil-
iary observable which replaces b„remains symmetric but
is, in general, distinctly non-Gaussian, being somewhat
broader.

Let us now turn to the issues involved in the extraction
of a bound on v . The sensitivity of individual measure-
ments is of primary importance in determining the level
at which a reaction test can distinguish if v2 is nonzero
or not. However, within the stochastic analysis of a sin-
gle null measurement, the possibility that the values of
the matrix elements V& (and any resonance parameters
which may be unknown) have caused the observable (e.g. ,

4„) to take on a value which precludes detection at the
level of sensitivity of the experiment cannot be excluded a
priori. This possibility arises no matter what the magni-
tude of v is. In short, it is not appropriate to assume that
a single null measurement automatically places a useful
bound on v . On a more mundane level, we note that,
within standard sampling theory, it is not possible to
infer an estimate for the variance of a random variable
without knowledge of at least two independent values and
this restriction holds regardless of the actual magnitude
of the variance.

It is apparent that we need a criterion which identi-
Bes whether or not a CN reaction test experiment does,
&om a statistical point of view, usefully constrain time-
reversal noninvariance —i.e., sets a bound on v2 at the
nominal level of sensitivity of the experiment at a reason-
able con6dence level. In arriving at a criterion, we 6nd
it helpful to turn this issue around and pose the ques-
tion, under what circumstances would an experiment not
be suitable? We believe (and the arguments we present
below seem to confirm) that these statistical concerns
boil down to the following restriction: There is a certain
minimum number of independent measurements, M;„,
which need to be performed. The example cited above
of estimating the variance of a random variable within
standard sampling theory indicates that this condition
should prove nontrivial; at the very least, M;„&2.

To arrive at a more quantitative result, we need to
decide upon a specific method for the statistical evalu-
ation of the reaction test's data. Unfortunately, no en-
tirely satisfactory prescription is currently available (al-
though a Bayesian-type approach would be adequate if

to estimate v and

(4)

to gauge the uncertainty inherent in this estimate. (It
sufBces to consider only even moments because, in all
cases of interest, odd moments vanish. )

To proceed along these lines, some input on the form
of the probability distribution p,„~i((X;))for a data set
(X;) is required. The nontrivial component is the theo-
retical distribution function pqh for the value X of a reac-
tion test observable in the absence of any experimental
uncertainties. It accommodates, along the lines devel-
oped in [8], the possible variations in the matrix elements
V„'„(as well as, if need be, the unknown resonance pa-
rameters) and is parametrized in terms of the unknown
v2. In fact, it is the conditional probability pi), (x~v )
and, without loss of generality, may be taken to have
variance v [8]. To obtain p,„~i((x,)), it remains to con-
volute pqg with distributions describing the experimental
uncertainties. In line with standard practice, we take the
experimental error associated with the ith measurement
to be drawn from a zero-centered Gaussian of variance
cr; . Thus, the desired experimental probability distribu-
tion

1 (X; —Y;)exp-
/27r(r2

x p, h(Y;]v ),

where d[Y;] denotes integration over all the Y s. Odd
moments of pi), (x]v2) and, hence, p,„~i((X;))all vanish.

Let us now take up the use of m2 and m4. Trivially,
the average value (m2) of m2 is

Hence, an estimator (in the jargon of statistics) for v

is 6[ = m, 2 —O„„where 0 „is the arithmetic average
of the estimators t) „(i) for the uncertainties 0.2. The
latter are taken to be known independently &om an as-
sessrn. ent of counting statistics and systematic errors. VVe

assume that 8 evaluates to a positive number (otherwise
the present sampling method fails).
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The standard error in our estimate 8 for v is its
variance var(8). Under the assumption that m2 and
8„,are uncorrelated (reasonable if we assume errors are
dominated by counting statistics), the variance in 8 is
var(8) = var(m2) + var(8„,). A lower bound to the
variance in 8 (which will suffice below) is thus given by

Var 7%2 = m4 — A%2

) (v'+o,')' + Kv'

where we have introduced the kurtosis z of p&h(X[v2)
which allows us to express the fourth moment of this
distribution in terms of its second through (X4)
(r + 3)(X2)2 [here, (X") denotes the kth moment of
pt~(X[v )]. We note that the kurtosis is a measure of the
broadness of the distribution (relative to that of a Gaus-
sian of variance v~) which is independent of the magni-
tude of v2.

Armed with these results for 8 and var(8), we now
consider the circumstances under which the inequality

8 )) var(8)

is satisfied. Adopting the above lower bound for var(8)
[with v2 replaced by its estimator 8 and each o 2 by its
estimator 8„,(i)], Eq. (8) implies

(8) (8)
(M —2 —K) [ [

)) 4[
~

+2(1+r),
(8err ) (8err ) (9)

where

Observe that, since we assume 0 ) 0 and r is always
positive, the right-hand side of Eq. (9) is positive. Thus,
from the fact that the left-hand side of Eq. (9) must be
positive if the inequality is to be satisfied, we read off the
following condition: The sample size M must be such
that

M )M;„= int(K) + 3,

where int(K) denotes the largest integer less than or equal
to ~. Representative values of Mm;„ for CN reaction tests
of time reversal are quoted in Table I (complete spin as-
signments are assumed). In all cases of interest, K ) 0 so
that M;„&3.

What is the significance of the result in Eq. (11)? We
claim that it serves to delineate experiments which are
suitable for setting bounds on time-reversal noninvari-

ance from those which are not. We note that, if the
inequality in Eq. (11) is not satisfied, then the inequality
in Eq. (6) cannot hold —i.e. , 8 cannot be distinguished
from zero. This conclusion applies independent of the
magnitude of v or its relation to the nominal sensitiv-
ity of the experiment (as measured by 8„,). Thus, un-
less Eq. (11) is satisfied, an experiment will be unable
to distinguish the estimator 0 for v from zero even in
the event that v2 exceeds the nominal level of sensitiv-
ity of the experiment. Clearly, interpretation of the data
of an experiment which does not fufill Eq. (11) as null
measurements must be suspect.

The expression obtained for M;„ is plausible. The
occurrence of the number 3 in the expression re8ects the
fact that, in the absence of any prior information, at least
three values of a random variable are required to gauge
the reliability of an estimate of the variance. Likewise,
the dependence on e arises because the broader (nar-
rower) pii, (z[v ) is, the more (fewer) measurements one
would expect to have to perform 'to pin down its variance
v2. For these reasons, we believe that the Mm;„criterion
should survive in a statistical analysis which guarantees
that 8 is positive.

The implications of the M;„criterion in Eq. (11) for
CN reaction tests of time reversal are fairly sobering.
In the planning of the epithermal TC measurement [4]
and the implementation of the CAS experiment reported
in [2], it has been assumed that it is enough to perform
one measurement at a suitably chosen energy. Even if
complete spectroscopic information on resonance param-
eters were available in the CAS experiment (which is
not the case), meaning that pii, could be chosen so that
K = 0, at least two more measurements would be re-
quired to satisfy the M;„criterion. We conclude that
the CAS experiment of [2] cannot legitimately be used
to constrain time-reversal noninvariance. More worry-
ing perhaps is the implication that the current strategy
for the projected epithermal TC measurement of sitting
on a single p-wave resonance in issLa (at 0.63 eV) is
misguided. Further p-wave resonances of the same spin
must be found in 3 La or this choice of target must be
discarded.

Not all time-reversal tests fall foul of the M;„cri-
terion. The proposal for epithermal FC measurements
discussed in Ref. [12] can easily accomxnodate the M
criterion. The same is true of the TDB measurements
envisaged by Drake et al. [6]. In this latter proposal,
there is some freedom in the choice of target. Five are
considered in Ref. [6]: 2sNa, ~7A1, siP, 3sC1, and K. In
view of the M;„criterion, the first two would have to be
discarded on the basis of the currently available data (in
neither have more than two resonance pairs of the same
spin and parity been identified). Of the remainder, Cl

Experiment
TDB tests [6)
TC test [4]

TABLE I. M;„ for various CN reaction tests.

Assumption
Complete spectroscopic information
Only ratio of neutron partial widths unknown

Mmin (&)
3 (0)
4 (-', )



50 BRIEF REPORTS 2239

would appear to be the most promising candidate: As
many as eight resonance pairs of same spin and parity
(I ) have been identified.

In conclusion, we have presented a simple criterion (in
terms of the minimum number of independent measure-
ments which have to be performed) to judge whether a

CN reaction test of time reversal will actually set a use-
ful bound on the strength of time-reversal noninvariant
interactions.

I acknowledge support by the Stellenbosch 2000 Pund.
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