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Generator coordinate method calculations, including the case of two-generator coordinates, which

is not usually considered in the relevant scienti6c literature, are performed for nuclear state energies,

as well as momentum and density distributions of the He and O nuclei. The construction potential
used behaves like an harmonic oscillator at large distances from the center of the potential but it
has also a strong short-range repulsion, which is expected to simulate, to some extent, effects of
the inclusion of short-range correlations in the harmonic-oscillator many-body wave function. The
results are compared with available experimental information and discussed.

PACS number(s): 21.60.—n, 21.10.Re, 21.10.Gv, 2?.20.+n

I. INTRODUCTION

Many experiments in recent years have concentrated
on the study of high-momentum components of the nu-
clear wave function [1]. We shall mention especially
the inclusive- and exclusive-electron scattering on nuclei
(e.g. , Refs. [2—4]) which show the existence of strong high-
momentum components of the total nucleon momen-
tum distribution. An essential spectroscopic information
has been also obtained in proton pickup and knockout
reactions using polarized deuterons as projectiles (e.g. ,
Refs. [5—7]). Information on the single-particle momen-
tum distributions which is complementary to that from
electron- and proton-induced reactions has been obtained
&om the photoreactions (e.g. , Ref. [8]) having unique
sensitivity to high-momentum components of the total
wave function. The results mentioned above cannot be
explained in the &amework of the mean-field approxima-

tion (MFA) used in nuclear theory. Correlation methods
going beyond the limits of MFA and accounting for short-
range and tensor nucleon-nucleon correlations have been
developed. The review of the results obtained in vari-

ous correlation methods and their comparison with the
experimental data can be found, for instance, in [ld,9].

A correlation approach within the generator coordinate
method (GCM) [10—11] using Skyrme-like eKective forces

[12] has been developed [13,14] and applied to calculate
the nucleon momentum and density distributions, the en-
ergies and r.m.s. radii of the ground and Grst monopole
excited states of 4He, ~sO, and 4 Ca nuclei [15]. In addi-
tion, the natural orbitals and occupation numbers have
been calculated using the GCM one-body density matrix
16], as well as the two-nucleon momentum distributions
17].

In the GCM the trial many-particle wave function

4((r')) of a system of A. nucleons is written in the form

of a linear combination:

@(21 22 — ZA) f f(Z1, 22, ...)o(21 22, ~ ., ZA', Zl, Z2-.)dZldZ2. .. ,

bE[4] =0, (2)

where the generating function 4 depends on the radius-
vectors of the nucleons (r') and on the generator coor-
dinates xq, x2, ... . This function is usually chosen to be
a Slater determinant built up &om single-particle wave

functions corresponding to a given single-particle poten-
tial (the so-called "construction potential" ) parametrized
by xq, x2, ... . It is obvious that in this case the wave func-
tion (1) of the system, being a superposition of Slater
determinants, goes beyond the limits of the MFA. The
so-called "weight, " or "generator" function f(x', x2, ...)
can be determined using the variational principle

where

(~I~I~)
&+I+)

and H is the Hamiltonian of the system.
Various applications of the GCM to the nuclear prob-

lems are simplified using the effective N-N Skyrme inter-
action [12]. Monopole, dipole, and quadrupole isoscalar
and isovector vibrations of light double-magic nuclei are
considered in [13]. The appearance of the effective in-

teraction between two nucleons in a medium, which is
different &om that between nucleons in vacuum, is due
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to the efFects of other nucleons on the pair of the par-
ticles considered. The approach of Skyrme gives a di-
rect parametrization of the effective density-dependent
nucleon-nucleon interaction.

The account of the N-N correlation efFects within the
GCM depends on the choice of the construction poten-
tials, namely, the harmonic oscillator

V(r) = —V()+ 2m(u r (Vp & 0)

and the square well with in6nite walls

(4)

()
—Vp, r (z, Vp)0
oo, r ) x (5)

V(r) = —V()+ —m(d r + —,V() ) O, B & 0.1 2 2 B
(6)

In the particular case B = 0 the potential (6) coin-
cides with (4). This potential behaves like an harmonic-
oscillator potential for large values of r but it has in addi-
tion a repulsive term which is the dominant one at short
distances kom the origin. It is expected that this term
simulates to some extent effects of the inclusion of short-
range correlations in the harmonic-oscillator many-body
wave function.

In this paper we consider the potential (6) as a con-
struction potential for GCM calculations using the pa-
rameters P = (

" )~)' = — (which determines the
I

(where the oscillator parameter o. = ( s ) ) 2 and the ra-
dius of the well z are the generator coordinates, respec-
tively) which have been used in the approach of Refs.
[14—17]. In particular, the use of the harmonic-oscillator
construction potential (4) afFects strongly the behavior
of some physical quantities due to the speci6c asymp-
totic behavior of the oscillator functions. In the case
of the construction potential (5) the generating function
4 ((r;),z) corresponds to a state of A nucleons confined
in a finite spatial volume (a sphere with radius z). It has
been concluded in [15] that the high-momentum com-
ponents of the nucleon momentum distribution obtained
in the latter case are due to the existence of intermedi-
ate states (i.e., states with a given value of the genera-
tor coordinate z) with high densities in which the dis-
tances between the nucleons are small and short-range
forces are operative. In the case of GCM with harmonic-
oscillator construction potential the high-density inter-
mediate states are not possible and the nucleon momen-
tum distributions do not show high-momentum behavior.

A single-particle potential model which has been sug-
gested for the study of charge form factors and nucleon
momentum distribution of light nuclei is the one used in
Refs. [18,19]. The main feature of the model is that the
single-particle potential contains both an attractive and
a repulsive part:

strength of the attraction) and B (determining the
strength of the repulsion) as generator coordinates in the
study of He and 0 nuclei. Our aim is to follow several
consecutive steps in this study, namely, by first minimiz-
ing the expectation value of the nuclear Hamiltonian with
a single Slater determinant (SSD) wave function with re-
spect to these two parameters. Secondly, we perform
one generator coordinate calculations (OGC) fixing the
one of the parameters and varying the other one. Fi-
nally, we perform a two generator coordinate calculation
(TGC) with the above-mentioned two parameters, which
appears to be a rather interesting possibility in view also
of the very limited cases of this type of calculations in
the literature.

In Sec. II, the basic GCM relations are given. In
Sec. III the explicit forms for the single-particle wave
functions corresponding to the potential (6) and the an-
alytic expression of the overlap integrals are also pre-
sented. In the 6nal section the numerical results are given
and discussed.

II. GENERATOR COORDINATE METHOD
RELATIONS

We consider the GCM trial many-body wave function

(1) with two generator coordinates: z) ——P and z2 ——B
The application of the Ritz variational principle [Eqs. (2)
and (3)] leads to the Hill-Wheeler integral equation for
the weight function:

where

and

*—= (»B) (8)

&(» z') = {@'((~')z) IB I@'((~*) z'))

&(» z') = (4'((&') z) l~((~*) *'))

(9)

(10)

are the energy and overlap kernels, respectively, and H
is the Hamiltonian of the system. The generating func-
tion 4((r;), z) is taken to be a Slater determinant [built
up here &om proton and neutron orbitals P~(r", z) corre-
sponding to the construction potential (6)]. In this case
the energy kernel (9) has the form [20]

In the case of Skyrme effective forces, neglecting the
Coulomb and the spin-orbit interaction, the function
H(z, z', r) is given, for equal number of neutrons and
protons, by [13]

H(z, z', r) = T+ —top + —(3&q+ 5t2)(pT+ g ) + —(9&& —5t2)(&p) + 4p-h 3 2 1 1 1 2+
2m 8 16 64 16

The quantities t0, tq, t2, ts, cr are the Skyrme force parameters and the density p, the kinetic energy density T and the
current density j are de6ned by
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A/4

~(z *' r) = 4 ). (N '(»z'))„i&i(& z)&~(~ *')

A/4

r(z, z', ~q = 4 ) (N '(z-, z'))„„Vy„*(.-, z)V y„y, z'), (i4)

A/4

'(**' ) = ). ( '( *'))„[&'( *) & ( *') —( &'( *))& ( *')].

In Eqs. (13)—(15) A is the mass number of the nucleus and (N ~)„~ is the inverse of the overlap matrix:

~z (* *') = f d'z(" *)d (" *')d"

The overlap kernel (10) has the form

JV(z, z') = [det(Np„)]

The one-body density matrix for the ground state of the nucleus is given by [1d,9,16]

p(rr') = f f ,( )fr( x)Apl(x)px( x, ', , zrz')drxdz',

where

(16)

(17)

A/4

~(**' ') =4 ). (N '(**')) &'( *)& ('*') (i9)

and fo(z) is the solution of Eq. (7) corresponding to the lowest energy eigenvalue. It follows from (18) that the nuclear

density distribution p(r) and the nucleon momentum distribution n(k) can be expressed as

and

p(r) = f jr(z) fr(z')A((z, z')p(z, z', r)dzdx''

rr(k) = f fp(z) fr(z )N(x, z )p(z, z, k)dxdz

(20)

(21)

where

A/4

p(z, z', k) = 4 ) (N '( ,zz))„pP'„(k, )zP„(k, z) (22)

and (t)(k, z) is the Fourier transform of P(i, z).

III. SINGLE-PARTICLE WAVE FUNCTIONS
AND OVERLAP INTEGRALS

normalized energy eigenfunctions are

One of the main advantages of the construction po-
tential (6) is that analytic expressions can be derived for
the wave functions and for other useful quantities, some
of which are needed in the present investigation. The

I

& ( *) =& ( ~ & 0 &) =R-( )Y (~, V),

where YP are the spherical harmonics and R„~(r) are
given by the expression [19b, and references therein]:

(24)
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where

8~B~
A( = — 1 + (2l + 1)2 +

h

2A —iI„' ' are the associated Laguerre polynomials. The
dependence of R„~(r) on the parameters x = (P, B) has
been omitted for the sake of simplicity. It may be easily
verified that when B = 0, that is when A~ =

2 (l + 1), the
above expressions go over to the well-known expressions
for the corresponding harmonic-oscillator wave functions.
It should be noted that the usual radial Schrodinger equa-
tion is satisfied by the functions rp„~(r) = rR„~(r)

In the present study we need only the R00 and Roq and
I

their derivatives. A little more generally, the Ro~ and its
derivative are given by the simple expressions

(
&Pr(2A~+ —,') ) ~ iP) (26)

d oi(r)
(27)

In additioa, the overlap integrals No~ o~(P, B;P', B') in
the matrix (16) may also be calculated analytically in
terms of the F function. The result is

~p2+ p'& ~r(2A, + -', )r(2A;+ —,') ~
(28)

The quantity inside the square root is equal also to
the ratio of two Beta functions of argumeats (A~ + AI +
2, A~+ AI+ 2) aad (2A~+ 2, 2AI+ 2), respectively. It may
be easily checked out that for P' = P and AI

——A~ the
overlap integral becomes unity, as expected. In addition,
if A~ =

2 (E+1) the above overlap integral goes over to the
known expression for harmonic-oscillator wave functions.

The aaalytic expressions given in this section are use-
ful in obtaining our numerical results and diminish the
required computing time.

IV. RESULTS AND DISCUSSION

The GCM formalism described above has been applied
to He and 0 nuclei for calculating the energy of the
ground and first collective excited states as well as the
ground-state momentum and density distributions. The
SkIII set of Skyrme force parameters [21] has been used
in the calculations.

The Hill-Wheeler integral equation (7) has beea solved
using a discretization procedure similar to that of [13]
with respect to x—:(P, B) and z':—(P', B'). The result-
ing matrix eigenvalue problem was solved numerically.
The values of the lowest solutions for the energy Eo (the
ground-state energy) and Eq (the first collective excited
state energy) and the difference b,Eq ——Eq —Eo are pre-

(4((r;},P Bo)IB'l@((r"*') Po Bo)) = min. (29)

For 4He Bo ——2 MeV fm2, Po ——1.5 fm and the variational
energy of a single Slater determinant (SSD) of single-
particle functions corresponding to the potential (6) is
Ev = —26.68 MeV. For ~sO Bo ——0, Po ——1.8 fm and
Ev ———138.13 MeV.

sented in Tables I and II. The eigenfunction (i.e., the
weight function) fo(z) corresponding to the lowest eigen-
value Eo has been used in Eqs. (20) and (21) for calcu-
lating the density and moment»m distributions. This
procedure enables us to study separately the effects of
each of the generator coordinates P and B, fixing one of
them and varying the other one in the GCM, as well as
the effect of varying both of them.

The results given ia the first columa of Tables I and II
(for B = 0) correspond exactly to the GCM calculations
with the harmonic-oscillator construction potential (4)
and reproduce well the energies obtained in [13] in the
case of SkIII parameter set: Eo=—32.93 MeV, Ej———5.35
MeV, AEq ——27.58 MeV, for He and Eo———140.32 MeV,
Eq ———108.65 MeV, AEq ——31.67 MeV for O.

The variation of the geaerator coordinates P and B
in the present GCM calculations was carried out in the
vicinity of the values P = Po and B = Bo which minimize
the diagonal element of the energy kernel (9):

TABLE I. Energies (ia MeV) of the ground state (Es) aad the first collective excited state (Eq),
aad their differeace b, Eq in the GCM with the construction potential (6) aad SkIII efFective forces,
together with the variatioaal energy Ev of a single Slater determinant (SSD), for the He nucleus.

&o

AEg ——

@x —&o

Variations
ofP

B=0
—26.40
—33.01
—5.39

27.62

Variations
of P

B= 2 (MeVfm )
—26.68
—31.99
—4.98

27.01

Variations
of B

p = 1.5(fm)
—26.68
—29.81- 10-"

29.81

Variations
of P aad B

—26.68
—43.01
—8.45

34.56
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TABLE II. Energies (in MeV) of the ground state (Eo) and the first collective excited state
(Ei), and their difFerence b,Ei in the GCM with the construction potential (6) and SkIII effective
forces, together with the variational energy Ev of a single Sister determinant (SSD), for the 0
nucleus.

E~
Eo
E
DEI ——

L —Eo

Variations
ofP

B=o
—138.13
—140.43
—108.87

31.56

Variations
of I3

P =1.8 (fm)
—138.13
—139.87
-98.74

41.13

Variations
ofP and B

—138.13
—142.59
—110.81

31.78

The GCM numerical calculations have been performed
using a set of regular mesh points with different steps as
well as ranges of values of the generator coordinates P and
B until the results do not change after decreasing the step
size or increasing the range of the generator coordinate
values. For example, in the case of the two generator
coordinate calculations the results given in Tables I and
II are obtained using the following ranges and steps: 4He

[0.6 & P & 2.4 fm, step 0.1 fm; 0 & B & 9 MeV fm2, step
0.5 MeVfm2] and isO [1.1 & P & 2.5 fm, step 0.1 fm;
0 & B & 7 MeV fm2, step 0.5 MeV fm~].

We note the following features of the results.
(i) As is expected, the value of ~Ep [

in the two generator
coordinate case (TGC) is larger than that in both one
generator coordinate cases (OGC) in 4He and i O.

(ii) The value of [Ei~ in TGC case is larger than that
in both OGC cases.

(iii) The values of [Ep[ and [Ei[ for the OGC case of
the harmonic-oscillator construction potential (B = 0
and variations of P) are larger than those in the OGC
case with variations of B at fixed value of P, for both
nuclei.

(iv) The value of b Ei in the TGC case is larger than
the OGC calculations with the harmonic-oscillator con-
struction potential (B = 0) for 4He and isO.

(v) As can be seen from Tables I and II the difFerence
between Eo and E~ is much larger in the case of 4He

than in the case of O. This is a common feature of
the GCM method related to the property of the integral
kernels JV(z, x') and 'R(z, x') which become much more
peaked with the increase of the number of particles.

(vi) The energy diagonal xnatrix elements do depend
on B (as well as on P) in both cases, 4He and isO. The
minimum in the case of 4He is achieved at Pp

——1.5 fm
and Bp = 2 MeV fm . In Table I we give also the value of
the minimum with respect to P in the case when B = 0
(pure harmonic oscillator). In the case of 0 the values
B = 0 and Pp

——1.8 fm lead to the minimum of the energy
diagonal matrix element. This means that the harmonic-
oscillator functions are the best ones in the sense of the
SSD used. Obviously, this is not the case for the nucleus
He where the best SSD is not a pure harmonic-oscillator

one.
The nucleon momentum distributions in He and 0

are calculated using Eq. (21) and the results are pre-
sented in Figs. 1 and 2 for OGC and TGC cases as well
as for the SSD cases using Pp and Bp.

We note, firstly, that in the SSD case, with P = Pp ——

1.5 fm and B = Bp ——2 MeVfm for He there are sub-
stantially high momentum components, which is not the
case when B = 0. The qualitative behavior of n(k) in this
case is as in Ref. [19] and is due to the existence of the
repulsive term of the potential. Secondly, the OGC re-
sults for n(k) with B = 0 (that is with simple harmonic-
oscillator functions in the generating function) are far
below those of TGC and OGC when B is the generator
coordinate and P = Pp. In spite of the considerable im-
provement, however, the theoretical values are still much
lower than the corresponding experimental ones in the
region of large k. The main effect of the GCM procedure
(in comparison with the SSD [at P = Pp ——1.5 fm and
B = Bp ——2 MeVfm2)] is to increase the values n(k)
in the region 2 fm

—1 & Q & g fm
—1 For the remaining

nucleon correlations one should consider other methods

C
C)

0

—10—

—12
2

k (tm ')

FIG. 1. Nucleon momentum distribution of He swithin
the generator coordinate method (GCM) using Skyrme efFec-
tive forces (SkIII): (i) with one generator coordinate B and
P = Po ——1.5 fm (OGC) (points); (ii) with one generator co-
ordinate P and B = 0 (OGC); (iii) single Slater deterininant
case with P = Po ——1.5 fm and B = 0 and B = Bo ——2
MeV fm (SSD); (iv) with two generator coordinates (TGC);
the experimental data (0, j,~) are taken from Ref. [22]; the
normalization is 4vr f n(k)k dk = l.
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0.20

TGC

0.16

0.12
E

Co

0
0.08

0.04-

—10
2 3 4 5 6

0.00
0

A 4 A
T T

2 3 4 5 6

I (rm ')

FIG. 2. Nucleon momentum distribution of O. The no-
tation is the same as in Fig. 1 with P = 1.8 fm and Bp = 0.
The normahzation is as in Fig. 1.

r (fm)
FIG. 3. Density distribution of O. The notation is the

same as in Fig. 1. with Pp ——1.8 fm and Bp ——0. The
normalization is 4s f p(r)r dr = A = 16. The experimental
data are taken from Ref. [25].

showing up stronger correlation effects, such as coupled
cluster theory or Jastrow-type correlations [ld,9,23,24].
The corresponding results of n(k) for isO in Fig. 2 show
in general a rather similar behavior. The OGC results
(where P is the generator coordinate and B=O) is quite
close now to the SSD results (with P = Pp = 1.8 fm,
B=O).

From Figs. 1 and 2 one might conclude that the results
at a variation of B for an appropriate value of P are as
good as those in the TGC case. Indeed, the OGC results
for n(k) almost coincide with those of TGC calculations
for 4He and they are close to those for isO. However, this
is not the case for the density distribution, as can be seen
from Fig. 3 where the density distribution p(r) for isO
calculated using Eq. (20) is plotted. The consecutive use
of P, B, and both of them (P and B) as generator co-
ordinates improves the agreement with the experimental
data [25] in the region r 1 fm. The general behavior
of p(r) for He, in the various cases, is rather similar.

To summarize:
(i) In the present work the energy of the ground and

first collective excited states, the moment»m and den-
sity distributions of He and 0 are calculated within
the generator coordinate method using a construction
potential containing harxnonic-oscillator and repulsive
parts (and consequently two generator coordinates) and
Skyrme efFective forces.

(ii) The values of the energies of the ground ~Ep~ and
the first excited collective state [Ei~ in the TGC case
are larger than those in both OGC cases for He and

O. The values of [Ep] and [Ei( for the OGC case of
the harmonic-oscillator construction potential are larger
than those in the OGC case with variations of Bat a fixed
value of P for both nuclei. The values of b,Ei increase in

the TGC case in comparison with the OGC calculations
with the harmonic-oscillator construction potential (B =
0).

(iii) The calculations of the nucleon momentum dis-
tribution in He and 0 show an existence of high-
momentum components even in the SSD case for 4He
when the repulsive part of the potential (6) is included
(Bp g 0). This is not the case in isO, where Bp ——0. The
high-moxnentum components manifest themselves better
in the GCM case with one generator coordinate B (at
a fixed value of P) and in the GCM with two generator
coordinates (P and B). The results in the latter cases
are close to each other. Although significantly improv-
ing the results in the single Slater determinant case with
fixed values of P = Pp and B = 0 they are still incapable
of describing the experimental data for n(k) at k + 2
fm in 4He.

(iv) The GCM calculations of the density distribution
of i 0 with one and two generator coordinates show a
significant improvement of the agreement with the ex-
perimental data in the region r 1 fm in comparison
with the single Slater determinant (with fixed values of
P and B) case.
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