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One-nucleon transfer processes between heavy ions at intermediate energies are studied in the
framework of the eikonal distorted-wave Born approximation. Optical phase shifts describing core-
core relative motion are microscopically described in the Glauber model, starting from experimental
nuclear densities and nucleon-nucleon scattering amplitudes at the corresponding energies. The
interaction responsible for the nucleon transfer is a complex energy-dependent potential obtained
by the Abel transform of the nucleon-core phase shift. Applications to one-proton and one-neutron
transfer reactions on Pb induced by C and 0 projectiles are discussed for both angular
distributions and normalization factors.

PACS number(s): 24.10.—i, 25.70.Hi

I. INTRODUCTION

The exact finite-range distorted-wave Born approxi-
mation (EFR-DWBA) has been the traditional frame-
work for the description of one-nucleon transfer processes
[1]. This has also been recently the case of ~2C and

0 induced reactions on Pb at intermediate energies
(E/A=40 —50 MeV) [2,3]. Although a good description
of the shape of the angular distribution is provided by
the theory, a number of questions are still under discus-
sion. If the standard binding potential for the transferred
particle is used as interaction potential, the theory over-
estimates the magnitudes of the cross sections by aver-
age factors of 10 and 1.3 for the 0 and C projectiles,
respectively, and a comparison with the analysis of the
same reactions at difFerent energies shows that the neces-
sary normalization factors are strongly energy dependent
[2,3]. Furthermore, the use of ad hoc phenomenological
optical parameters for the description of the distorted
waves introduces an element of ambiguity into the anal-
ysis, and so it would be preferable to have a more funda-
mental, parameter-free approach. Finally, the high rela-
tive linear and angular momenta of the colliding nuclei
require the EFR-DWBA to deal with hundreds of partial
waves, which, when coupled to the nuclear channel spins,
lead to a very cumbersome calculation. On the other
hand, these high relative linear and angular momenta
suggest that a simplified approach based on high-energy
semiclassical approximations may be appropriate.

Some of these questions have been addressed by differ-
ent authors. From the point of view of the ion-ion dy-
namics, several authors introduced time-dependent semi-
classical approaches [4], where the transition probabili-
ties are obtained by integrating proper efFective transfer
form factors along the classical trajectories for the rela-
tive motion. In particular, at high energies these classi-
cal trajectories reduce to simple straight lines (see, e.g. ,

[5]). Concerning the transfer process, Dasso et al. [6] and

Sgrensen et al. [7] have advanced the idea that a better
choice may be provided by scaling the transfer potential
according to the real part of the energy-dependent op-
tical potential used to describe nucleon-core scattering
(i.e., p-~sN scattering in the case of proton transfer from
~so) at the corresponding bombarding energy per nu-

cleon. Calculated integrated transfer cross sections have
shown the correct energy dependence.

Another possible approach to intermediate-energy
heavy-ion reactions is provided by the Glauber model
[8]. In a series of papers, some of the present authors
have extended the Glauber model to the description of
elastic and inelastic heavy-ion scattering processes (see
Ref. [9] and papers therein quoted). These papers have
shown the complete reliability, at these energies, of the
eikonal description of the relative nucleus-nucleus motion
in terms of a phase shift derived from elementary interac-
tions and nuclear densities. These parameters have been
taken from the current phenomenology with no modi-
fication or fitting procedure. In particular, there is no
ambiguity associated with the choice of an optical poten-
tial.

It seems natural, therefore, to attempt to understand
transfer reactions using our extended Glauber method.
The model we suggest is quite simple. The transition
amplitude is described by an eikonal distorted-wave ap-
proximation, where the distorted waves for the relative
motion of the heavy ions are evaluated using Glauber the-
ory. The interaction potential is taken to be the nucleon-
core optical potential obtained by inverting the eikonal
nucleon-core scattering phase shift at the proper energy
[8]

Maiecki et at. also have attempted to apply Glauber
theory to intermediate-energy transfer reactions [10,11].
Their method is, in spirit, closer to the original Glauber
work than ours, since it directly involves only nucleon-
nucleon pro6le functions. This can only be achieved,
however, under the assumption that the transfer is local-
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II. THE TRANSITION AMPLITUDE

We use the conventional notation for a one-nucleon
transfer reaction: A(a, b)B Aa. nd b are regarded as
"cores," and the nucleon c is transferred &om one core
to the other (a = b+ c, B = A+ c). The transition
amplitude is written (see, e.g. , Ref. [1])

2'(k;, kI) = f dr; dry

x4' '(kf rf)E(r, r, )@(+ (k;, r;), (2.1)

where the core-core relative vector r and the nucleon-
light core relative vector r, are related to r; and ry by

mc
r; =r+ r„

flit Q

mA mc
ry = r rc

fan+ YAQ
(2.2)

(see Fig. 1). The transfer form factor is expressed by

F(r, r, ) = (p&(r+ r, ) Vs, (r,) y;(r, ), (2 3)

with y, and yy the initial and final bound state wave
functions. The eikonal distorted waves are expressed in
terms of the core (i.e., A —b) optical potential V &t, (b, z)

4(+&(k;, r; ) = C (+,.„'(k;,r; )

=e ' 'ezb;.z; —z—„' f ' dzVopt(b, z& (24-)

ized in a plane perpendicular to the nuclear trajectories
(at z = 0). The authors refer to this as the "zero longitu-
dinal range approximation. " In our opinion, this rather
drastic approximation is hard to justify in terms of the
geometry and dynamics of the actual nuclear reaction
under consideration.

The paper is organized as follows. The formalism is
presented in Sec. II. In Sec. III it is expressed in a
momentum representation, which can better exploit the
symmetries of the problem. Selection rules and semi-
classical interpretations are discussed in Sec. IV. The
application of the model to the case of transfer reactions
induced by ~ C and ~sO ions on 2O Pb is displayed and
discussed in Sec. V. Concluding remarks are given in Sec.
VI.

4( &'(ky, ry) = @(,.„~'(ky, ry)
f, ~Vo (b

(2.4b)

V ~q (b, z) = V„„,(b, z) + Vc (b, z) (2 5)

and approximate the nuclear part of the core-core phase
shift

xnuc(b) = 1
dz V„„,(b, z)

hv;
OO

dz V„„,(b, z)
Ave

OO

hv;
d. V.„.(b, .). (2.6)

The errors introduced by neglecting the difFerence be-
tween z; and zy and between v; and vy can be shown to
be negligible for deflection angles of a few degrees or less,
which is the angular region of experimental interest.

In the Glauber model the last integral in (2.6) can be
expressed in microscopic form [13] as

1
x .(b) =-

2mk~~
dqe' ps(q) p~(q) fNsj (q)

(2.7)

where pb~(q) are the two-dimensional Fourier trans-
forms of the z-integrated ground state core densities,
f~~ is the elementary scattering amplitude, and k~~
is the relative nucleon-nucleon momentum.

The approximations involved in (2.7) are not applica-
ble to the Coulomb part of the optical potential. We thus
add this part separately as

Here r = b+zz, with r", chosen to be the direction midway
between the directions of k; and ky. From now on we as-
sume that V~pt is axially symmetric about I, and thus we
replace V~q(b, z) with V~q(b, z). In the cases of heavily
charged systems and jor relatively low bombarding ener-
gies, where appreciable deviations &om the straight-line
trajectory are expected due to the Coulomb field, a first-
order correction can be introduced [12] by retaining the
straight-line assumption but scaling the impact parame-
ter according to the classical Coulomb distance of closest
approach.

We must distinguish between the short-range (nuclear)
and the long-range (Coulomb) parts of V~t, . Thus we

write

yc(b, z) = — dz'X

1 I Zgy Zge
QZ

Qvy z gb2 + zi2

FIG. 1. Coordinates used in the transition amp1itude. A
and b are the cores, between which the nucleon c is transferred. with

CLZ liz
vl gb2+ z 2 gb2+ zagJ

(2.8)
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Z~ Z~ e Z~ Zge
7l +

2 hv; hvf

(2.9)

To leading order in the ratios between excitation energy
and total kinetic energy and between transferred mass
and total mass, one gets

Z~Z e Z~Zge
fI+

Av Avf

1
qzq ————m v.

hv
C (2.17)

If account is taken of electronic screening at large dis-
tances, the divergent first integral in (2.8) can be replaced
by 2ln[(k; + ky)/2b], apart from an irrelevant constant.
For a peripheral process such as particle transfer, the sec-
ond integral in (2.8), which equals arcsinh(z/b), can be
approximated by z/b.

The definitions (2.2) imply that

In the present approach based on the straight-line ap-
proximation, the integral over z can be directly trans-
formed into an integral over t (z = vt) leading to

q, z = ——(Q+ 2mv ), (2.18)

which coincides, for example, with the corresponding
term in Ref. [14].

with

k; r, —ky rf ——q r + p r, (2.10)

q = k; — kf
mg

p='k+'kf.
mg mg

(2.11)
III. EVALUATION OF THE TRANSITION

AMPLITUDE

If we combine (2.10) with the work of the previous para-
graphs, the transfer amplitude (2.1) becomes

T(k;, kg) = f dr dr, et'e'+r'*I'r&e*Ipr(r+ r, )

x Vb. (r.) ~, (r, ) (2.12)

with

y(b, z) = g„„,(b) —22' ln
~

' — 'rjg —,(2.13)
k, +k'yl z

2b r) b

and with y„„,given by (2.7) .
The complex, energy-dependent transfer potential

Vb (r ) is evaluated by applying an Abel transform

To simplify the notation, we will at first ignore in-
trinsic spin. The structure of the integrals appearing in
Eq. (2.12) suggests that it is convenient to work in mo-
mentum space [15]. We express therefore the quantities
appearing in this equation in terms of their Fourier trans-
forms:

1
e, (r, ) p;(r, ) = f dw e"*' @;(w), (2.1e)

2~ '&'

hvb, d yb (b)
d (b — )

(2.14)
pg(r+r, ) = f dw e'I'r" I' dy(w), (2.lb)

2vr s&'

T(k', kg) = f db e'e ' e'r~ Ir; g(b) (2.15)

to the nucleon-core phase shift yb, (b), which is con-
structed by using (2.7) without the factor pdi(q) in the
int egrand .

It is of interest to compare our formalism with semi-
classical time-dependent approaches. To do this, we
rewrite Eq. (2.12) as

e ~x(~) dw e" gz(w).
2m ')' (3.1c)

If these are inserted into (2.12), the r and r, integrals
can be performed immediately, with the result

where

Zc ( Z ~ —Z~)e
r; r(b) = f dz e'r'*e

x dr yf r + r, Vb r y; r, e

T(k;, ky) = (2e) ~' f dw d&(w}@r(w —q)

xQ;(w —p). (3.2)

(2.16)
The structure of (2.13) suggests that we work in cylin-
drical coordinates

T(k;, kr) = (2e) f dwz dwv/ir(wz, w, )d , (wz —qz, w, —q, )d;(wz —pz, w, —p, )

(22r) dwg
k~+k~

b db Jo(~wz —qz ~b)
e'~x"" ~ l " '"~ »

x 0f (wi, V. —n~/b)0'(wi —pi a —p. —ndlb)
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To disentangle the dependence on w~ and b in (3.3), we keep only the first two terms in an expansion of vlf*@; around

the grazing value b=ll fm (= bo), i.e. the value at the center of the most important region of impact parameter space:

vlf(w~, q, —rid/b)g;(w~ —p~, q, —p, —qd/b)

—0 f (wJ qs gd'/b0)4i( wJ pJ 1 qz p 9d/bo) + (b bo) 4f (wJ qs gd/b)4 (wJ pl 1 qs ps gd/b)b=bo ~

(3 4)

This enables us to write (3.3) in the following more convenient form:

T(k;, kf) = (2m') dw~ gf'(w~, q, —gd/bo)g;(w~ —p~, q, —p, —rid/bo) E&&(lwg —
qual)

+ dw~ —f w~, q, —p~ b; w~ —p~, q, —p, —qp b ~—p, F~ w~ —q~ (3.5)

with

+~(lw~ —
qual) = b db Jo(lw~ —qilb)

0
It ~ +kgi[y„„c(b) —2g ln( '~b )] (3.6a)

Fi(lw~ —q&l) = b db (b bo) J&(lw~ —q&lb)
0

[X .(&) —2m & ( 'b )] (3.6b)

The one- and two-dimensional integrals in (3.5), (3.6a),
and. (3.6b) were evaluated numerically. This was facili-
tated by first expanding Vb, (r)y;(r) and yf (r) in terms of
eigenfunctions of three-dimensional harmonic oscillator
potentials. The operations of transforming &om spher-
ical polar to cylindrical coordinates, performing Fourier
transforms, and di6'erentiating with respect to b, could
be done analytically due to the convenient properties of
harmonic oscillator eigenstates.

The second term in (3.5) depends on the quantity rid

defined in Eq. (2.9), the difference between the Som-
merfeld parameters in the initial and final channels. It
is significant only in the case of proton transfer, where
it has the effect of increasing the transfer cross section.
For example, in the 2osPb(isO, isN)2osBi reaction, the
Coulomb repulsion between Pb and 0 slows down
the approaching nuclei more electively than the weaker
Coulomb repulsionbetween 2 Bi and ~N accelerates the
separating nuclei. This decreases the longitudinal linear
momentum mismatch experienced by the proton trans-
ferred &om 0 to Bi, and thus increases the transfer
cross section.

and mf is chosen to be perpendicular to the reaction
plane, in the same direction as the relative orbital angu-
lar momentum vector. In Fig. 2 this is taken to be the
+y axis.

When the nucleon is transferred between the two cores,
the z component of its linear momentum changes. With
projectile energies of 40—50 MeV per nucleon, this change
can exceed the modest impulse that can be supplied by
the transfer potential. This large linear momentum mis-
match is an indication that the corresponding transfer
will be inhibited. From Fig. 2(a) which illustrates trans-
fer occurring while the nuclei pass each other on (repul-
sive) Coulomb-doininated trajectories, one can infer [16]
that the condition of small mismatch in p, (and thus in
velocity component v, ) is approximately

mk M, Mf+
PAb ~i &f

(4 1)

Here M; and Mf are the projections, on the +y axis,
of the initial and final single-particle orbital angular mo-
menta of the transferred nucleon, and ri and rf are the
radii of the orbits around the two cores. For 793 MeV
isO projectiles on a 2MPb target, m k/p&b 1.6 fm

r,=3 fm, rf ——7 fm. If we assume that the nucleon came
from the p orbit, then lM;l & l. Also lMf l

( lf, which is
7 for a jq5y2 orbit. Thus we get the closest approximation
to the momentum matching condltioD

IV. MAGNETIC QUANTUM NUMBERS
AND INTRINSIC SPIN M

%'e have so far designated the initial and final bound
state wave functions by p; and yf. Now let us in-
troduce orbital angular momentum quantum numbers

(pi', p ~z). Correspondingly, the notation for the trans-
fer amplitude should also include the initial and Gnal m
values: T(k;, l; m;; kf, lf mf). The physical interpreta-
tion is clearest when the quantization direction for mi

(b)
FIG. 2. (a) Nucleon c is transferred as the cores move psst

each other on the Coulomb-dominated trajectories. (b) The
de6ection angle is the same as in (a), but the attractive part
of the cere-core interaction dominates the trajectory.
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1.6 fm
M; Mf

3 fm 7fm (4.2)

by choosing M; and Mf to be as large as possible (M, =
l, , Mf = lf). On the other hand, if the transfer occurs
when the cores pass each other on orbits dominated by
the attractive part of the core-core interaction, the con-
dition for small mismatch in p, is approximately

m k M; Mf+
PAb ~i ~f

(4.3)

which is most closely achieved by setting M; = —l;, Mf ——

—tf.
Table I shows partial differential cross sections for dif-

ferent M;, Mf combinations for neutron transfer from the
Op orbit in C to the lg orbit in Pb. The deflection
angle is 4 . Notice that the largest contribution comes
&om M; = jt, , Mf —lf corresponding to the Coulomb-
dominated orbit of Fig. 2(a). The table only has entries
for odd values of M; —Mf, since the reflection symmetry
across the plane of the orbit guarantees that T will be
zero unless (

—1) ~ r = II;IIf (Bohr's theorem).
Since the "near-side" and "far-side" [1] orbits with the

same deflection angle, shown in Fig. 2, are associated
with different (M;, Mf) values, we do not expect there
to be significant interference between contributions &om
these orbits in the transfer matrix element. Thus the
angular distributions do not show the forward-angle fine-
structure oscillations that would be associated with this
interference.

TABLE I. lT(k, , 1,M,", kf, 4, Mf)l for transfer of a neu-
tron from the Op shell of C to the 1g shell of Pb. The

C kinetic energy is 480 MeV, and the de6ection angle is 4

M;
—1
—1
—1
—1
—1

0
0
0
0
1

1
1

1

1

My

—2

0
2

4
—3
—1

1

3
—4
—2

0
2

4

lT(k, , 1, M,", kf 4 Mf)l
59.2
4.9
1.6
5.7

51.5
3.3
0.2
2.7

21.8
9.6
2.3
1.7

23.4
555.3

To express the transition matrix element in terms of
single-particle states for which j is a good quantum num-
ber, we must make an assumption about the role of in-
trinsic spin in the transfer process. We will make the
simplest assumption. , namely, that it has no role, except
for the eKect of the spin-orbit potential on the single-
particle radial functions. Thus we assume no spin Hip
during the transition, and no dependence of the transi-
tion amplitude on spin direction:

T(k;, l, j; M;;kf, lf j f Mf)

=( z M + z zjlM) (lf z 'Mf+ z qjlf Mf) T(k' l' M'+ g kf lf Mf+-')
+(; — M; —

& &lj; M;) (lf Mf ~
—

lJzf Mf) T(k, , l, M, ——';kf lf Mf ) (4.4)

The M; 6 z, Mf 6 z on the right-hand side of (18)
are the y components of the single-particle orbital an-
gular momenta. The comments made previously about
the reflection symmetry of the transition amplitude,
and the dominant role played by the transitions be-
tween states of maximum M; and Mf, also apply to
T(k;, l, j; M;;kf, lf jf Mf)

The parameters of the bound state wells are given in
Tables II and III. They are the saxne as those used by
Mermaz et aL. [2,3]. The standard separation energy pre-
scription has been used, in which the well depth is varied

t

to achieve a single-nucleon binding energy equal to the
separation energy of each nucleon state.

V. ANGULAR DISTRIBUTIONS
AND SPECTROSCOPIC FACTORS

Figure 3 shows a comparison of our calculated angular
distributions (solid lines) with the experimental data of
Refs. [2,3] for single-nucleon transfer onto a spb target,
from projectiles of 48O MeV C and 79' MeV O. Each

TABLE II. Bound state well parameters; the depth of the central potential is given in Table III
for each individual level.

Nucleus
12C 160
209B.
209Pb

re (fm)
1.20
1.28
1.25

ao (fm)
0.65
0.76
0.63

(fm)
1.2
1.2
1.2

r.. (fm)
1.2
1.09
1.09

a. (fm)
0.65
0.6
0.5

V, (MeV)
7.0
6.0
7.0
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calculated curve has been multiplied by a scale factor Sz
to produce the best visual fit to the data. Apart Rom this
scale factor, there are no adjustable parameters in the
theory. Everything we need is de6ned in terms of mea-
sured nuclear density distributions and nucleon-nucleon
transition amplitudes. In particular, we have not had
to choose or vary any paraxneters of optical potentials.
Thus the generally good agreement between the shapes
of the calculated angular distributions and the experi-
mental data supports the validity of the application of
this Glauber-like method to single-nucleon transfer, with
projectile energy in the range of 402—50A MeV.

Table IV shows the S factors used to normalize the cal-
culated differential cross sections, to yield the 6ts shown
in Fig. 3. When account is taken of the error bars on the
experimental data points, and the ambiguities introduced
by the lack of perfect agreement between the shapes of

Nucleus
12C

209B.

209Pb

State

Op3(2 (s.)
Ops)2 (v)
Op, (2 (m)
Op, gg (v)
1fsg2 (s)
1fpy, (m)
Qhggg (m)

Oa„„(~)
1gygg (v)
lg~g~ (v)
Oi„g, (v)
Ojxs)2 (v)

E (MeV)
0
0
0
0
2.82
0.90
0
1.61
2.49
0
0.78
1.42

SE (MeV)
15.95
18.72
12.12
15.66
0.97
2.89
3.79
2.18
1.44
3.93
3.15
2.51

V (MeV)
67.13
66.59
61.19
60.52
59.56
59.53
59.92
59.21
46.23
46.11
47.25
44.70

TABLE III. The central well depth V required to obtain
the observed single-nucleon (s". proton, v: neutron) separa-
tion energy (SE).

'"pb("c,
3

4 l 5/2
10

11C)209pb
I I

I I I I
I

I 102
20spb(12C 11B)209B

- Oi

10 = l l/2
N

r
g

10

0 f + T

10

g7] 2
~r

101

L ~ ~

r r r

20spb(16O 15O)209pb
I10 I I I I

I
I I I I

I
I I I I

I
I I I I

I
I I I I

I
I I I I

I
I I I I

= O~ls/Z

010 I I I I « I I I I 'I I I I I

0 2 4 6 8
8 (deg)

10

:Ohg/2

101

'0 101

0

10'

010
0 2 4 6 8

8 (deg)

208pb(16O 15N) 209B ~

1lprrrr I Irrrr
I
rrrr

I
rrrr

-Oi

FIG. 3. Angular distributions obtained
for single-neutron and single-proton transfer
onto a Pb target, from projectiles of 480
MeV C and 793 MeV O. The different
6nal single-particle states are given for each
curve. The experimental data are taken from
Refs. [2,3j. Each calculated curve has been
multiplied by a scale factor S~, whose values
are given in Table IV.

loo 10

ll/2Oi

m 10

, 0

~ 10-'

10

—100
(

~l

1P

10 10

-110 I I I I I I ~ I I I I I I I I I I I I I ~ I I I I I I I I I I I I

0 1 2 3 4 5 6 7
8 (deg)

-1'10 Ir ~ Il ~ » I I ~ I rrlrr Irl, r II I»» l, »r
0 I 2 3 4 5 6

8 (deg3
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Final state
in Bi

9/2
7/2
13/2+
5/2

Final state
in Pb

9/2+
11/2+
15/2
7/2+

(MeV)
0
0.90
1.61
2.82

(MeV)
0
0.78
1.42
2.49

S
(16O 15N)

0.33
0.33
0.33
0.30

S
(16O 15O)

0.25
0.20
0.20
0.28

S
(12C 11B)

0.50
0.75
0.67
1.40

S
(1&C 11C)

0.7-1.0
1.6
1.0
2.8

(909B )
(theory)

0.95
0.85
0.70
0.66

S (209pb)

(theory)
0.89
0.96
0.62
0.84

TABLE IV. S is the factor by which the calculated cross
sections from and to pure single-particle states must be mul-
tiplied in order to produce the degree of agreement with the
data shown in Fig. 3. The "theory" columns show calcu-
lated spectroscopic factors [17] for transfer between Pb and
209Pb 209B.

calculation.
Whereas the Opiy2 shell is very nearly full in the 0

ground state, it is probably a poor assumption to as-
sign a filled Op3g2 shell to the C ground state. Thus a
comparison of Pb(1 C, 1B —) Bi and 2 Pb( C,
1

Cs/2 ) Bi Ss factors with theoretical 2o Pb-+ Bi
and Pb ~ Pb spectroscopic factors is probably less
meaningful than for 0 projectiles. In fact the C
ground state is probably strongly deformed, and inelas-
tic coupling to other channels might affect the nucleon
transfer cross sections. It is seen &om Table IV, how-
ever, that the simple approximation of transfer from a
filled Op3g~ shell reproduces the observed cross sections
within a factor of 2, except in the cases of transfer to the
5/2 state of 2ssBi and the 7/2+ of 2osPb. These two
cases present the worst examples of linear momentum
mismatch of the transferred nucleon. Our model does
not have a mechanism to supply the required impulse.

the calculated and experimental differential cross sec-
tion curves, an uncertainty of about +10%%uc should be
attributed to each S value in Table IV, except in the case
of 2ospb(12C, 1~C) 2osPb(9/2+), where the uncertainty is
about 30%%uo.

The ratio of experimental and DWBA cross sections
should equal the product of two spectroscopic factors,
one for nucleon pickup fmm the C or 0 projectile,
and one for nucleon stripping to the Pb target. In
order to focus attention on the Pb spectroscopic fac-
tor, let us assume that the ground states of the relevant
light nuclei are perfectly described by the j-j coupling
shell model. This implies spectroscopic factors of 2 for

( 0, N1/2-) and ( 0, 01/2-) and 4 for ( C, Bs/2-)
and ( C, Cs/2- ). These light-particle spectroscopic
factors are included in the calculated cross sections used
to determine the ratios S~ presented in Table IV. Ide-
ally, then, the S~ should equal the spectroscopic fac-
tor for proton and neutron addition to Pb. Theo-
retical values [17] for these spectroscopic factors are also
listed in Table IV. It is seen that for the (160,15N) re-

action, our S~ values are about 2 —3 times smaller than
the theoretical 0 Pb~ Bi spectroscopic factors. For
the ( 0, 0) reaction, the corresponding discrepancy is
about 3 —5. These are the factors by which our transfer
calculation, combined with the theoretical spectroscopic
factors, would overestimate the measured cross sections.
Mermaz et a/. report a similar normalization discrepancy
when they fit their data using a DWBA calculation. In
their case, the discrepancy factor is between 5 and 10, de-
pending upon the optical parameters used in the DWBA

VI. CONCLUDING REMARKS

Glauber-like methods, based on the straight-line
eikonal approximation, have their natural sphere of ap-
plications in the description of elastic and inelastic pro-
cesses at intermediate and high energy. The literature of
the successes obtained in these applications to particle,
nuclear, and chemical physics is magnificent. The present
work is an exploration of the boundaries of applicabil-
ity of the method in situations in which a mass transfer
causes a sudden discontinuity of the trajectories. We find
that the shapes of the predicted angular distributions
are in good accord with the experimental data, , and are
similar to those given by the EFR-DWBA. The absolute
magnitudes of the differential cross sections are some-
what closer to the data than those of the EFR-DWBA.
Moreover, this measure of agreement has been achieved
by a parameter-free description. We believe that this
gives the Glauber approach a significant conceptual, and
practical, advantage over the EFR-DWBA.
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