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Meson-exchange current (MEC) contributious to the parity-violating (PV) asymmetry for elastic
scattering of polarized electrons from He are calculated over a range of momentum transfer us-

ing Monte Carlo methods and a variational He ground state wave function. The results indicate
that MEC's generate a negligible contribution to the asymmetry at low ~q~, where a determination
of the nucleon's mean square strangeness radius could be carried out at CEBAF. At larger val-
ues of momentum transfer —beyond the first diffraction minimum —two-body corrections from the
p-vr "strangeness charge" operator enter the asymmetry at a potentially observable level, even in
the limit of vanishing strange-quark matrix elements of the nucleon. For purposes of constraining
the nucleon's strangeness electric form factor, theoretical uncertainties associated with these MEC
contributions do not appear to impose serious limitations.

PACS number(s): 24.85.+p, 25.30.Bf, 24.80.Dc, 14.20.Dh

I. INTRODUCTION

One objective of the CEBAF physics program is to
probe the strange-quark "content" of the nucleon with
parity-violating (PV) electron scattering. As discussed
elsewhere in the literature [1—7], PV electron scattering at
low-to-intermediate energies is particularly suited to the
study of strange-quark vector current matrix elements,
(H~ap„a~H), where H is a hadron. In the case where the
target is a nucleon (~H) = ~p) or jn)), this matrix ele-

ment can be parametrized by two form factors, G@(')(Q2)

and GM (Q ), the strangeness electric and magnetic form
factors, respectively. Extractions of (N~aa~N), the nu-
cleon's strange-quark scalar density, kom x-N scatter-
ing [8,9], as well as determinations of the strange-quark
axial vector matrix element, (¹~p„psa~N), from elastic
v„p/P„p scattering [10—12] and measurements of the gq
sum [13—15], suggest that the strange-quark "sea" plays
a more important role in the low-energy properties of
the nucleon than one might expect based on the success
of valence quark models. Measurements of (¹~p„s~N)
would provide an additional window on the sea-quark
structure of the nucleon. Model estimates of 0& and

GM at low ~Q ~
span a wide spectrum in both magnitude

and sign [16—21]. It is therefore of interest to extract the
strangeness form factors at a level needed to distinguish
the model calculations and their attendant physical pic-
tures.

To this end, use of a proton target would not be suf-
ficient. The presence of several poorly constrained form
factors in the PV elastic H(e, e) asymmetry, as well as
theoretical uncertainties associated with axial vector ra-
diative corrections, limit the precision with which GE

and GM could be determined from the proton alone [1,2].
The use of A & 1 targets in conjunction with the proton
offers the possibility of imposing more stringent limits
on the nucleon's 8-quark vector current matrix elements

[1,2,22] than could be obtained with a proton target only.
In this regard, the (J,T) = (0+, 0) nuclei, such as 4He,

constitute an attractive case, since the ground states
of such nuclei can support matrix elements of only one
operator —the isoscalar Coulomb operator [1,2,22,23]. In
the one-body approximation to this operator, the nuclear
wave-function dependence of the Coulomb matrix ele-

ments effectively cancels out &om the PV asymmetry for
such nuclei, leaving only a sensitivity to standard model

couplings and single nucleon form factors (e.g. , G& ).(e)

Two approved CEBAF experiments rely on this feature
of Ar, R(0+, 0), the PV left-right asymmetry [24,25]. The
proper interpretation of ALR(0+, 0) requires that one un-

derstand the importance of many-body corrections to the
one-body asymmetry. Meson-exchange currents (MEC's)
constitute one class of such many-body effects. In pre-
vious work [26], we computed MEC contributions to the
4He mean-square "strangeness radius, " which generates
the leading s-quark contribution to ALR( He) at low ~q~.

The results of that calculation, performed with a sim-

ple 4He shell model wave function and phenomenologi-
cal two-body correlation function, indicate that the He
strangeness radius is dominated by strange quarks inside
the nucleon.

In the present work, we extend the calculation of
Ref [26] using a . He variational wave function obtained
from realistic interactions and computing the asymme-
try over the full range of momentum transfer germane
to the future CEBAF experiments. Our results indicate
that the He strangeness radius is 2 orders of magnitude
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more sensitive to the nucleon's strangeness radius than
to two-body contributions. At the higher lql of exper-
iment [24], the situation is more complex. Even if the
nucleon matrix element (Nlsp„slN) were to vanish, the
PV asymmetry would still receive a non-negligible con-
tribution from non-nucleonic s-quark matrix elements.
In particular, the p-vr strangeness transition charge op-

erator generates nearly a 15'Fp contribution to the asym-
metry at the kinematics of the experiment [24]. In this
case, an experiment like that of Ref. [24] would be sig-
nificant in two respects. First, it would be interesting to
measure a non-negligible strange-quark matrix element
in a strongly interacting, nonstrange system, regardless
of the dynamical origin of that matrix element. Second,
the only other observable with significant sensitivity to
the p-ir MEC is the B form factor of the deuteron [27].

If, however, G& and GM are nonzero, the level of the-(8) (~)

oretical uncertainty associated with the present MEC
calculation does not appear to be large enough to signif-

icantly weaken the possible constraints on GE which a
measurement of Ar, R( He) could provide.

In the remainder of the paper we provide details of
the calculations leading to these conclusions. Section II
gives our formalism, including expressions for the oper-
ators used. In Sec. III, we treat the computation of the

He matrix elements of these operators, considering first
the simple case of a shell model ground state and subse-

quently turning to the variational Monte Carlo (VMC)
approach. In Sec. IV we discuss our results, including im-

plications for the interpretation of ALR( He) and studies
of nucleonic strangeness. Technical details may be found
in the Appendix.

II. FORMALISM

F = vt Rl. + vTRT,
PV T T'

AV + TWAV + vT' WVA

(4a)

(4b)

where vL„vT, and vT are leptonic kinematic factors; Rl.
and RT are the usual longitudinal and transverse EM
response functions; and WA& and W&& are analogous
PV response functions involving products of the hadronic
EM and vector NC (AV) or axial vector NC (VA) [1,2].

In this work, we follow the approach taken in
Refs. [1—7] and keep only the three lightest quarks in
the hadronic current. In this case, one has for the two
vector currents

gEM JEM(T 1) + JEM(T p) (5.)

+~v s&) s
~ (5b)

where the JEM(T) are the isovector (T = 1) and isoscalar

(T = 0) EM currents and the (v are couplings deter-(~)

mined by the standard model [1,2,22]. A decomposition
of J„s analogous to that of Eq. (5b) but involving the
SU(3) octet of axial currents and sp„ass may also be
made [1,2,7]. Since the 4He ground state supports no ax-
ial vector matrix element, however, we do not consider
J 5 further in this work.

In the limit that the He ground state is an eigenstate
of isospin, the "hadronic ratio" for this target is

with pj and q = lql being the energy and magnitude of
three-momentum transfer to the target. The response
functions appearing in the ratio of Eq. (3) may be written
as

The PV left-right asymmetry for scattering of polar-
ized electrons &om a nuclear target depends on the inter-
ference of the electromagnetic (EM) and PV weak neutral
current (NC) amplitudes, MFM and MN&, as

W 1 ~ (lF ()
F 2 F=() (6)

2ReMEMMwe
lMEMl'

Here, V 3+= = —4sin His) and (& = —1 at tree level in
the standard model [1,2,22]. The form factors are given
by

where lMEMl )) lMNcl at low energies. The amplitude

MN& is proportional to the sum of two terms,
(q) = (o+olM,", (q) lo'o) (7a)

where lN~& is the electron's vector (axial vector) neutral
current and J is the nucleon or nuclear matrix element~(5)
of the hadronic vector (axial vector) NC. One may rewrite
ALR in terms of quantities which set the scale of the
asymmetry and a ratio of nuclear response functions [1,2]

Mt ~(q) = f d jo(qz)Y (jj )p~ ~(~)

dO~ Ypp(Oq) p( l (q),4'

(7b)

G q2 WPv
+LR-

2~2~n
(3)

where G~ is the Fermi constant measured in muon decay,
o is the EM fine structure constant, and Q = (jj —q

where T = [xi and p( l (x) [p( l (q)] denotes the
coordinate-space (momentum-space) charge ()a = 0)
component of either the isoscalar EM current [(a) ~ T =
p] or strange quark current [(a) ~ (s)]. Matrix elements
of the Coulomb operator are simply related to the elastic
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charge form factor as

(q) = (0+016(q) lo+o) = 2~~F&& (q) (7d)

One observes from Eq. (6) that were the nuclear ma-

trix elements of Moo (q) to vanish, the asymmetry would
" {s)

be nominally independent of the details of the nuclear

wave function. ~ The reasons are that (i) in the absence
of strangeness, the hadronic isoscalar EM and isoscalar
NC currents are identical, up to the overall electroweak
coupling, ~3+=, (ii) isovector matrix elements vanish
if the He ground state is assumed to be a pure T = 0
state, and (iii) a spin-0 ground state cannot support axial
vector matrix elements.

A. One-body operators

Expressions for the one-body charge operators may be obtained starting &om Lorentz-covariant forms of the single-
nucleon vector current matrix element:

(~(p') I&A(0) I~(p)) = U(p') F~(Q')~P + ' ~P-Q" U(p) (8)

where Fq and Fz are the standard Dirac and Pauli form factors of the nucleon, U(p) and U(p') are nucleon spinors
corresponding to nucleon states IN(p)) and IN(p')), respectively, and V„(x) is any one of the vector currents of interest
(isoscalar EM or strangeness). Expanding the right side of Eq. (8) in powers of p/mE, transforming to coordinate
space, and summing over all nucleons gives for the p = 0 component,

A (~) ~

"(ai( )[lj ) iq xq E 'i )

&'+ , (G"( ) —2G" ( )) ~ q x P
8m~

(9)

where r =——Q /4m' ——q /4m~ for elastic scattering in
the Breit kame, PA,. ——py + pj„and

GE ——Fq —~F2 )
(~) (~) (~)

G() F(~) + F(~)
M 1 2 )

(loa)

(10b)

are the Sachs electric (loa) and magnetic (lob) form fac-
tors [28]. In arriving at the expression in Eq. (9), we
have used the spinor normalization of Ref. [29]. Had we
followed the convention of Ref. [30], the charge operator
would have contained an additional term AA,. inside the
square brackets given by

and

Gv(r) = (1+Avr)
(„=(1+A„r) '

(, = (1+AEi'lr)

GE,M 2 [GE,M + GE,M] ~

GE,M 2 [GE,M GE,M] .

(13a)
(13b)

(13c)

(14a)

(14b)

1
, (pl+p". )(1+ )

'

x GE (r)+rGM (7.)

GE(r) = GV(r)

GM(r) ppGV (r) ~

(12a)

(12b)

Following the convention in Refs. [1—4], we parametrize
the momentum dependence of the one-body form factors

Numerically, one has p„= 2.79, p„= —1.91, A&
4.97, and A„= 5.6. The rationale for adopting this
parametrization is discussed more fully in Refs. [1,2].
The parameters p, and p„which de6ne the strangeness
magnetic moment and strangeness radius, respectively,
as well as AE which governs the next-to-leading Q be-

(s)

(s)havj. or of GE, are presently unknown. One goal of the
SAMPLE experiment [6] and upcoming CEBAF experi-
ments [24,25,31] is to place limits on these parameters.

The one-body contribution to the Coulomb multipole
operator, obtained by substituting the expression for theGE(r) = S-«V (r)(-(r)-

GM(r) = IJ,„Gv(r)
(12c)
(12d)

with

GE (r) = p, rGV(r)(, (r),
GM (r) = V'Gv(r),

(12e)

(12f)
Apart from contributions from nuclear dispersion correc-

tions; see, e.g. , Refs. [1,2,22].
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charge operator of Eq. (9) into Eq. (7b), is

A (~)

Moo (q) = ). io(q*~)
-() [q 1 - GZ (T)

2 vr 1+r
G( )( ) 2g( )

( )
q 21(q~I )

2mN mN Vlf

xa.e. I

where we have assumed qo ——0 so that q = 4m&w and
where Lg is the orbital angular momentum of the kth
nucleon. Note that in the limit that the He ground
state consists of nucleons in S states only, the spin-orbit
operator in Mo(o)(q)[ ] will not contribute to F&z (q). In
this case, the Coulomb matrix elements for the isoscalar
EM and strangeness charge operators are identical, apart
&om the single nucleon form factors, rendering their ratio
independent of nuclear structure:

g( )(q)[ ] G( )( )
FT=O(q) [1] gT=O(T)CO S waves

(16)

However, the presence of a significant D-wave component
(the associated probability is about 16% for the varia-
tional He wave function discussed below) implies some
level of structure dependence in the one-body form factor
ratio of Eq. (16). For most values of momentum transfer,
the magnitude of this structure dependence is negligible
[see the spin-orbit contributions in Figs. 2(b) and 3(b)].

A (*)P~(*) TW~(*)
2mN

(17a)

~AN —g NN0N(+) '7 + 0 ~ P ' T4'~(+)
2mN

(17b)

strangeness two-body currents have the same structure,
apart from the form factors appearing at the NN cre-
ation/annihilation vertex and V-vr transition vertex. The

He elastic from factors receive no contribution from pro-
cesses in which a virtual p or Z couples to an exchanged
pseudoscalar or vector meson. The reason is that matrix
elements of the form (M~ V„(0)]M') must vanish in order
to respect G-parity invariance when ~M') and ~M) are
identical meson states (apart from momenta) and when

V„ is either JEM(T = 0) or sp„s M. oreover, one has
no contribution &om an u-m transition current since cur-
rents which are strong isoscalar operators cannot induce
such an isospin-changing transition. We have not in-
cluded contributions &om isobar currents, since the light-
est nucleon resonance accessible with an isoscalar current
is the K(1440). We assume contributions from the asso-
ciated current are suppressed by the large mass difference
between this state and the nucleon.

We derive two-body charge operators by computing
the covariant momentum-space Feynman amplitudes as-
sociated with the diagrams in Fig. 1, performing the stan-
dard nonrelativistic reduction, and transforming to coor-
dinate space. We take the meson-nucleon couplings &om
the conventional low-energy effective Lagrangians:

B. Taro-body operators

In the one boson-exchange (OBE) approximation, the
leading two-body MEC corrections to the one-body result
of Eq. (16) are generated by the processes in Fig. 1. The
vr-exchange and vector meson-exchange "pair currents"
[Figs. 1(a),(b)] are familiar from previous work on MEC's
[32—36], as is the pseudoscalar-vector meson "transition
current" of Fig. 1(c). In each case, the isoscalar EM and

M gymrv~

vms. M' M

N'

(b) (c)

FIG. 1. Two-nucleon (N and N') meson exchange cur-

rent (MEC) contributions to nuclear matrix elements of the

isoscalar EM and strange-quark vector currents. "Pair cur-
rent" processes, shown in (a) and (b), arise from the negative

energy pole in the intermediate-state, single nucleon propa-
gator. "Transition current" contributions (c) are generated

by matrix element of the current operators (indicated by the

) between mesonic states (M' and M). As explained in the

text, mesonic matrix elements of J„(T= 0) and sp„s vanish

when M' = M.

(17c)

and

D" = 8" + ieQEMA" +igQ~Z", (17d)

where as usual a denotes either the EM or strange-quark

where QN is a nucleon field, m, p„, and u„are the pion,
p-meson, and u-meson fields, respectively; a is an isospin
index, g is the semi-weak coupling, QEM and Qiv are
the EM and weak NC charge operators, and A" and
Z" are the photon and Z fields, respectively. We take
the couplings appearing in Eq. (17) to have the values

g~NN: 13i6) gpNN: 2o6) g~NN = 14+6) Kp: 6+6)
and v, = —0.12 [37]. Momentum-space matrix elements
of the operators in Eq. (17) have the same structure as
the effective Lagrangians, but with the nucleon fields re-
placed by plane wave spinors, the derivatives replaced by
ik", where k" is the momentum of the outgoing meson,
and the vector boson fields replaced by the corresponding
polarization vectors, c„. For the p-m transition current
matrix element one has
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current [38]. In the case of the former, the value of the
transition form factor at the photon point is known to be
g+=0(Q2 = 0)—:g~ ~ = 0.56 [39], while the Q2 depen-
dence may be modeled using u-pole dominance:

g ='(q') = g~~(1 —q'lm'. ) '. (19)

In the case where V„= 8p„8, one may follow a simi-(a3

lar approach and assume +meson dominance, which is
reasonable since the P is almost pure as:

gl &(q ) = g~, (1 —q'/m4, ) '. (20)

The measured rates for P ~ pn and P ~ l+l (l is a
charged lepton) can be used to estimate the value of this
form factor at Q = 0 to be lg~, l

= 0.26 [40].
Before proceeding, we touch on one issue associated

with the vector meson pair current operators. These op-
erators are derived by keeping only the negative-energy
pole of the nucleon propagator, as shown in Fig. 1. The
resulting two-body nuclear matrix element is thus dis-
tinct &om the matrix element containing the positive en-

ergy pole, which contributes via the full nuclear Green's
function in time-ordered perturbation theory:

- (f1~ l~)(~III«~li) (fIII~«l~)(nl& li)+
E; —E„+is E. —E

Here, Inc« is the full nuclear Hamiltonian and (i, f, n)
denote initial, 6nal, and intermediate nuclear states, re-
spectively. Following this prescription leads one to a
two-body pair-current operator having the same form as
given in Ref. [36]. It has been argued, however, that
one must include an additional retardation contribution
arising &om the positive-energy pole in the nucleon prop-
agator whose residue contains a dependence on the en-

ergy transfer between the two nucleons. Inclusion of this
additional term results in the form for the pair-current
charge operator given in Refs. [32,33]. Rather than at-
tempting to choose between these two approaches, we

compute I"&'~ in two ways —once using each of these two
prescriptions —in order to determine the impact of this
choice. As we note in Sec. IV, the vector-meson ex-
change contributions to the 4He form factors are sufB-
ciently small in comparison with other contributions that
the impact of this choice in the value for I"&~'~ is insignif-
icant.

The momentum-space charge operators for the pair
currents are

2

P( „P'„P„P'; P) Pr,.'„q,,r= (2r)'2(k, +k, —q), P,"(r)r, r. . .rr, . qrrr. k, +(1 rr 2)),

where k; = p,' —p;, i = 1,2, and

(22a)

2

p(p& pl p2 p2'q)v,".—(2n) b(kq + k2 —q) s GM(r)Tv(1, 2)

x 2 ~ [(1+~„)(q.k2+ crz x q cr2 x k2) —ioz x q (p2+ p2)]+ (1 w 2) (22b)t
k22+ m~~

excluding the retardation correction or

)( (P12pli P21P$2 q)v I2222P (2~) ~(k& + k2 q) s T&(1 2)1

x
~ 2 2 ([(1+~v) F,' (r) + (1+~v)F2' (r)]crz x q cr2 x k2k, +m

including the retardation term, with

+G&(r)[(1+icy)q k2 —icrq x q (p2+p2)]) + (1++ 2) (22c)

i (1 2) =
1, V=(u

and where (z) indicates either the isoscalar EM or strange-quark charge operators. We have not included the isovector
parts of the charge operators. For the transition operators, one has

p(pq, p~, p, p2; q) ~ j = i(2x) b(k) + k2 —q) 4m pm~2

1
p +p

—1(1 + xr) (kr x kr) . (kr x r r)] + (1 m 2) )
. (24)
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Expressions for the coordinate space forms of the two-
body charge operators, p(xz, xz, x2, x2, q)~ ~, as well as
for their Coulomb multipole projections, Moo(q)~ ~, are
somewhat involved and may be found in the Appendix.
For purposes of discussion, it is useful to consider the
leading-q behavior of the two-body Coulomb operators
[shown in Eqs. (A10) of the Appendix], since their matrix
elements contribute to the He EM and strangeness radii.
From the low-q expressions for the two-body Coulomb
operators, we observe that they vanish at least as rapidly
as q for small q. The operators must vanish at q = 0,
since the two-body operators cannot change the overall
charge (EM or strangeness) of the 4He nucleus. In the

case of strangeness, the entire nuclear form factor F&'z

must vanish at q = 0, since the nucleus has no net
strangeness. Thus, in analogy with the single nucleon
case, we define a nuclear strangeness radius as

[26], and we provide more details in the Appendix of the
present paper.

A. Shell model calculation

In the simplest shell model description of He, the
ground state consists of a single configuration: four nu-
cleons in the 18&~~ state. Numerical results using more re-
alistic wave functions, such as the variational wave func-
tion described below, suggest that the level of configura-
tion mixing is at least 15'Fo. Within the S-state approxi-

mation, we compute the leading-q behavior of F&'0 using
harmonic oscillator single-particle wave functions with an
oscillator parameter b = 1.2 fm, obtained &om fits to the
data on F&e= [2]. Analytic expressions for the nuclear
matrix elements appear in the Appendix, and our results
give

p, [nuc] = 2~+
d7. (25)

Under this definition, p, [nuc] = Ap, in the one-body
limit neglecting the spin-orbit contribution. From the
expressions in Eq. (A10), we note that the pionic opera-

tor [Eq. (A10a)] contributes to Fz~'ol at O(q ), since this

operator is proportional to q Fz and since F~ van-
ishes as q for small q. Consequently, the longest-range
MEC does not contribute to the nuclear strangeness ra-
dius. For the same reason, the retardation correction
to the vector meson pair current operator (Eq. (22c)
and Ref. [33]) also does not contribute to p, [nuc], since

this correction is proportional to rF~' (r). As a result,
the low-q behavior of the vector meson contribution to

(e)
F~o ls independent of the choice of approach discussed
above. This choice takes on relevance only at larger val-
ues of momentum transfer, where the terms proportional
to rF~' (r) are non-negligible.

III. CALCULATION OF 4He MATRIX
ELEMENTS

Although the object of this paper is to report on a cal-

culation of F&0= and F&'z using state of the art wave

functions, we first summarize a simpler calculation of
the He strangeness radius using a shell model ground
state with harmonic oscillator wave functions. This sim-

pler treatment allows for an analytical computation and
serves to guide one's intuition when interpreting results
obtained with more sophisticated methods. The results
of the shell model calculation were reported previously

F~~'~~(~ -+ 0) = ~p, [ He]
2 7r

(rA1P +sA2nijs + A2bgps's)1 (26)

where the terms containing Aq and A~ g give the one-
and two-body contributions, respectively. The one-body
term is nuclear structure-independent, since the leading

q dependence of the one-body strangeness Coulomb oper-

ator is given by G& times an operator which counts the
number of nucleons [see Eq. (15)]. The two-body term
Aq p,, arises &om the vector meson pair currents, while

the term A~gg~, is generated by the p-vr transition cur-
rent. Numerically, in the limit of point meson-nucleon
vertices [AM ~ oo in Eq. (35)], we obtain Aq = 1.13,
Aq~ = —0.05, and Aqg = —0.02 after including a phe-
nomenological NN anticorrelation function in the two-

body matrix elements. We expect that the values of the
A~ g for Bnite AM should be smaller in magnitude than
those quoted, which we take to give an upper bound on
the scale of two-body contributions. These results imply,
then, that p, [ He] is at least a factor of 20 more sensi-

tive to the nucleon's strangeness radius than to two-body
strangeness currents.

We note in passing that had we not accounted for
short-range NN repulsion, the vector meson contribu-
tion would have been a factor 2 larger in magnitude and
the p-7r term matrix element would have been a factor of
10 larger. The reason for the large suppression of the p-vr

term due to short-range repulsion can be seen &om the
structure of the momentum-space p-m charge operator in

Eq. (24). At leading order in q, the Coulomb projection
of this operator has the form

2

(k~ + m2)(k~~ + m ) (m —m2) k~ + m2 k~ + m2
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where 0 is an operator dependent on crq 2 and kq. Nu-

clear matrix elements of the full operator in Eq. (27) thus

depend on the difference of matrix elements of two opera-
tors, A(m ) and A(m~), whose ranges are set by m and

mp, respectively. In the absence of short-range anticorre-

lations, one has 2(g.s.l]A(m )llg.s.) = (g.s.]]A(m~)l]g.s.).
The impact of short-range repulsion is to reduce the p-

meson term (g.s.l]A(m~)llg. s.) by about a factor of 2,
while leaving the matrix element of the pionic opera-
tor, whose range is much larger than the radius of the
repulsive core, relatively unchanged. Consequently, the
degree of cancellation between the two pieces is greatly
enhanced, leading to the factor of 10 reduction in A2g, as
compared with the less significant impact on the magni-
tude of the purely vector meson matrix elements, Aq .

B. Variational Monte Carlo calculation

]0) =
i 1+ ) U~sN'

~

8 (1+V;,) ]4~). (28)
(

;&&a
' )('&,: )

Here 8 is the symmetrizer, and ]4'g) is a Jastrow wave
function

l@~) =
~ L ~

i&j
f (r', ) ~&l t p4pt~4~), (29)

The 4He variational wave function used in the present
work is obtained by minimizing a realistic Hamiltonian
with the Argonne vq4 two-nucleon [41] and Urbana-VIII
three-nucleon [42] interaction models. It has the sym-
metrized product form given by [42]:

predictions and the experimental data over a wide range
of momentum transfers [42]. Because of the relatively
strong tensor component in the Argonne vq4 the D-state
probability has the rather large value of 16%.

The charge and strangeness form factors are given by
the expectation values

F~" = 2v ~F~". (~) = (~ ql~" (q)l~) ~ (32)

where ]4;q) denotes the ground state wave function re-
coiling with momentum q, and j~ l(q) are the r-space
representations of the charge and strangeness operators
listed in the Appendix. The above expectation value is
computed, without any approximation, by Monte Carlo
integration. The wave function is written as a vector in
the spin-isospin space of the A-nucleons for any given
spatial configuration R = (rq, . . . , r~). For the given R,
we calculate the state vector pi l(q)l4) by performing
exactly the spin-isospin algebra with the methods devel-

oped in Refs. [32,44]. The momentum-dependent terms
in j~ ~ are calculated numerically; for example,

V, 4(R) = [4'(R+b, , ) —4'(R —b; )], (33)

where b; is a small increment in the ri component of
R. The R integration is carried out with Monte Carlo
techniques by sampling a large set of R configurations
with the Metropolis algorithm. :

The two-body pion and p-meson operators have been
constructed &om the Argonne vq4 following the method
outlined in Ref. [44]. This implies replacing the propaga-
tors in Eqs. (22a)—(22c) by the Fourier transforms v (k)
and v~ (k) of the isospin-dependent spin-spin and tensor
components of the interaction model as

where A is the antisymmetrizer acting on the spin-isospin
states of the four nucleons. The two-body correlation
operator U;~ is taken to be

, m V (k) = 2v' (k) —v (k), (34a)

with

p=r, cr, ca~, t,t~
u~(r;, )0,", , g ~N(1+ ~~) 1

, -+ Vp(k)
N P

Oi) = Ti T~ ) &Pi ' ~j y ~i ' K~ Ti ' T~ ~ Sij ) ~i2 Ti ' T~ j

p = w, o, err, t, 6- .

The three-body correlation operator U,. -I, is simply re-
lated to the three-nucleon interaction present in the
Hamiltonian, and has a correspondingly complex oper-
ator dependence. The correlation functions f'(r) and
u"(r) as well as the additional parameters present in
U; & are determined variationally with the methods dis-
cussed in detail in Ref. [42].

The He binding energy and charge radius calculated
with the above wave function have errors of 4%
when compared to exact Green's function Monte Carlo
(GFMC) results for the same Hamiltonian [42,43] (we
note that the GFMC results reproduce the empirical val-
ues). This wave function also produces a charge form
factor that is in good agreement with the exact GFMC

= v' (k) + v (k) . (34b)

The replacements Eq. (34) are the ones required for the
construction of a two-body electromagnetic current op-
erator that satisfies the continuity equation with the in-
teraction model [44]. We here apply this replacement to
the pair current EM and strangeness charge operators as
the generalized propagators constructed in this way are
then consistent with the short-range behavior of the cor-
responding interaction components. This short-range be-
havior is determined phenomenologically by 6tting NN
elastic scattering data. An additional justification for us-

ing the construction Eq. (34) is that it has been shown to
lead to predictions for the charge and magnetic form fac-
tors of the trinucleons [32,42,44], and threshold electro-
disintegration of the deuteron [45] that are in reasonably
good agreement with the empirical data. The cu-meson
propagator in the corresponding pair current, Eqs. (22b)
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and (22c), and the p- and m-meson propagators in the
transition current, Eq. (23), and modified by the inclu-
sion of monopole meson-nucleon form factors

FxxM(& ) =

where M is the exchanged meson of mass mM and AM is
a cutoff parameter. We use the values A~~ ——A~~~ ——

A~~ ——2 GeV, as obtained in boson-exchange inter-
action models [46]. It should be emphasized that the
contributions due to the vector meson pair currents are
not significant in the momentum transfer range of inter-
est here. Furthermore, we note that in evaluating the
contributions due to the vector meson pair currents that
include the retardation correction, the nonlocal terms in

Eq. (22c), namely those proportional to p+p', have been
neglected. This is justified. for the p-meson pair current,
since the nonlocal contribution is suppressed by a fac-
tor (I+ r~) (x~ = 6.6) with respect to the leading term

proportional to Fi' (r). This approximation, however, is

questionable for the &u-meson pair current, since in this
case the tensor coupling is small, ~ = —0.12.

IV. RESULTS AND DISCUSSION

The results of our VMC calculation are displayed in

Figs. 2—6. In computing various contributions to I'Qp=

and I"&'~, we have employed a value of A&
——A„= 5.6(~) (~)

to serve as a point of comparison, although A@) is essen-

tially a free parameter characterizing the next-to-leading

Q -dependence of G~& and is to be constrained by ex-

periment.
Assuming the values p, = —2.12 and p, = —0.2 for the

strangeness radius and magnetic moment of the nucleon,
we find that the relativistic Darwin-Foldy and spin-orbit
corrections to the single nucleon operator, and the two-

body contributions associated with pseudoscalar and vec-

tor meson exchanges as well as the per transition current,
lead to about 0.5% decrease (increase in magnitude) of

p, [4He], a negligible effect.

Results for F&+= = 2~vrF&+o= and F& ——2~vrF&'z

over a range of momentum transfer are shown in Figs. 2

and 3. Figures 2(a) and 3(a) give the full form factor
resulting &om the one- and two-body currents as well

as in the impulse approximation (IA) for comparison.
Figures 2(b) and 3(b) display individual contributions
&om the various one- and two-body terms. As indicated
by the plot in Fig. 2(a) and as noted in previous work

[32], the inclusion of MEC s significantly improves the
degree of agreement with the data on I'&= over a wide

range of q as compared with the IA form factor. The

difference in behavior between I"&= and E&' at low

q is dictated by the different values of the correspond-
ing nuclear charges: F&+=o(0) = AG+&=o(0) = 2 and

F&' (0) = AG@~' (0) = 0. At larger values of q, the nu-

clear EM and strangeness form factors manifest similar
structures, having their first diHraction minima and sub-

sequent maxima at essentially the same values of momen-

turn transfer. Since the various contributions to F&= (q)
are discussed elsewhere [32], we focus on F&')(q) A. t low
momentum transfer, the nuclear strangeness form factor
is dominated by a single nucleon contribution propor-

(~)tional to G& . In this regime, the largest corrections
arise &om the spin-orbit and p-vr transition currents. At
moderate values of momentum transfer (q & 2 fm), the
largest corrections are due to the pionic pair and p-vr

transition currents. In arriving at the results shown in
this figure, we have assumed essentially the Jaffe value for
the nucleon's strangeness radius (p, = —2) and a value
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FIG. 2. He elastic charge form factor, E&= (q). (a) gives
the absolute value of the form factor. Circles indicate ex-

perimental values. Dashed curve gives theoretical prediction
in the impulse approximation (IA) while the solid curve re-
sults from the inclusion of two-body currents (IA+MEC).
(b) shows individual one- and two-body contributions to
Fc =

(q) One-body cont.ribution is indicated by solid curve

(IA). Dashed curves give contributions from the pionic (cir-
cles), p-meson (squares), and ug-meson (asterisks) pair cur-
rents as well as the p-7r "transition current" (triangles). Short
dashed curve indicates the spin-orbit contribution. Only the
absolute value of each contribution is plotted, and the signs
are indicated in parentheses. Vector meson pair current con-
tributions are computed including the retardation correction
to the charge operator [Eqs. (22c) and (A2b)].
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FIG. 3. Same as Fig. 2, but for the elastic strangeness
charge form factor of He, Fz' (q). In this case, only the-
oretical predictions are shown, since no measurements have
as yet been made. Computations were carried out us-
ing (p„y,,) = (—2.0, —0.2), which correspond roughly to
the pole model predictions for these parameters [16], and
a Galster-type parametrization for the q dependence of the
one-body strangeness form factors. A positive sign for g~,
was also assumed.

In arriving at the results displayed in Fig. 3, we used
essentially the pole model value [16] for pD" ' = —2.4,

but not the Q2 dependence for F~', since the latter is
unrealistically gentle in light of simple quark counting
arguments. Had we used, instead, the results of the kaon
loop estimate of Ref. [20], the magnitude of the pionic
contribution would have been a factor of 20 smaller than
the contribution shown in Fig. 3, and the sign would have
been opposite. Similarly, the one-body IA contribution
would be reduced by at least a factor of 4 in magnitude
and its sign would also have been opposite than what
appears in Fig. 3. In this case, the p-x transition cur-

rent would generate the dominant contribution to F&'
at the kinematics of the approved CEBAF experiment
[24], while the single nucleon strangeness radius would
still govern the low-q behavior of the nuclear strangeness
form factor.

By way of comparison, we note that the vector meson

pair current contribution to F&' is negligible at moder-
ate values of q. Although the precise numerical values of
their contributions depends on one's model for GM and

GE, as well as on one's choice as to the treatment of
the retardation term, the overall magnitude of the vec-
tor meson pair current contribution is sufficiently small
so as to render the impact of these model dependences
negligible.

In Figs. 4 and 5, we plot the ratio R,
F&('z~(q)/F&+o=s(q) = F&' (q)/F&+=o(q), which character-
izes the 8-quark corrections to the nonstrange PV asym-

metry [Eqs. (3) and (6)]. Assuming ~G& /G@~ = 1 and

GM /GM=
~

1, which essentially corresponds to assum-(e) r=O

ing the Jaffe values for p, and p, but a more realistic mo-
mentum dependence in the strange form factors, we ex-
pect a 35% correction to the nonstrange asymmetry [the
first term on the right side of Eq. (6)] at the kinematics
of the CEBAF PV He experiment. Figure 4 shows the
dependence of this correction on the value of p, which,
under our form factor parametrization [Eqs. (12)—(13)],
sets the scale of contributions generated by GM . For pur-

of p, = —0.2. Under this assumption of what would be
a large magnitude for p„ the one-body, pionic, and p-vr

transition contributions are of the same order of magni-
tude at the kinematics of the approved CEBAF experi-
ment [24] (q = 3.93 fm ~). At this point, the p-m contri-

bution makes up about 20% of the total F&~' . Were we to
employ, instead, the results of the kaon-loop estimates of
the strangeness parameters, p, = 0.4 and p, = —0.3 [20],
the magnitude of F&~' would be an order of magnitude
smaller and would be dominated by the p-m contribution.

We emphasize that the relative importance of the pio-
nic operator is highly dependent on one's model for the
one-body strangeness form factor, E&', which enters the
two-body operator multiplicatively. In this case, the scale
of the two-body operator is set by the Dirac one-body
strangeness radius,
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FIG. 4. Elastic strangeness to EM charge form factor ratio,

Eo' (q)/Ec= (q) for dHFerent values of nucleon strangeness
magnetic momentum p,, and Gxed strangeness radius p .
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the ideal assumption of 100% beam polarization with ex-
perimental errors being statistics-dominated. The inclu-
sion of two-body currents does not alter our previous
conclusion about the possible constraints attainable from
a low-q measurement, since the two-body contribution is
negligible in this regime. In Fig. 6, we display the impact
of two-body currents on constraints attainable at moder-
ate q. Figure 6(a) shows the joint constraints on (p„p,,)
that a 10% measurement of Ar, R( He) could produce, as-

suming the parametrization of Eqs. (12)—(13) and central
values for these parameters given by model (A) discussed

above. A similar plot for (p„A& ) constraints is given in

Fig. 6(b), where a central value for (p„Ag ) = (—2, A„) is(e) ~

assumed. The solid and dashed lines give the constraints
corresponding to different choices as to the sign of g~, .
We take the difference between these two sets of lines
as one measure of the theoretical uncertainty associated
with our calculation.

From Fig. 6(a), we note that the correlation between
p, and p, is weak. This feature follows &om the rela-
tively small magnitudes of the vector meson pair current
and spin-orbit contributions, which carry the strongest
dependences on y, In the case of Fig. 6(b), we observe
that the moderate-q constraints are modified only slightly
from the IA expectation, even though many-body cur-
rents generate significant contributions to F&'z and Fc,o= .
The reason for the insensitivity of these constraints to the
two-body currents can be explained in the following man-
ner. First, the pionic corrections are proportional to the
Dirac form factor

+i" = (1+&) '[C'+«M'] (37)

where a denotes either the isoscalar EM current or
strange quark current. At the kinematics of the
moderate-q CEBAF PV experiment, one has 7 0.17, so
that 7.G = /G = = 0.15. In this case, F = G =

Similarly, vGM /G@ = y,,/p, = 0.15, assuming the Jaffe(e) (e)

values for the strangeness parameters, so that F~'(e)

GE . Under these assumptions, the pionic pair currents
give the dominant correction to the IA nuclear form fac-
tors, so that at 7 = 0.17 [q2 = 0.6 (GeV/c)2] one has

Ico='(q) = (g' IIMo ='(q) "'+Mo'='(q),"..;.Ilg' )

= Gz='(~) &g' ll&(q)" + &(q)"'llg' ) (»a)

I"c'o (q) = (g'. Il~o'(q)" + Mo'(q),'..;.Ilg'. )

= GE'(r) (g' ll(q)" + &(q) "'Ilg' ), (3sb)

where D(q) ~~~ and O(q) ~2) are nuclear operators [see, e.g. ,

Eqs. (15) and (Al)]. Hence, the ratio R, = I"&z/E&~o
is essentially independent of nuclear matrix elements and
is governed by the ratio of single nucleon form factors as
in the IA case. Thus, the inclusion of two-body currents
does not seriously change the joint constraints on p, and

A@ . Some changes from the IA results do appear, since

neither GM nor the p-vr contributions are completely neg-

or

bALR

~LR

hR,
4sin 8~+ R,

(39)

bR, = (4sin 8w + R, )
~ALR

+LR
= 0.1+0.1R, (40)

for b'ALR/ALR = 0.1. Since R, changes by only +O.l for
different choices for the sign of g~ „the impact of this
choice on the magnitude of bR,—and, therefore on the

joint constraints on (p„A@ )—is an order of magnitude
smaller than the impact of the experimental error in ALR.

Finally, in Fig. 7 we show the p-meson pair current

contribution to F&' under the two different assumptions
for the inclusion of the retardation correction. The curve
labeled by pg was calculated without the retardation cor-
rection (Gari-Hyuga convention [36]), while the curve la-
beled p includes it (Riska convention [32,33]). The dif-
ference between the two should be taken as an estimate
of the theoretical uncertainty in the treatment of these
short-range currents. Fortunately, the scale of the vector
meson contributions is suKciently small that the choice
of convention has a negligible impact on the value of F&' .
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p-meson
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FIG. 7. p-meson pair current contribution to F~~'l(q) com-
puted including the retardation correction and omitting it (P
subscript). Only absolute value is plotted, while sign is indi-
cated in parentheses.

ligible. In the event that lp, /p, l )) 0.15, however, this
argument would break down, and our conclusions would
have to be modified.

We also point out that the uncertainty in the sign of
the p-vr transition current contribution does not seriously
aff'ect the (p„A& ) constraints, even though the magni-
tude of this contribution is as large as the experimen-
tal uncertainty in ALR assumed in obtaining the plots
of Fig. 6. To understand why this is the case, consider
the following argument. If one assumes that all of hAr, R
translates into an uncertainty bR, in the extracted value

of R„and if one further assumes that p, and AE can be(e)

varied in a manner consistent with this uncertainty bR,
[as we ve done in obtaining the lines in Fig. 6(b)], then
one has
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V. CONCLUSIONS

We have computed MEC contributions to the He

strange quark elastic form factor, F&' ——2~vrF&'o (q),
using Monte Carlo methods and an accurate variational
ground state wave function. Our results indicate that
the nuclear strangeness radius, p, [nuc], which governs

F&i'l(q) at low momentum transfer, is (1) dominated by
the single nucleon strangeness radius, (2) 2 orders of mag-
nitude less sensitive to many-body strangeness currents,
and (3) independent of pionic MEC's —results which es-
sentially con6rm our previous conclusions based on the
shell model calculation. At moderate values of q, such
as those corresponding to the approved CEBAF elas-

tic PV He experiment [24], we find that F&' generates
a 35% correction to the PV asymmetry, assuming that

~G& /G&~ 1 and ]GM /GM=
~

1 in this regime and

that g~' (Q2) is correctly given by +meson dominance.
The magnitude of this correction is smaller than the sta-
tistical error projected for the CEBAF experiment under
the most conservative assumptions about beam polar-
ization. In the absence of nucleonic strangeness, non-
nucleonic ss pairs would generate roughly a 15%%uo cor-
rection to the nonstrange asymmetry at these kinemat-

ics. Thus, the scale of the strange-quark contribution to
ALR( He) is still sensitive to the nucleon's strangeness

electric form factor. In the event that ~G& /G&] (( 1,
a more precise 4He PV measurement could probe the
p-vr strangeness charge operator. Such a measurement
would be interesting since only a p-vr transition three-
current operator has been probed in other experiments
performed to date [27]. Finally, inclusion of MEC con-

tributions to I'&' and I'&= does not appear to afFect
noticeably the constraints on the leading and next-to-

leading Q2-dependence of G&l attainable with a medium-

s measurement of the 4He PV asymmetry.
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APPENDIX

In this Appendix, we provide complete expressions for the two-body charge operators, expressions for the low-q
forms of the corresponding Coulomb projections, and additional details of our shell model calculation of the nuclear
strangeness radius.

1. Two-body charge operators

Expressions for the coordinate space charge operators can be obtained by Fourier transforming the momentum-space
operators in Eqs. (22) and (24) and summing over all nucleon pairs. The resulting formulas are

2

j(q)~'I „,.= iF-, (r) ) h(x; —x';)b(x, —x,')r; r,
1V - i(

r2"u
(1 + m r;i) [e '0; qo'2 f'2 —e o'2 qo" r 2] (A1)

for the pionic current,

j(q)v „— s GM (r) ) Tv(i, j)b(x, —x';)b(x,. —x')

&
—mv&i j ++ ++

[e* " (o; x q) *. V~ + e* '"'(cr~ xq) - (7;].
mv Tij

+~(1+Kv)
"U

(1+mvr;~. )[e*~'"'(q.i,~ + o'~ x q o', x r",z)

(A2a)

for the vector meson pair current in the absence of the retardation term, and
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2 —nL~&i j
p(q)~~)l ),, = p(q)~~)l ),, + i~v (1+~v) Fi (r) ) T(i, j)h(x; —x', )b(x~ —x') 2 (1+mi(r;~)

N i(j U

x[e'~ 'cr- x q. o; x r", —e'~ 'cr; x q. cr. x r"; ]

with the retardation term included. The p-m transition current operator is given by

(A2b)

P(q) Pl
(&) r

g»NNgVNivgp» { ) ) b( t)g( I
)

Mi R;. p(
-~

32xm2 m
' ' 2 2

N P

where

I'(i, j) = i[Fi(r;~)Vz (r";~ x q)cr, q —Fi( r;~)V—; (r;~ x q)cr~ q]

+F2(r;~)V~ (r";z x q)r;i cr;+ F2( r;z)—V; (r";~ x q)r";~ oi
+F (r'i )Vi ' (cr' "q) + F ( r*i )V' ' (cr "q)
+(1+")(o' ' ~ NG (r") + G ( r"))+q'"' (H (r' ) H ( r' ))]
+q o';q cr~[i(G2(r;~) + G2( —r;~)) + q r; ~(H 2(r; i)

—H2( —r;~))]
+r;~ cr",r",

~ oi[i(Gs(r;i) + Gs{—r;i)) + q r";i(Hs(r;i) —Hs( —r;i))]
+" o*q .HG (r') -G (-r'))+'q "{H'(r'.)+H (- ')}]
+r";~ cr~q cr;[(Gs(r;i) —G4( —r;~)) + iq r";~(Hs(r,~) + H4( —r;z))]), (A4)

where

+i(~) = —(ai+ —l,

gpss

2)
F2(r) = hp+ —,gp

Fs(r) = ——,gp

r

1( gpGi(r) = ——
I gi ——q,r E 2

2gy hp
G2(r) = —hi ——,

r 2 '

(A5a)

and where

Z/2

g„(r, q) =
-X/2

X/2

h„(r, q) =
-X/2

x/z

k„(r,q) =
-X/2

with

dP)9"exp [iPq r —Lr],

dPP"Lexp[iPq r —Lr],

dPP" L exp[i)9q r —Lr], (A6)

1 ( gp) ( hp)
Gs(r) = q —

i gi ——
i +

~

hi ——
~

) 2) ( 2)
hp

G4(r) = kp ——,

L2 = —(m + m ) +()9m —m ) +(1/4 —P )q . (A7)

We de6ne

&~(~) = —'+ ~' (a* ——'),r 4
(A5b) V;=V; —V, , (A8)

H, (r) = —(ho+ —),
gpH2(r) = ——g2,4

(
H4(r) = — hi ——+ —

~
gi ——

2
~

r 0 2

1 g() ( hp)
Hs(r) = — gi+ —+

~

hi+ —
Ir 2 I 2 )

(A5c)

where V; and V; are gradients acting to the left and right,
respectively, on the coordinate of the ith nucleon in the
wave function (and not on the coordinates appearing in
the operators). The isospin tensor Ti((i, j) is defined in
Eq. (23), the quantities x; and x! are the coordinates of
the ith nucleon in the initial and 6nal state wave func-
tion, respectively, and the coordinates r;z, etc. are de-
fined in Eq. (All) below. As elsewhere, the superscript
a denotes either the T = 0 EM current or strangeness
current operators.

Expressions for the pair current operators with
hadronic form factors included (finite AM) may be ob-
tained from the above formulas by making the replace-
meat
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O(mM) m O(mM) —O(AM)

+(AM ™M)" O(A )
2AM dAM

(A9)

O(m, mp) m O(m, mp) + O(A, Ap)

—O(m, A ) —O(A, m ), (A10)

where O(mM) is any one of the pair current operators
in Eqs. (Al) or (A2) associated with the exchange of
a meson having mass mM. Similarly, for the p-vr tran-
sition current, the Coulomb operator in the presence of
hadronic form factors arises &om making the replacement

where O(m, m~) is the operator appearing in Eq. (A3).
Substituting the above expressions for the charge op-

erators into Eq. (7c) and expanding the exponentials in
powers of q leads to the following expressions for the
leading q dependence of the Coulomb operators:

Moo'(&)

pionic

q-+0

7rNNg
2

24~3&2mN (r) ) &)(x; —x', )b'(x, —x,')r;

/R;, )
~
(R,, x r,~) (cr, x o, ) (A10a)

V pair

q~O

2 m [ &™vrj= rGM (r) ) b(x, —x';)b(xi —x')Ty(i, j)247t-'~2mN . .
' ' ' ' '

mV ri.i(j U c

2 8m
x 1+ KV 1+mVPzj 1+ w N' Y2 fzz 8 cJi (30j 2 o

/R, J i
~

(r";, x R,i) (o, x o, ) + Z;, (L~ —2L'„')

iA, z (r";z x &j'~,j——2R.;z xV'„,j) —i .
~

'
~
(1+m~r;z)LL;z . (R;z x r;z)"

&rV )
(Alob)

qm0

1 1x, , (1+re) Zg(x, g)cr; o,

S~ . . /R')—Z2(i,j)[Y2(r",~) [&rz &r&]2]o +
~ ~

Zs(i,j )(r;~ x R~) . (o; x cr~)3 'ij

r;, Z4(i,j)A;, —(r"—,, x. V'R, ) +iZ4(i, j)Z,~ (L„+LR~) —2R;, Z4(i, j)ch„, . (R,~ x V'„, )

—2i
~

*'
~

Zs)i, j)i;, iL.,R;, L'„—iZ, )i, j)E;z i;,i;, Lz), (A10c)

where

rij = xi —xj )

~ij = rij
~ij —rij ~ip ~

1R, = —(x;+ x, ),u 2
R,, = /Rj[,

(Alla)

(Allb) and where

L'„~ = —ir;~ x V'„, ,

LR ———iRij R j,

Q;. = vari + cr~,

~;j = Cy.i —Cr~,

(Allc)

(A11d)
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Zi(i, j) = (m r;~) e """—(m~r;~) e

Z2(i, j) = [3+3(maori) + (mar'i) le '"" [3+3(maori) + (m~r'2)

Z3(i,j ) = [2 + 2(m~r;~) + (m~r;~) + (mpr j ) ]e
—[2+ 2(m r;~) + (m r;~) + (m r;~) ]e

Z4(i,j) = [1+m~r;z]e '"" —[1+m r;z]e

(A12a)

(A12b)

(A12c)

(A12d)

We note in passing that the overall normalization of the
p-x operator appearing in Eq. (A10c) differs by a factor
of 4 &om that appearing in Eq. (7) of Ref. [26]. The

latter, as well as the terms involving g~' in Eqs. (10)
and (14) of that work, should be multiplied by 1/4.

phenomenological correlation function, g(r), in the inte-

gral over relative coordinates:

f r2dru'(r)Ou(r) m r drg(r)u'(r)Qu(r),
0 0

(A13)

2. Shell model calculation

Use of a simple shell model He ground state allows one
to obtain analytic expressions for the nuclear strangeness
radius, p, [nuc], which are useful in the interpretation of
the numerical results obtained with variational ground
state wave functions. To that end, we compute matrix
elements of the one- and two-body Coulomb operators
in the low-q limit. From the expressions in Eqs. (A10)
and as noted in the main text of the paper, the vector
meson pair current and p-x transition current Coulomb
operators go as q2 for low-q. The two-body pionic op-

erator, in contrast, vanishes as q since F1' q and
since the operator carries an additional, explicit factor of
q2. Similarly, the vector meson pair current retardation
term also enters at O(q4). Thus, for purposes of com-
puting two-body contributions to p, [nuc], we need only
compute matrix elements of the operators in Eqs. (A10b)
and (A10c). In the limit that the 4He ground state is a
pure 8 state, the leading q2 dependence of the one-body
matrix element [Eq. (15)] is given by the one-body form
factor times the number of nucleons and is independent
of details of the nuclear wave function. The two-body
matrix elements, on the other hand, are structure depen-
dent. An important consideration in this respect is the
short-range repulsion between nucleons. Since the ranges
of the p- and u-mesons are commensurate with the ra-
dius of the repulsive core in the N-N potential, matrix
elements of the vector meson-exchange operators ought
to be suppressed. To account for this efFect, we compute
the two-body shell model matrix elements by including a

where u(r) is the radial wave function for the relative
motion of two nucleons, r = ixi —x2i is the relative co-

ordinate, and 0 is an r-dependent two-body operator.
Following the approach of Ref. [34], we take the correla-
tion function to have the form

g(r) = C[1 —e " ~" ], (A14)

where the constant C is determined by the requirement
that the wave function be normalized. A fit to the nuclear
matter correlation function of Ref. [47] gives d = 0.84
fm. With this form for g(r), the uncorrelated two-body
matrix elements are modified as

M(b) m C[M(b) —M(b,g)], (A15)

where M(b) is the uncorrelated two-body matrix element
computed using an oscillator parameter b, where the ef-
fective oscillator parameter is given by

and where

(bs& (bi1+2ib& (A16)

—1
fF

b )
(A17)

In the limit of no short-range repulsion (b,~ -+ 0), one

has for the leading q dependence of F&~'z the expression
given in Eq. (26). The nuclear Ai 2 are given by

A, = 2/y%,

A2 ——— ) (1+~v)
V=p, ~

w —). (1+~v)
v=p, cu

(A18b)

(A18a)

&v~gv~„& &mvi &v 5
Sx2

~ g m~ ) (mvb) s (mvb)2

(A18c)
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where

I(mb) = 1— (mb)exp[z(mb) ]erfc
~ ~, (A19)

(mob) I(mpb) = 1—mbz (A20)

and where JV~z are spin-isospin matrix elements, and
g~~N is the vector meson-nucleon coupling. For b = 1.2
fm, one has m~b )) 1, so that the function in Eq. (A18c)
may be expanded as

A similar expansion in powers of I/(mv. b) has been used
in arriving at the expression in Eq. (A18b), where the
ellipses indicate contributions &om terms higher order in

I/(mob).
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