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Comparison betvveen two variational approaches
for non-Hermitian boson Hamiltonians
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The non-Hermitian Hartree approximation and the variational principle with quasi-Hermitian
operators are compared in two difFerent boson models. In a very simple schematic model the two
methods provide comparable results. For the non-Hermitian boson Hamiltonian obtained applying
the Dyson boson expansion to a two-level pairing model the results obtained are difFerent. The 6rst
approach, although it does not provide an upper bound for the ground state energy, is not limited

by the appearance of spurious states that break the quasi-Hermiticity of the Hamiltonian.

PACS number(s): 21.60.Jz, 21.90.+f

Boson expansion theories are often used as a con-
venient means for describing collective nuclear proper-
ties. In the particular case of the nonunitary Dyson bo-
son mapping a non-Hermitian boson Hamiltonian is ob-
tained. A complete diagonalization of this Hamiltonian
is not always possible in realistic calculations and conse-
quently adequate approximations must be performed. In
a previous paper [1] we have proposed to use a Hartree
approach that takes into account the non-Hermitian na-
ture of the mapped Hamiltonian and have shown that it
gives good ground-state results when applied to a sim-
plified shell model defined by a monopole pairing Hamil-
tonian. However, these results are not upper bounds for
the exact ground-state energies.

On the other hand, the approximate results are worse
when the spurious components are important. The pres-
ence of spurious states, an always present problem when
working with boson expansions, is due to the fact that
the boson Hilbert space is larger than the original fermion
Hilbert space and consequently part of the former, called
the unphysical subspace, does not take into account Pauli
effects.

In a recent paper [2] Scholtz et al. address the prob-
lem of how to perform a mean-field calculation when the
Hamiltonian, and possibly other physical observables, are
quasi-Hermitian rather than Hermitian. This happens
not only when one studies the boson image of a Hermi-
tian ferrnion Hamiltonian but also in some other cases
as for example in the theory of effective interactions [3].
They formulate a variational principle which conforms to
all the criteria of a proper variational principle; i.e. , it is
real, bounded from below by the exact ground-state en-

ergy, and, upon variation over the whole space, it yields
the eigenvalue equations. They illustrate the procedure
in a simple schematic model.

It is interesting to compare the two approaches and
study their difFerences. With this aim we apply them to
the schematic boson model of Ref. [2] and to the boson
Harniltonian obtained applying the Dyson mapping to
the two-level pairing model.

H =n, + (P+~) t t (P —&) «
N

a~aza2a2 + a2a2aqai,

where n2 ——a2a2 is the number operator for boson 2 and
X is the total number of bosons. It is to be noted that
p must be different from zero for the Hamiltonian being
non-Hermitian. The exact results are obtained diago-
nalizing this Hamiltonian using as basis states the ones
labelled by the total number operator and n2.

According to Scholtz et al. [2] a set of operators A, in a
finite-dimensional space is called quasi-Hermitian if there
exists a linear operator T (a metric) that is Hermitian
and positive definite and satisfies

TA, = AtT. (2)

In this case a new scalar product may be defined with
respect to which the operators A, are Hermitian. Conse-
quently, all the usual theorems applicable to Hermitian
operators hold if this new scalar product is employed.

A proper variational principle is easily formulated
for the Harniltonian H when this is one of the quasi-
Hermitian operators. According to Eq. (2)

The energy functional E is defined as

z (~l™l~)
(vlTI~)

(4)

and shown to be greater than or equal to the lowest eigen-
value of H. Moreover, variation of E over the whole space
yields the eigenvalue equations [2].

Within the schematic model described previously we
take the Hamiltonian, the total number of particles, and
the number of particles in state two as the set of observ-

In the model introduced in Ref. [2] one has two types of
boson creation (annihilation) operators at (a, ); i = 1, 2.
The Hamiltonian is
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ables A, . They change neither the number of particles n2

by an odd number nor the total number of particles. To
avoid the problems associated with reducibility and the
nonuniqueness of the metric [2], we restrict ourselves to
the irreducible invariant subspace corresponding to even
values of n2. Studying the conditions under which the
metric T exists, difFerent regions of the P —p plane are
identified (see Fig. 1 of Ref. [2]). For Ipl & IPI there
are two regions, one in which the Hamiltonian has com-
plex eigenvalues and consequently, the set of operators is
not quasi-Hermitian and another in which, although all
the eigenvalues are real, T still does not exist. Only for

(pl ( IPI the model is well defined and a T exists, namely,

(P+w& '

In this region the model exhibits a phase transition that
occurs on the curves P2 —p2 = 4.

The trial wave function in the variational calculation
performed in Ref. [2] is

The sum runs over even integers n2 only. It is to be
noted that Eq. (6.10) in Ref. [2$ has two misprints [4]:
the sum runs up to N and not 2 and the factorials are
missing. The ground-state energy obtained minimizing
the energy functional E given in Eq. (4) with respect
to e agrees well with the exact result. As an example
we show in Table I the variational results obtained for
N = 50, p = —0.8P and different values of P from —2 to
0. The exact results are also given for comparison. The
approximation is very good before the phase transition
that occurs at IPI„;t ——0.8333 for these values of the
parameters, gets worse around the critical value of P and
improves with increasing IPI.

As the usual trial wave function when working in boson
systems is a boson condensate we have also considered

the ground-state energy which is zero up to the phase
transition and

[2(N —1)(P+~)+ &~]'
8(N —1)(P+p) p

(8)

after it. Here p = ~+~. The phase transition occurs at

tI't = (i1iati + g2a2) (10)

1
(giai + g2a2),

where JV = girji+r12rl2, such that the operators I' and I' t
satisfy boson commutation relations. The trial bra and
ket are

(12)

For the above-mentioned values of the parameters one
gets IP„;tl = 0.85 and the energies listed in the last col-
umn of Table I. These results are worse than the previous
ones before and on the vicinity of the phase transition
and coincide with them for larger values of IPI.

For implementing the Hartree approach in a boson
system one introduces collective boson operators I't by
means of a canonical transformation, assumes that the
ground-state wave function is that of a condensate of only
one kind of collective bosons, and minimizes the expecta-
tion value of the Hamiltonian with respect to the trans-
formation coefficients [5]. For a non-Hermitian Hamilto-
nian one has to consider [1] a trial bra (&pl that is not
equal to the Hermitian conjugate of the trial ket Ip).

Within the schematic boson model described above one
defines

and minimized the energy functional E given in Eq. (4)
with respect to p. This provides an analytic result for

-0.2
-0.4
-0.6
-0.8
-1.0
-1.2
-1.4
-1.6
-1.8
-2.0

Exact
-0.0143
-Q.0595
-0.145
-0.301
-0.666
-1.698
-3.342
-5.324
-7.524
-9.875

Variational
-0.0142
-O.Q573
-0.132
-0.243
-0.404
-1.498
-3.172
-5.163
-7.365
-9.715

Hartree
-0.0141
-0.0568
-0.130
-0.236
-0.333
-1.498
-3.172
-5.163
-7.365
-9.715

Boson condensate
0
0
0
0

-0.329
-1.498
-3.172
-5.163
-7.365
-9.715

TABLE I. Ground-state energies in the schematic model
for N = 50, p = —0.8P, and different values of P.

(13)

Then one has to minimize the expectation value of the
Hamiltonian with respect to g, and q, . The normalization
condition JV = 1 is not enough to normalize the bra and
the ket separately because if we multiply the g; by a
constant k and divide the q; by the same constant k the
equations remain the same [1,6]. This is not a problem
if we only want to calculate the ground-state energy but
allows us to add another condition which we have chosen
to be qz ——qz. The minimization provides an analytic
result for the ground-state energy which coincides with
the one obtained applying the variational principle with
quasi-Hermitian operators and a trial wave function that
is a boson condensate [Eq. (8)]. As in the latter case, one
also obtains that the energy before the phase transition
is zero and that the critical values of the parameters are
determined by condition (9).

With the aim of performing a more complete compar-
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ison we have also used as trial bra and ket the ones ob-
tained from Eqs. (12) and (13) restricting the sums that
appear in the expansions of I'~ and (I'")~ to even val-
ues of n2. The results obtained from the minimization of
the expectation value of the Hamiltonian in this case are
to be compared with the ones obtained when using the
trial wave function (6) in the variational principle with
quasi-Hermitian operators. For N = 50 and y = —0.8P
these Hartree energies are given in Table I. They are very
similar to the variational results except near the phase
transition where the latter are better.

The second model used in this comparison is the two-
level pairing model. The fermion pairing Hamiltonian
for two levels of the same degeneracy 0 = j + 2 and
single-particle energies —' and —-' is

2 2

H~ =) o bt —b ——) PtP
CFfA cro''

(14)

with a = +I and

Pt=) ( )' —bt bt (15)

(Pt)~ = 2~nSt — Sist S.2

0 (16)

(P )~ = 2~OS (17)

(K)gy = ) ocStS, (18)

where K is the one-body term in Eq. (14) and St (S ) is
the creation (annihilation) operator of a collective boson
in the level o. Therefore, the mapped Hamiltonian turns
out to be a non-Hermitian boson Hamiltonian

Hgy ——s) O.StS —GA) StS + G) StStS S

For applying the variational principle with quasi-

G is the strength of the pairing interaction.
The exact solution may be obtained by diagonalizing

this Hamiltonian on the basis provided by the number of
pairs in level one and the total number of pairs.

The two-level pairing model exhibits a phase transition
as a function of the dimensionless parameter z =
For z ( 1 the single-particle splitting between the two
levels dominates and particles in difFerent levels are not
pair correlated. For x ) 1 the pairing interaction domi-
nates over the single-particle term producing a superfiuid
solution.

The Dyson boson expansion maps bifermion operators
in terms of ideal boson creation and annihilation opera-
tors through a nonunitary and finite transformation [1,7].
Truncating the expansion by considering only zero angu-
lar momentum bosons one gets the following boson im-

ages:

Hermitian operators we take the Hamiltonian (19), the
total number of bosons N, and the number of bosons in
level one ni for the set of operators A;. This set is irre-
ducible on the boson space considered that corresponds
to a fixed value of X, 0 & N & 20, and 0 & ny & ¹

We look for the metric T A.pplying condition (2) to X
and nq and taking into account that we can label all the
states by the eigenvalues of these two operators, we con-
clude that T must be a function of them, T = T(N, ni).
On the other hand, applying (2) to the Hamiltonian we

get a relation between the matrix elements of the opera-
tor T

(20)

Consequently, a positive definite metric only exists for
X ( A. If N & 0 the operators are not quasi-Hermitian
which is consistent with the fact that in this case the
Hamiltonian has complex eigenvalues due to the ap-
pearance of spurious states related to violations of the
Pauli principle. Note that the recursive relation (20) will
diverge and then change sign for values of ni greater
than A. Solving this recursion relation and choosing
t(N, O) = 1 we have

(
- .

)
(D —x+ ni)!(0 —n, )!

0!(fl —X)!
(21)

For applying the variational principle to the energy
functional given in (4) we use a boson condensate as the
trial wave function

The ground-state energies obtained from the minimiza-
tion procedure for s' = 2, 0 = N = 10 are shown in Table
II. The exact results are also given for comparison. We
have added sX to the energies. The superconducting
phase transition occurs at G„;i ——O.l. The approximate
results agree quite well with the exact ones before the
phase transition but get worse with increasing coupling
constants.

Trying to improve the variational. results in the super-
conductive region we have used different trial wave func-
tions which look like the one in Eq. (22) but with the
combinatorial number to dig'erent powers: 0, 2, and 3.
The best results are the ones obtained using the square
of the combinatorial number and are also shown in Table
II. These results are not so good as the previous ones
before the phase transition but instead they are much
better for larger values of G.

For applying the non-Hermitian Hartree approxima-
tion to the boson Hamiltonian given in (19) we use
the procedure described before when considering the
schematic boson model. In definitions (10) and (ll) we

replace the boson operators a,- and a; by S~ and S,
calculate the expectation value of the Hamiltonian with

IV) = (S', + bS,') 10) = ) -
1

(S',)"-'~'(S,')'10)
i=o 4

(22)



50 COMPARISON BETWEEN TWO VARIATIONAL APPROACHES. . . 1935

TABLE II. Ground-state energies (+sN) in the two-level

pairing model for e = 2 and 0 = N = 10.

G
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.500
1.000
2.000

Exact
-0.268
-0.582
-0.972
-1.503
-2.322
-3.605
-5.311
-7.291
-37.11
-91.05
-200.5

Variational
-0.268
-0.582
-0.971
-1.488
-2.200
-3.115
-4.194
-5.401
-24.66
-62.44
-141.2

(comb. number)
-0.250
-0.578
-0.944
-1.467
-2.240
-3.542
-5.259
-?.240
-3?.08
-91.04
-200.5

Hartree
-0.268
-0.582
-0.974
-1.523
-2.416
-3.777
-5.506
-7.482
-37.20
-91.10
-200.6

respect to the trial bra and ket (12) and (13), and min-
imize it. As before, we use the normalization condition
and rli ——ili. The Hartree energies obtained for e = 2
and 0 = N = 10 are shown in Table II. They agree well
with the exact results but are not upper bounds to the
exact ground-state energies.

In summary, we have compared two different mean-
field approximations appropriate for non-Hermitian
Hamiltonians. In a schematic boson model the two ap-
proaches give comparable results, what has been checked
for different sets of parameter values, but it is a very
simple model.

In the two-level pairing model some differences ap-
pear. The non-Hermitian Hartree approximation ap-
plied to the Dyson boson image of the Hamiltonian gives
good ground-state energies but this approach has a draw-
back: it does not provide upper bounds for those ener-
gies. However, the method has an important advantage:
it is not limited by the appearance of spurious states al-
though the approximate results are worse when the spu-
rious components are more important. This has been
already seen in Ref. [1]. On the other hand, it is possible
within this approach to study excited states.

With respect to the variational principle with quasi-
Hermitian operators, it also gives reasonable results when
applied to the above-mentioned Dyson boson Hamilto-
nian. In this case, for getting the best results one has
to use different trial wave functions before and after the
phase transition. For G ( G„;& one gets excellent re-
sults using a boson condensate as the trial wave function,
which is the usual choice, but then the results are very
poor after the phase transition. It is possible to improve

the ground-state energies in the latter region using a dif-
ferent wave function but in this case one gets not so good
results for small coupling constants. Consequently, the
phase transition present in the model is pointed out by
a change in the most appropriate wave function whereas
with the previous method it is well represented by a bo-
son condensate.

Once again, these conclusions have been checked for
diferent values of the model parameters.

The drawback of the method based on quasi-Hermitian
operators is that, in its present form, it cannot deal with
spurious states originated in Pauli violations. These spu-
rious states may be related to complex eigenvalues of the
Hamiltonian, breaking the condition of quasi-Hermiticity.
In our calculation of the two-level pairing model this
problem can be overcome by performing a truncation
to the physical space, disregarding states with n; & 0,
or equivalently by changing &om particles to holes for
N & O. This limitation could be very serious in more
realistic situations. In particular, in the five-level pairing
model with parameters appropriate for the tin isotopes
studied in Ref. [1] one of the levels has degeneracy one
which implies that spurious states are always present.
Practical techniques for performing a truncation to phys-
ical states should be combined with this variational ap-
proach in order to be able to treat more realistic prob-
lems.

On the other hand, the non-Hermitian Hartree approx-
imation, even if it is not limited by the appearance of spu-
rious states, provides worse results when spurious compo-
nents are more important. These conclusions emphasize
the relevance of the still unsolved problem of identifying
and projecting out spurious states, particularly on apply-
ing boson mapping methods in cases where the collective
bosons are not completely decoupled from those bosons
which have to be included to obtain an exact realization
of the operators involved [8].

Therefore, it would be very interesting to study the
possibility of using the metric T for detecting the spuri-
ous states and extending the region of validity of the vari-
ational principle with quasi-Hermitian operators without
loosing the property of being a proper variational cal-
culation which provides upper bounds to the energies.
However, the construction of the metric is not an easy
task in not so simple models.
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