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Fully isotopic model of fragmentation
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A general model for the fragmentation of a two-component or bipartite system (e.g. , protons aud
neutrons) is proposed and solved exactly. The extension of this model to any number of components
is also shown to be exactly solvable. A connection between this model and the permutation group
is discussed and used to obtain closed-form solutions. The notion of isotopic equivalence is defined
in order to evaluate the equivalence of these models to earlier one-component models. All the one-
component models considered in earlier papers are shown to be equivalent to a particular subclass
of two-component models. A simplified model applicable to the case of nuclear fragmentation is
introduced and analyzed. Modifications to this model to include effects such as pairing and Coulomb
interactions are discussed.

PACS number(s): 25.70.Pq, 05.30.Ch

I. INTRODUCTION

The fragmentation of mesoscopic systems, particularly
heavy nuclear systems, has attracted considerable inter-
est over the past several years [1—24]. A number of statis-
tical models have been proposed to explain the phenom-
ena. In these models, the final state of the fragmentation
of a nucleus of A nucleons is represented by the vector
n = (ni, . . . , n~), where ns is the number of fragments
with j nucleons. The set of all such states is denoted by

II~, each of which must satisfy g ijns = A. These
states should be recognized as partitions of the integer
A, a subject in the theory of numbers with a long history
beginning with results due to Euler.

In actuality, the final state of a nuclear fragmenta-
tion process is a more complicated object. Fragments
are formed with varying numbers of neutrons and pro-
tons, which are distinguishable objects. For this reason,
a representation of the final fragmentation state of such a
two-component or isotopic system should minimally con-
tain information on the neutron and proton content of
each fragment. In this representation, the final state of
the fragmentation of a nucleus containing Z protons and
N neutrons is given by a vector of (Z+ 1)(N + 1) —1 in-

tegers, ii = (npi, . . . , npiv, nip, . . . , ni~, . . . , nz~), where

ns& is the number of fragments with j protons and k neu-
trons. The set of all such states is denoted by IIziv, each
of which is subject to the two constraints P .zj ns k = Z,
g.& knsi, = N. These states are equivalent to the bi-

partite partitions of (Z, N), a subject principally inves-

tigated by the English mathematician P. A. MacMa-
hon [26] in the early years of this century.

In general the fragmentation of an X-component sys-
tem of A = g. i As particles where A~ is the num-
ber of indistinguishable particles of type j can be de-

scribed by a vector of Q. i(Ai + 1) —1 integers, n =
(npp pi, . . . , n~ ~ ), where nk, q„ is the number of
&agments with k~ particles of type j, j = 1, . . . , %. The
set of all such states or multi-partite partitions is denoted

by II~, ~, each of which is subject to the constraints

~ k, ni, i„——A, , J = 1, . . . )N.
There are two principal reasons why one-component

models are primarily used in the statistical modeling
of nuclear fragmentation. The first reason is simplic-
ity. One-component models are fundamentally simpler
than two-component models, and the exact solution for
a class of one-component models has been known for
some time. This simplicity is best seen in the size of
the state space (see Table I). For one-component par-
titions, the number of states is asymptotically given by

p(A) K exp(aAi~2)/A, with a and K particular con-
stants. Bipartite partitions grow much more quickly, in
fact p(A) K'exp(a'A2~s+b'Ai~s)/A55~ss for Z = N =
A/2 as demonstrated by Auluck [25]. This increase in
the number of states makes it significantly more difficult
to model these systems by standard Monte Carlo tech-
niques.

The second reason is sufficiency. A one-component
model can always model the physics if the underlying
isotopic states are inaccessible to the observer. For ex-
ample, typically only the charge distribution of the frag-
ments is measured in a fragmentation experiment. The
isotopic distribution for any particular charge Z is not
recorded. So a one-component model distinguishing pro-
tons is sufficient to model the observables measured. The
weight for a particular charge &agment distribution is
then given by summing the two-component weights of

TABLE I. Number of partitions for Z protons and N neu-

trons.

Z X Pz Px+z Pz~
10 10 42 627 59521
20 20 627 37338 3026 73029

30 35 5604 20 12558 231 50477 43167
40 50 37338 566 34173 6 00944 62493 61633
50 70 9 66467 18443 49560 26953 04447 12166 28606
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a~ the states which have an equivalent configuration of
protons. Since this weight is a complicated sum of two-
component weights, there is no guarantee that the one-
component weight will be simple. Indeed, this is usually
not the case, as we will discover in Sec. IV.

However, there are good reasons to prefer modeling
nuclear systems with a two-component model, especially
if such a model is amenable to analytic solution. For
instance, any choice of statistical weight based on the
fundamental statistics of the constituent particles must
by necessity be based on a two-component model. Also,
unlike one-component models, definite predictions about
the isotopic distribution of fragments could be made for a
two-component model. Additionally, nuclear effects such
as proton-neutron symmetry, pairing, and Coulomb in-
teractions could be modeled, effects which are difficult (if
not impossible) to treat in a one-component model.

This paper shows that a particular class of two-
component models are in fact exactly solvable by recur-
sion. Realistic models lie within this class, and their solu-
tion obviates the need for Monte Carlo and allows for the
exact evaluation of all expectation values. A discussion
of the relation of bipartitions to permutations provides a
closed form solution for a specific two-component model,
as well as a proof that all the one-component models of
the same form as those in Ref. [4] are equivalent to a
particular subclass of two-component models.

II. ISOTOPIC MODELS AND THEIR SOLUTION

Earlier papers [1—4] discussed the one-component
model where each state n 6 IIz was given the weight

nj
Wz(n, x) 1

z, (x) z, (x) . .. . , !

The partition functions can be obtained by recursion,

j Z

Zz(x) = —) jz, Zz ,(x)-
and all the ensemble averages are simple functions of the
partition function.

In analogy with the one-component model, we can de-
fine a canonical weight for n 6 IIZN by

WZN(n, x)
PZN Xl, X

zzN(x) zzN(x) .:"&gk'jk

or in general,

Ajk P ~

I ZzN(x) "" ' »io»ZNjk

p, ~ zz Pip—,a N Pkp—,a (x)
h 1 h ZzN(x)jk

where p is a vector of integers, p = P.k p~k and the
falling factorial [z]k is given by [z]k = (z —k + 1)[z]k
with [z]o ——1.

Of course, the partition functions are needed to com-
pute these expressions. The constraints g.k jn~k = Z,gkg.k kn~k = N hold for all configurations, so they must
also hold for the expectation values. This allows us to
express the partition function as a recursively defined
function:

1
ZZN (x) =

Z ) j z~k Zz ~,N k (x),—
jk

1
ZzN(x) = —) k&jkzz j N k(x) .

jk

Since Zoo(x) = 1, these two relations can be used to
iteratively construct the set of partition functions for any
parameter vector x.

It should be noted that the technique used to solve this
model applies equally well to any number of components.
The ¹omponent system of A = g. i A~ particles with
the weight

~kg. ..k~
k kP~, ~ (n, x) =

Zx, x~ (x) .." nk, k„!
k1 ...k~

has a recursively defined set of partition functions deter-
mined by the N equations

1
Z„, &„(x)= ) k, zk, „„Z„, k, „~ „„(x)

k1...k~

can be seen by taking a derivative of the grand canoni-
cal partition function Z(u, v, x) = QZN ZzN(x)u v

exp(g. k z~ku~vk) and comparing terms
From this property any moment can be calculated in

terms of the partition functions. For example,

Z&k BZZN ZZ ~ Nk. (x)
zzN (x)»,k

' zzN (x)

OZZN = Zz —),N —k(x),
&jk

(4)

where Z~k(x) = 0 when j ( 0 or k ( 0. This property

where x is a parameter vector which determines the frag-
mentation behavior. The 1/n~k! are the expected Gibbs
factors which arise &om the exchange statistics of identi-
cal &agments. The solution of this system can be derived
&om the following property of the partition function:

for j = 1, . . . , N where Zoo oo(x) = 1. All the ensemble
averages can be determined solely &om these partition
functions and the parameter vector x.

III. RELATION TO THE PERMUTATION
GROUP

It is useful to consider an alternative representation of
these models. Consider the set of all permutations on
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A objects, the symmetric group SA. Typically a per-
mutation p E SA is represented by a vector of integers

p = (pi, . . . , p~) where p~ is the result of the permutation

acting on j, i.e., j + pj. We can also represent p by its
cycle decomposition. In this representation, the permu-
tation is a set of disjoint cycles of varying length. Each
cycle contains all the numbers which permute among
themselves under the action of the permutation.

If we identify each element in the permutation vector
with a particle, we can consider a cycle in the cycle de-
composition of a permutation as representing a cluster
of particles. This de6nes a many-to-one map from the
set of permutations SA onto the set of partitions IIA by
cycle decomposition. For example, Table II details this
for A = 4. The number of permutations which map to a
particular partition of A was computed by Gauchy, and
is given by

M, (n) = A! .".ni, !k"
k=x

(10)

which satisfies the identity g„&ii M2(n) = A. . Since
this is of the same form as the weight given by the one-

component partition model, we see that the model given

by the permutation weight

Pg(p, z) =
A

n~ (p)Zj'
Zg(z) ."j=1

is equivalent to the partition model given by Eq. (1) with

xj given by

(12)

For example, if z~. = x, each permutation contributes
x to the partition function, where m is the total num-

ber of cycles. There are ~S&(
)

~

permutations with m cy-

cles, where S&~
) is the Stirling number of the first kind.

Therefore, the partition function is given by Z~(x)

, ~S~~ )~x = x(x+1) (x+A —1), a result which
can be found in Goncarov's study of the distribution of
cycles in permutations [28].

We can also map the set of permutations SA onto the
set of partitions Ilziv where A = Z+ N in an analo-

gous way. Identify elements 1, . . . , Z in the permutation
as protons, and elements Z + 1, . . . , Z + X as neutrons.
Each cycle in the permutation is mapped to a cluster by
counting the number of "neutrons" and "protons" in that
particular cycle. As an example, this is done for Z = 2,
X = 2 in Table II. The number of permutations which

map in this way to a particular n p IIzN is given by the
two-component generalization of Cauchy's formula

TABLE II. The twenty-four permutations of S4 and their
partition representations. The first two columns give the typ-
ical representation and cycle decomposition of the permuta-
tions. The third column gives the equivalent one-component
partition vectors n = (ni, n2, ns, n4). The last col-

umn gives the equivalent two-component partition vectors

(n01 +02 n10 nil n12 n20 n21 +22)

M2(n) = Z!¹! '
l i-„(

nglC' ( 2''"' )jk

which also satisfies the identity P„~n M2(n) = A!.
Since this number is of the same form as Eq. (3), the
permutation model given by

p („, ) =, , ',".„'"(')
ZN (Z jkP

(1,2,3,4)
(1,2,4,3)
(1,3,2,4)
(1,3,4,2)
(1,4,2,3)
(1,4,3,2)
(2,1,3,4)
(2,1,4,3)
(2,3,1,4)
(2,3,4, 1)
(2,4, 1,3)
(2,4,3,1)
(3,1,2,4)
(3,1,4,2)
(3,2, 1,4)
(3,2,4, 1)
(3,4,1,2)
(3,4,2, 1)
(4,1,2,3)
(4,1,3,2)
(4,2,1,3)
(4,2,3,1)
(4,3,1,2)
(4,3,2,1)

(1)(2)(3)(4)
(1)(2)(3,4)
(1)(2 3)(4)
(1)(2 3 4)
(1)(2,4,3)
(1)(2 4)(3)
(»2)(3)(4)
(1,2)(3,4)
(1,2,3)(4)
(1,2,3,4)
(1,2,4,3)
(1,2,4)(3)
(1,3,2)(4)
(1,3,4,2)
(1,3)(2)(4)
(1,3,4)(2)
(1,3)(2,4)
(1,3,2,4)
(1,4,3,2)
(1 4»)(3)
(1,4 3)(2)
(1,4)(2)(3)
(1,4,2,3)
(1,4)(2,3)

n4

(4,0,0,0)
(2,1,0,0)
(2,1,0,0)
(1,0,1,0)
(1,0,1,0)
(2,1,0,0)
(2,1,o,o)
(0,2,0,0)
(1,0,1,0)
(o,o,o,1)
(0,0,0,1)
(1,0,1,0)
(1,0,1,0)
(0,0,0,1)
(2,1,0,0)
(0,0,0,1)
(0,2,0,0)
(0,0,0,1)
(0,0,0,1)
(1,0, 1,0)
(1,0,1,0)
(2,1,0,0)
(0,0,0,1)
(o,2,o,o)

D22

(2,0,2,0,0,0,0,0)
(0,0,2,0,0,1,0,0)
(1,0,1,1,0,0,0,0)
(0,0,1,0,1,0,0,0)
(0,0,1,0,1,0,0,0)
(1,0,1,1,0,0,0,0)
(2,1,0,0,0,0,0,0)
(0,1,0,0,0,1,0,0)
(1,0,0,0,0,0,1,0)
(0,0,0,0,0,0,0,1)
(o,o,o,o,o,o,o,1)
(1,0,0,0,0,0,1,0)
(1,0,0,0,0,0,1,0)
(0,0,0,0,0,0,0,1)
(1,0,1,1,0,0,0,0)
(0,0,0,0,0,0,0,1)
(o,o,o,2,o,o,o,o)
(0,0,0,0,0,0,0,1)
(0,0,0,0,0,0,0,1)
(1,0,0,0,0,0,1,0)
(0,0,1,0,1,0,0,0)
(1,0,1,1,0,0,0,0)
(0,0,0,0,0,0,0,1)
(0,0,0,2,0,0,0,0)

(14)

is equivalent to the model given by Eq. (3) with

(j+ k —1)!
Xjk = Zjk

~ ~

This can be generalized to any number of components.
The X-component generalization of Gauchy's number for

i A~ is given by

N

M2(n) = A,.!
p(P. k —1)!~

""~

kk1.. .k~

and the permutation model

1
(*)=z„, „.() k1...k~

is equivalent to the partition model given by Eq. (8) with

xk, k given by



5Q FULLY ISOTOPIC MODEL OF FRAGMENTATION

IV. ISOTOPIC AND PERMUTATION
EQUIVALENCE

This treatment of per mutations of distinguishable
groups of indistinguishable particles is similar to the no-
tion of multiset permutations in the mathematical liter-
ature, except that we treat the particles in the permuta-
tion representation as ultimately completely distinguish-
able, and only concern ourselves with the indistinguisha-
bility when carried over to the partition representation.
This is essentially a variation on the idea of represent-
ing permutations as colored partitions as presented in
Ref. [27].

Using the two-component model as defined over the
permutation group allows us to construct a closed-form
solution for the partition function of a particular model.
Consider Eq. (14) with z~i, = z. As in the one-component
case, each permutation contributes z to the partition
function, where m is the total number of cycles, and

there are &S& l& permutations with m cycles. Therefore,

ZZN(z) = p", &S„&z = z(z+ 1) . (*+A —1). By
Eq. 15, this implies that the partition model with

(j+ k —1)! z (j + kp

j+k

Pz(n) = ) Pziv (n )
n'Qa» (n)

(23)

where Ilz~(n) denotes all the partition vectors n' E Ilz~
such that n~ = P„on',

If we consider deriving the models over the permu-
tation group, we can define the notion of permutation
equivalence of Pz, ~, (p') to Pz~(p) by the condition

As mentioned in Sec. III, two-component models are
sometimes equivalent to one-component models. In this
section, we make this notion precise as well as show under
what conditions this is true.

A two-component model is said to be isotopit-ally
equivalent to a one-component model if for every func-
tion f(n), the one-component ensemble average (f)z ——

f(n)Pz(n), is equal to the two-component en-

semble average (f)z~ = g„,zn „f(n(n'))Pz~(n'),
where n~(n') = P& on'i, . For example, (n,.)z

0(n~i, )z~ must hold if two models are considered
to be isotopically equivalent. As mentioned in the Intro-
duction, this is true if and only if

has its partition function given by the closed-form ex-
pression

Pz~(p) = Pz ~ (p') (24)
1 I'(x+ Z+ N)=

Z!N! r(z) (20)
Gsz'+w (p)

The expected number of &agments with j protons and k
neutrons is

B(j + k, x+A —j —k),
(Z) (N)
E~) Ek)

(21)

(n, ) = z«. B(j,z+ Z —j),/Z)
(22)

which can be shown by applying the Norlund formula
[z + y]" = g"„o("„)[z]"[y]" " to Eq. (21), where the
rising factorial is given by [z]" = (z + k —1)[z]" and
[*1'=1

Notice that Eq. (22) is identical to the one-component
expectation value for the model given by Eq. (1) with
z~ = x/ j (see [3]). This is not a coincidence. In fact, the
relation of the partition models to the permutation group
allows us to prove in the next section that there exist
two-component models of the form of Eq. (3) for every
one-component model of the form of Eq. (1) suoh that the
results of the one-component model are preserved when
a suDUnation over isotopes is performed. In this case, the
two-component model given by Eq. (19) is equivalent to
the one-component model given by zi = x/j.

where B(z, y) is the Euler Beta function, B(z, y)
I'(z)I'(y)/I'(z+ y). The expected number of &agments
of charge j, nz ——g& on&& is given by

where Z' ) Z, N' ) N, and Sz+~ (p) is the set of
all permutations p' p Sz +~ which give p by the fol-
lowing construction. Decompose p' into its cycle rep-
resentation. Eliminate the numbers Z + 1, . . . , Z' and
Z'+ N + 1, . . . , Z' + N' &om the cycles. Renumber the
elements Z'+ 1, . . . , Z'+ N as Z+ 1, . . . , Z+ N to re-
cover the permutation in Sz+~. In other words, if k is
an element to eliminate, find j such that p~ = k, and
modify the permutation vector so that p~. = pi, . This
removes the element &om the permutation. Do this for
all the numbers to eliminate, resulting in a new permu-
tation isomorphic to a permutation in Sz+~. For ex-
ample, p' = (1,5)(3)(4,6, 2) C Ss becomes (1,5)(4, 2)
by eliminating 3, 6. After renumbering, this becomes
p = (1,4)(2, 3) c S4.

Permutation equivalence of Pz~(p') to Pzo(p) im-
plies isotopic equivalence of M2(n'(p'))P&~(n'(p')) to
M2(n(p))Pzp(n(p)), assuming the permutation weights
are only functions of n(p), i.e., all permutations which
have the same partition configuration or cycle decompo-
sition have the same weight. One particular permutation
weight which satisfies this condition is the unnormalized
weight Wz~(p, z) = g.&

z".&" . We will now show that
this weight with A = Z+8 is permutationally equivalent
to the Z, N+1 weight with the same z~y if z~y

——z~. This
implies by induction that the ZO model is permutation-
ally equivalent to the ZN model, and therefore the two
weights corrected by the Cauchy factor are isotopically
equivalent.

For any permutation p p S~, there are A + 1 per-
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mutations in S~+i(p). One of these permutations has
the element A + 1 in its own cycle. It has weight
Wz jv+i (p', z) = Wziv (p, z) zoi . A of the permutations
are hybrids, with the extra element combined with a cycle
firom p. Suppose the element is in a cycle of j neutrons,
k protons. The weight of that cycle is Wz jv+i(p', z) =
Wzjv(p, z)zz q+i/z~q, since the introduction of the ad-
ditional element has reduced n~& by one, but increased
n~ I,+i by one. There are j + k possible places for the
element to be inserted into that cycle, and there are n~k
cycles of that type it can combine with. So the following
is true:

given above. Notice that this condition is very similar to
Kingman's noninterference condition on one-component
partition weights [29]. We require that the neutrons do
not "interfere" with the overall proton distribution, just
as in one-component models Kingman required that the
addition of new objects does not interfere with the prob-
ability structure of the original set of objects.

This technique can be generalized to construct an N+1
component model that is equivalent to an N-component
model. For example, if the ¹omponent weight is given
by Eq. (8), then an equivalent N + 1 component model
is given by the parameter vector defined by

Wz, sr+i(p')) ', , = zoi+ ) f~j&j,
&zx(p)

P g SA+1 (P) jk
(25)

xki" A:a+i x&i &rv l" '
jv+i )

(30)

Zz, jv+i(z) = Zziv(z)(zoi + Z+ N) . (26)

This implies Eq. (24) when substituted back into
Eq. (25). So under these conditions, Pziv is equivalent to
Pz ~+&. Therefore, Pzo is equivalent to Pz~ by induc-
tion and transitivity, and Eq. (1) is equivalent to Eq. (3)
for x~~ given by

(j+ k —1)
!

x~j, = x~!
r

(27)

The partition function for this two-component model is

(
I'(zo, + Z+N)

I'(zoi + Z)
(28)

Notice that at no point was it asserted that these
are the only two-component models that are isotopi-
cally equivalent to the one-component models. In the
previous discussion, the key property was the indepen-
dence of g.& f~&n~j, &om n. Perhaps we could satisfy
this with choices other than f~j, = j + k. In fact, it
can be proven that this condition is satisfied only by
f~&

——aAj /Z+ (1 —a)Ak/N where a is arbitrary. How-
ever, a g [0, 1] to guarantee non-negative probabilities in
the statistical model. Given z~o, we could then construct
permutationally equivalent two-component models spec-
ified by o. and the recursion relation

A ( j
+ =' . kl Z+( )Nj+k ( Z N)

(29)

and evaluate the equivalent partition weights using
Eqs. (3) and (15).

If we require that the models be isotopically equivalent
for any choice of N, these are the only models given by
Eqs. (1) and (3) that are isotopically equivalent. This
is true because isotopic equivalence for any N implies
permutation equivalence of N to N + 1. Permutation
equivalence requires P,& fzj, n~k to be independent of n,
which can be shown to be true only if z~I, is of the form

where f~j, = (j + k)z~ j,+i/z~j, If z~. g is independent of
k, this reduces to zan + N + Z. In this case, we can
multiply both sides of the equation by Wziv(p) and sum
over Vp Q S~ to arrive at

These results provide a simple way of constructing two-
component models &om the one-component models ex-
plored in earlier papers. For example, one could apply
Eqs. (27) and (28) to the chain model, xz. ——x, to con-
struct a two-component extension of the chain model as
developed by Gross et aL [10].

V. APPLICATION TO NUCLEAR
FRAGMENTATION

The two-component analogs of one-component models
given by Eq. (29) could be taken as the starting point for
a fully isotopic model of &agmentation. These models
would contain no surprises in their one-component ex-
pectation values, and would provide predictions for the
isotopic behavior.

This is perhaps too strong a requirement. Equa-
tion (29) constrains the set of possible partition weights,
forbidding a number of physically interesting choices for
x~A, . For example, if the symmetric term exp( —a, (j-
k) /(j + k)) appeared in the parameter z~q, the result-
ing parameter vector could never satisfy Eq. (29). Since
such a symmetry term should appear due to the symme-
try term in the binding energy of nuclei, we should not
expect realistic models to be isotopically equivalent to
the models considered in earlier papers.

With that in mind, we start with a simplified model
of nuclear &agmentation specified by the following choice
for x~.j,

(31)

We will find it appropriate sometimes to modify this
when j+k = 1, i.e., to avoid the exponential suppression
factor e for monomers. Let us specialize to the case
w = 1 and consider the limiting cases. When o., —+ 0, the
model becomes the two-component analog of the model
discussed in Sec. III. The partition function has a closed-
form solution, which is given by Eq. (20). When a, m oo,

x~I, is proportional to a Kronecker delta function and the
model reduces to the one-component model specified by
parameters
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where k indexes both proton and neutron number, since
only symmetric &agments with j = k are allowed. In
this case, the partition function also has a closed-form
solution

z I'(z + 2A)'"(*)=
A. r(.+A+I) (33)

Besides, note that all models with zi, = —&("&"j for n =
1, 2, 3, . . . have closed-form solutions given by Z&(z) =
(z/A!)(I'(z + nA)/I'[z + (n —1)A + 1]}. Models with
intermediate values for a, are not as simple as these two
limits, but can still be computed easily. Figures 1 and 2
show the prediction of this model at z = 1 and various a,
for a synirnetric case Z = N = 50 as well as an asymmet-
ric case Z = 50, N = 75. These figures display the total
charge distribution (n~) = P& o(n, i, ), as well as the dis-
tribution of isotopes for a particular charge, specifically
carbon, i.e., (n~&) for j = 6.

Prom the total charge distribution 6gures, we see that

increasing a, increases the number of large &agments.
This is due to the exponential suppression of asymmetric
&agments, which make up a large fraction of the par-
tition space, especially for smaller &agments. The iso-
topic distribution figures reveal that the distribution of
isotopes is essentially Gaussian. As seen earlier [5], an
initial asymmetry in the relative numbers of protons and
neutrons yields a similar asymmetry in the distribution
of &agments. This asymmetry can be diminished by in-
creasing n, and removing the exponential suppression
from monomer parameters (zoi, zio), as was done in the
figures. Indeed, as n, ~ oo, such a model would allow
only symmetric &agments and monomers.

To this simple model, we can add other effects, even-
tually including all the terms in the semiempirical mass
formula. For example, nucleon pairing interactions can
be added using the term exp(a„p, q/(j + k) }where pal,
is 0 for even-odd nuclei, —1 for odd-odd nuclei, and +1
for even-even nuclei. This can be done for all intra&ag-
ment interactions. Inter&agment interactions do not fit
the form of Eq. (3) and must be handled in some kind
of mean-field manner in this approach. Coulomb inter-
actions are the only persistent long-range interactions in

V

0.1

0.015
A

V

0.01

5x10

FIG. 2. Overall (a) and iso-
topic (b) distribution of frag-
ments for Z = 50, N = 75,
x = 1, 7 = 1 and various u, .
Isotopic distribution is for car-
bon, Z=6.
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the thermalized phase. Suppose each fragment interacts
with all the others via the Coulomb interaction. This
contributes an interaction energy given by

1 IEI ) +jk(+1m ~j i~km)@jkt~.
jklm

(34)

If we choose El&& ——j te2/(r) for the Coulomb interac-
tion, then

g 2

2(r)
Z —) j njp

which suggests that we include interfragment Coulomb
interactions by appending the term exp(n, j ) to xj&. We
can estimate a, by assuming (r) = V l = rod ~

We postpone investigating such a realistic choice for
xjq for a later paper.

VI. CONCLUSION AND SUMMARY

This paper established a nontrivial exactly solvable iso-
topic model of fragmentation. The model is specified by
a set of parameters x~p, where x~& includes all the phys-
ical parameters pertinent to the &agmenting behavior of
clusters of j protons, k neutrons. This model is related
to the permutation group and as a result, it was proven

that for certain choices of x~p it directly reduces to a
previously developed one-component model when a sum-
mation over isotopes is performed.

The usefulness of this model in nuclear fragmentation
lies in its simplicity and exact solvability. Expectation
values relating to various experimental observables are
easily derived &om the partition functions of the model.
In turn, the partition functions are related to the under-
lying weight given to each possible partition or &agmen-
tation state of the system of protons and neutrons. For
the weights considered in this paper, the partition func-
tions were obtained as either closed form expressions or
more generally as recursively defined functions, either of
which can be used to quickly generate any observable of
interest. The alternative approach of Monte Carlo impor-
tance sampling of the system allows for the observables
to be built up statistically, with a diminishing error, but
at a greater computational price. It has the advantage,
however, of being applicable to any weight scheme. Here
the approach taken was to restrict attention to a partic-
ular class of weight assignments which are amenable to
analytic solution, hoping to keep enough of the relevant
physics to still be a useful model.
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