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Shape and superdeformed structure in Hg isotopes
in relativistic mean field model
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Various shapes of Hg isotopes are calculated using a relativistic mean field theory. VVe observe
shape transitions from oblate to prolate and prolate to oblate at A = 178 and A = 188, respectively.
Both in the oblate and in the prolate solutions the sign of the hexadecupole moment changes from
positive to negative values with increasing mass number. The predicted shape of the ground state
agrees with the available data contrary to nonrelativistic calculations for neutron-deficient isotopes.
A low-lying superdeformed configuration is found in some isotopes, and found to be the ground state
for Hg. A possible discrepancy between the experimental data of the quadrupole deformation
and those of the charge radii is pointed out.

PACS number(s): 21.60.—n, 21.10.Ft, 21.30.+y, 27.70.+q

I. INTRODUCTION

The change of the shape of rare-earth nuclei and of
other properties of nuclear structure with neutron num-
ber has attracted much theoretical and experimental at-
tention for many years [1—5]. Another interesting feature
is shape isomerism, i.e. , shape coexistence, where states
with diferent deformations appear with nearly equal en-

ergy [6—8]. Light mercury isotopes far from the stability
line provide a classic example of the existence of bands
of levels built on a well-deformed and a nearly spherical
shape [6,9]. Similar shape coexistence is observed more
frequently in the Z = 80 region. The existence of su-

perdeformed bands is an extreme of shape isomerism.
It is a challenging theoretical problem to understand

the origin of the shape isomerism. Secondary minima and
shape transitions along the isotope chain have been found
for Hg isotopes within the framework of non-relativistic
Hartree-Fock (HF) calculations [10]. Bonche et al. [11,12]
performed HF calculations including a BCS pairing cor-
relation and showed that the shape isomerism appears
not only in Hg isotopes, but also in other rare-earth
nuclei. The location of the shape isomers over a wide
range of nuclei has been discussed also by macroscopic-
microscopic calculations of the potential energy surface
(PES) as a function of the deformation parameter [7,13].
A drawback of these nonrelativistic calculations is that
the input, such as the parameters of the Skyrme inter-
action, was determined phenomenologically in order to
reproduce the properties of stable nuclei. Therefore, it
is not clear whether one can extend them to studying
nuclei far from the P stability line. Another problem is

'Electronic address: yoshidanucl. phys. tohoku. ac.jp

that the available model space in practical calculations
is too small to discuss superdeformed states. Also, as
we point out later, they cannot reproduce some of the
existing data.

Relativistic mean field (RMF) models are free from the
first two diKculties of nonrelativistic calculations men-
tioned above. A distinct advantage is that, with proper
relativistic kinematics and with the mesons and their
properties already known or fixed from the properties of
a small number of finite nuclei [14], the method gives ex-
cellent results for the binding energies, root mean square
(rms) radii, quadrupole and hexadecupole deformations,
and other nuclear properties not only of spherical nuclei,
but also of well known deformed nuclei [14—20]. It ex-
plains the change of shapes along the Pt [15] and Ho iso-
tope chains [16] very well. The same parameter sets also
well describe the nuclear matter properties. One of the
major attractive features of the RMF approach is that
the spin-orbit interaction and the associated nuclear shell
structure naturally arise from meson-nucleon interaction
[14,19,20]. The inclusion of the p meson takes care of the
neutron-proton asymmetry. We can thus expect that the
RMF calculations provide useful information about the
structure of nuclei far from the stability line including
those near the neutron and the proton drip lines. Also,
since the RMF approach is not limited to small model
space, one can apply it to studying superdeformed struc-
tures, which involve large j orbits of high-lying shells.

Many theoretical as well as experimental papers have
recently focused their interest on the shape transition [9],
shape isomerism, and the observation of superdeformed
bands [21] in neutron-deficient Hg isotopes. It is thus of
great interest to explore in detail the structures of these
nuclei and also to look for possible shape isomerism based
on the RMF formalism.

The paper is organized as follows. In Sec. II we present
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the equations and the procedure of numerical calcula-
tions. The results for binding energies, quadrupole defor-
mation, hexadecupole moments, and rms radii for both
prolate and oblate solutions as well as superdeformed
states are discussed in Sec. III. A sun+nary and con-
cluding remarks are given in Sec. IV.

II. THEORY AND CALCULATION

The relativistic mean field model uses a Lagrangian
density for the interacting nucleon-meson many-body
system [14,17—20], consisting of nucleons, scalar (cr) and
vector mesons (u, p) and photon.

8 = g, (ip"8„—M)@; + 28"oB„o —U(o) —g,g;g, n —40" 0„„

„(1—rs;)
gl Q,p—rg; p„—4F F„„—eQ,p g, A„. (2.1)

The scalar meson is assumed to move in a nonlinear po-
tential [22]

U(0) = —,'m'0'+ —,'g, o'+ —,'g, a'. (2.2)

Q = Q„+Q, = —AR'P, (2.3)

and the hexadecupole moment is de6ned by

(2.4)

where B = 1.2A ~~. The total hexadecupole moment

In Eq. (2.1) g; are the Dirac spinors for nucleons, whose
third component of the isospin is denoted by rs, . The

2g„g, g~, and 4
= isr are the coupling constants for

cr, ~, and p mesons and the photon, respectively. M is
the nucleon mass, and m, m, and m~ are the masses

of the 0, u, and p mesons, respectively. 0"",B"",and
F""are the field tensors for the V", p~ and the photon
fields, respectively [14,17—20].

We need a static solution of the above Lagrangian in
order to describe the ground state properties. In this case
the meson and the electromagnetic fields are assumed to
be time independent, whereas the nucleon wave functions
oscillate with a single particle energy e;. The equations
for the fermion and the boson fields [14,17—20] are ob-
tained from the Lagrangian given by Eq. (2.1) and can
be found in Refs. [14,17—20]. They are nonlinear cou-
pled partial differential equations, which are solved self-
consistently by iteration.

Practically, these equations are solved by ex&anding
the upper and the lower components f,+ and g,

== of the
Dirac spinor g; and the wave functions of the boson fields
in terms of deformed harmonic oscillator bases, taking
volume conservation into account [17]. The frequencies
Ru~ and hu, of the harmonic oscillator potential are re-
lated to the quadrupole deformation parameter Po [17].

In numerical calculations we truncate the harmonic os-
cillator bases at the maximum oscillator quanta N
12 for both bosons and fermions. The deformation pa-
rameter P is obtained from the calculated quadrupole
moments for the protons and the neutrons through

is obtained by summing Q4 and Q~4. If we denote the
radius of the proton distribution by r„, the charge radius

is given by r, i, = r„+0.64 fm by taking the finite size

of the proton into account. The total binding energy of
the system is given by —Et t ~, where

@total = @part + @cr + @~ + @p + @C + @pair + @c.m. ~

(2.5)

The E~,q is the sum of single-particle energies of the
nucleons and E, E, E~, Ec, and E~;, are the con-
tributions from the meson fields, the Coulomb field and
the pairing energy, respectively. We used the same pair-
ing gap as in Ref. [23]. E, = —

4 x 41A ~ is a non-
relativistic approximation to correct the energy of the
center-of-mass motion.

The set of coupled equations for nucleons and bosons
is solved iteratively following the procedure of Ref. [17]
using the nonlinear parameter set (NL1) [14] (M
938.0, m = 492.25, m = 795.359, and m~ = 763.0
MeV, g = 10.138, g = 13.285, g~ = 4.9755, g2 ——

—12.172 fm, gs ———36.265).

III. RESULTS AND DISCUSSIONS

We calculate the binding energies, the rms radii of the
proton and the neutron distributions, and the quadrupole
and the hexadecupole moments for Hg isotopes with
the neutron number N = 90—120. The results for the
quadrupole deformation parameters P and the binding
energies are listed in Table I for various prolate and
oblate solutions. The experimental binding energies [24]
and quadrupole deformation parameters, as well as the
quadrupole deformation parameters calculated by other
theoretical methods, are also given for comparison, wher-
ever possible. Our theoretical binding energies and P
values agree fairly well with the experimental values.

Experimentally, heavy Hg isotopes are known to be
oblate in shape with a moderate magnitude of the
quadrupole deformation [25]. In Fig. 1, we plot the dif-
ference of the binding energies for the oblate and the pro-
late solutions for a wide range of Hg isotopes. For a given
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nucleus the solution with the maximum binding energy
gives the ground state and the other solution corresponds
to an intrinsic excited state. The figure indicates that
the shape of heavy Hg isotopes is indeed oblate. Figure
1 and Table I show, however, that the normal prolate
solution has lower energy than the oblate solution for

Hg. In contrast, nonrelativistic potential
energy surface (PES), HF, and the HF+BCS [7,8,10,12]
calculations predict these isotopes to be oblate. The dif-
ference of the binding energies for the prolate and the
oblate solutions is very small for Hg, so that one needs
more detailed studies in order to predict the actual shape.

TABLE I. The results of RMF calculations for the binding energies (BE), the rms charge radii,
and the quadrupole deformation parameter are compared with experimental data and other theo-
retical calculations, wherever available. The experimental binding energies and the P values were
taken from Refs. [24] and [29,30], respectively. The results of the HF+BCS calculations are from
Refs. [8,11] and the potential energy surface (PES) results from Ref. [7]. The binding energies are
in MeV and the radii are in fm.

A
170

172

174

176

178

180

182

184

186

188

190

192

194

196

198

200

BE(RMF)
1322.481
1321.688
1317.536
1343.888
1343.565
1339.229
1363.232
1362.205
1361.044
1384.051
1382.816
1383.416
1402.786
1404.453
1403.025
1421.847
1422.597
1423.446
1443.328
1443.268
1442.522
1459.026
1460.467
1457.326
1476.652
1477.593
1474.050
1493.202
1492.899
1491.164
1508.787
1508.200
1507.828
1524.686
1522.989
1522.825
1540.713
1538.206
1534.518
1555.203
1553.668
1548.572
1569.169
1567.810
1560.306
1581~ 731
1580.577
1572.186

BE(Expt)

1349.320

1369.760

1390.428

1410.440

1430.670

1448.710

1467.130

1485.050

1502.370

1519.430

1535.496

1551.235

1566.504

1581.197

PRMF
—0.021

0.032
0.704

—0.072
0.049
0.679

-0.039
0.065
0.678

—0.075
0.279
0.620

—0.150
0.314
0.594

—0.327
0.334
0.578

—0.217
0.339
0.567

-0.230
0.327
0.604

—0.214
0.289
0.652

—0.171
0.280
0.682

—0.173
0.266
0.698

—0.160
0.253
0.678

—0.140
0.124
0.655

—0.142
0.106
0.595

—0.122
0.084
0.587

—0.097
0.039
0.619

13FES

—0.10
0.21

—0.11
0.25

—0.12
0.25

—0.12
0.24

—0.13
0.22

—0.13
0.21

—0.12

—0.12

—0.12

—0.11

—0.09

—0.0

PHF+BCS

—0.166
0 ~ 291

-0.183
0.286

—0.188
0.276

-0.187
0.270

—0.180
0.104

—0.164
0.098
0.53

0.54

0.52

0.51
—0.125

0.51

expt.

0 ~ 17

0.16

0.24

0.14

0.15

0.14

0.13

0.12

0.11

0.098

&ch

5.326
5.327
5.682
5.341
5.343
5.677
5.356
5.356
5.699
5.370
5.428
5.659
5.395
5.458
5.654
5.503
5.481
5.653
5.443
5.497
5.657
5.458
5.506
5.703
5.463
5.495
5.750
5.454
5.506
5.784
5.465
5.513
5.809
5.473
5.479
5.805
5.481
5.464
5.795
5.489
5.460
5.806
5.494
5.488
5.773
5.498
5.493
5.820
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FIG. 1. The difference of the binding energies between
the oblate normal and the prolate normal configurations (the
filled circles) and between the oblate normal and the prolate
superdeformed (SD) configurations (open circles).

In Fig. 2 we compare our results with those of the
nonrelativistic macroscopic-microscopic (MM) [23], PES,
and HF+BCS calculations [7,8]. There is no shape tran-
sition in the MM and the PES calculations. Like our
RMF calculations, nonrelativistic Hartree-Fock plus BCS
calculations [8,10,12] show shape transitions. However,
Fig. 2 shows that the nature of the prolate-oblate shape

transition is opposite in the relativistic and in the non-
relativistic calculations. Fig. 2 contains also experi-
mental data. The sign of the deformation parameter is
known experimentally too for the heavy isotopes [30].
We notice that the experimental deformation parame-
ters for these nuclei agree very well with our calcula-
tions in both sign and magnitude, whereas nonrelativis-
tic Hartree-Fock plus BCS calculations largely deviate
kom the data. For lighter isotopes ' Hg we have
assumed the same sign for the experimental P value as
that in the results of RMF calculations. The agreement
between the data [30] and our calculations is then fairly
good including the magnitude as we see in Fig. 2. The
authors of Ref. [9] measured the quadrupole moment of
odd Hg isotopes, and reported a change of the sign of
the quadrupole moment at A 187. This agrees with
our calculations.

We found a low-lying prolate superdeformed con6gura-
tion in many of the Hg isotopes. They are quite compa-
rable with those predicted by nonrelativistic HF [10] and
HF+BCS [11,12] calculations (see Table I). The superde-
formed states have been already found for 'so's2's4Hg
isotopes [26]. Figure 1 indicates that the superdeformed
configuration has the highest energy among the three so-
lutions, i.e., the oblate, the prolate, and the superde-
formed solutions, for almost all the isotopes. However, it
has the largest binding energy for isoHg, and forms the
ground state. In Hg it appears in between the oblate
and the prolate solutions.

The hexadecupole moment is an interesting quantity in
itself. Also, it is becoming clear that the hexadecupole
moment strongly influences the fusion cross section in
heavy ion collisions at energies below the Coulomb bar-
rier [27,28]. In Fig. 3 we show the hexadecupole mo-

0.6—

0.4—

~ RMF
MM

PES
HF+BCS
Expt.

50000

~ oblate
40000 — o p ..l. t e /

p rol ate(S. 0)

/
30000—

/

20000—
0—

10000—

-0.2—

170 180 190
Mass number

I

200

FIG. 2. The quadrupole deformation parameter as a func-
tion of the mass number for Hg isotopes. The experimental
data [29,30] (the filled triangles) are compared with the results
of various theoretical calculations: RMF theory (filled cir-
cles), macroscopic-microscopic (MM) calculations [23] (open
circles), calculations of the potential energy surface (PES) [7]
(filled squares), and HF+BCS calculations [8,11,12] (crosses).

0 —e-=

1 00 170 180 190
Mass number

]

200

FIG. 3. Hexadecupole moment Q4 as a function of the mass
number for Hg isotopes. The filled circles, the open circles,
and the filled triangles are for the oblate normal, the prolate
normal, and the prolate superdeformed (SD) configurations,
respectively.
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ment (Q4) for the oblate (solid line with filled circles)
and the prolate (dashed line with open circles) and for
the superdeformed (the dashed line with filled triangles)
solutions as a function of the mass number. We find a
change in sign from negative to positive for the oblate
normal solution around the mass number A = 176 and
from positive to negative value at mass number A = 188.
This change in sign of the hexadecupole moment is simi-
lar in trend to that in nonrelativistic HF+BCS [8] calcu-
lations. The hexadecupole moment of the prolate normal
solution increases with increasing mass number. It takes
a maximum at A = 176 and then decreases. The sign
of the hexadecupole moment in the prolate normal so-
lution changes from positive to negative at A = 188 in
our calculations, whereas the sign changes at A = 184
in the HF+BCS calculations. There is no sign change in
the macroscopic-microscopic calculations of Moeller et al.
[23]. The hexadecupole moments for superdeformed con-
figurations are considerably larger than those for prolate
and oblate normal solutions. The maximum Q4 value for
the superdeformed configuration is found at A = 192.

The charge radii calculated by the RMF and the non-
relativistic HF+BCS theories are plotted in Fig. 4 for
both the prolate and the oblate solutions. We find rea-
sonable agreement between the two calculations. In Fig.
5 the rms charge radii in the ground states calculated in
the RMF theory are compared with experimental data
[29,30] and those in the HF calculations. Figure 5 shows
that our RMF results are closer to the experimental val-

ues than are the nonrelativistic HF calculations. The
charge radii calculated by the RMF theory suddenly in-

crease for ' Hg as we reduce the number of neu-
trons. This contrasts with the experimental data, where
the charge radius monotonically decreases including these
isotopes. The large charge radius for these isotopes in our

~ RME''

o HE
~ I xpt

~ %)

f 70 180 190
Mass number

200

FIG. 5. The charge radii of the ground states of Hg isotopes
calculated by the RMF theory are compared with experimen-
tal data [29] and the results of nonrelativistic HF calculations
[1O].

RMF calculations is related to the large quadrupole de-
formation in these nuclei (see Fig. 5). Since this agrees
with the experimental data of the quadrupole deforma-
tion, a puzzle is then why the charge radius does not
reflect this behavior of the quadrupole deformation. In
this sense, it looks as if the data of the quadrupole defor-
mation and those of the charge radius are not consistent.

If the data were correct, a possibility to resolve the dis-

crepancy between the experimental data and the present

C

I

I;r I & I I( ~1 I' )

~& t~ I;i ( &'( I('11 l

r & r I ;r I & ( II I ~ I I (' S )

&r t& I ;i I &~ ( II I & ll (. 8 )

:).4—
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]

200
~

'
I

170 180 190
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200

FIG. 4. The charge radii calculated by the RMF theory
and the nonrelativistic HF+BCS theory [8] are coinpared for
the prolate and the oblate solutions.

FIG. 6. The rms radii of the proton, the neutron, and the
matter distributions as functions of the mass number for Hg
isotopes.



50 SHAPE AND SUPERDEFORMED STRUCTURE IN Hg ISOTOPES . 1929

theoretical results for the charge radii for Hg is

the shape admixture in the ground state in these nu-

clei. In fact, the rather short lifetime of the states in
the excited band built on the J =0+ state at excitation
energy E* = 0.375 MeV and E* = 0.523 MeV in 4Hg
and issHg [31], respectively, indicates a sizable admix-
ture of the ground and the excited bands in these nuclei.
In order to tackle this problem theoretically, we need to
extend our theory to include the angular momentum pro-
jection. We also need to refine the theory in order to get
better agreement with the experimental data concerning
the energy splitting between the two configurations with
different shapes. The present theory gives too large a
splitting between them. These problems will be reported
in forthcoming papers.

In Fig. 6, we plot the rms radii of the proton, and
the neutron and the matter distributions in the ground
states. We find an anomaly of the rms radius at A = 180.
This anomaly is related to the fact that the superde-
formed state is the ground state in this nucleus.

Table II shows the occupied Nilsson orbits in the pro-
late normal and the prolate superdeformation configu-
rations of isoHg. Each orbit is denoted by the Nilsson
quantum numbers [NnsA]. Only high-lying states whose
principal quantum number N is larger than 4 are in-
cluded in the table. The index nil means unoccupied
orbits. It is clear from the table that the occupation of
nucleons in the normal and the superdeformed states is
very different. For example, some of the Nilsson orbits

0.1

0.08-

'~Hg oblate

-- - — Fixed z

Fixed rq

0.06;-

E

& 0.04-
Q.

0.02—

rj, Z Cfm)

8 10

0.08-

(b)

'~Hg Prolate

---- Fixed z

such as [660] with small 0 values occupied in the superde-

formed state are empty in the prolate normal state. On

the other hand, some of the large 0 orbits occupied in

the normal prolate state are empty in the superdeformed
prolate state.

The density distributions for the prolate normal, the
oblate normal, and the prolate superdeformed configura-
tions in Hg are plotted in Figs. 7(a), 7(b), and 7(c),

0.06-

TABLE II. High-lying occupied Nilsson orbits for the pro-
late normal and the prolate superdeformed (SD) solutions of
190H

E

0.04-
Q

Occupation
SD (prolate)

1+

1
23+
2

3
27+
2

9+
2
9
2

Normal (prolate)
1+
2
1
23+
2
3
27+
2

9+
2

9
2

Neutron orbit

[66o]
[651]
[64o]

[77o]

[651]
[642]

[761]
[413]
[4o4]
[633]

[4o4]
[514]

[64o]

[7..]nil

[651]
[7..]nil

[413]
[4o4]
[633]
[4o4]
[624]

[514]

Proton orbit

[66o]
[651]

[7..]nil

[6..]nil

[7..]nil

[413]

[4o4]
[5..]nil

[6..]nil

[7..]nil

[6..]nil

[7..]nil

[413]
[4o4]

[404]

[514]

0.02-

r„z(r m)

10

0.1

008-

(c) 190
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006-

IE
0.0 4—
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&1, z (rrn )

I
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FIG. 7. The density distributions for the oblate normal

(a), the prolate normal (b), and the prolate superdeformed
configurations (c). The solid and the dashed lines are the
density distributions along the z and the perpendicular axes
for fixed values of rz and z, respectively.
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respectively. We observe in these figures a large difFerence
in the density distribution for the three shapes. The den-
sity distributions for the prolate and the oblate normal
states are much more compact than that in the superde-
formed configuration. In the case of the prolate normal
state, the density becomes very small at about 10 fm,
whereas for the superdeformed configuration it is elon-
gated up to 12 fm (see Fig. 7).

IV. SUMMARY AND CONCLUSIONS

Three difFerent shapes were predicted in RMF calcula-
tions for all the Hg isotopes studied in this paper. In most
of them, the oblate solution is found to be the ground
state configuration. We found the transitions from oblate
to prolate shapes at A = 178 and prolate to oblate shapes
at A = 188. Also we predicted the change of sign of
the Q4 moment from positive to negative value both for
the prolate and the oblate solutions with increasing mass
number.

The superdeformed configurations were found to be
low lying in energy for A = 170—192, whereas, for
A ) 192, they appear at rather high excitation energies.
The superdeformed state was predicted to be the ground
state for 'soHg. In this nucleus, we also found that the

prolate norma) configuration is located at a fairly low
excitation energy. It would be very interesting to exper-
imentally confirm the appearance of the superdeformed
ground state in soHg. Since this is predicted only in the
RMF calculations, such experimental studies will be very
useful to assess the power of the RMF calculations.

In the course of our studies, we also found the follow-

ing. The superdeformed configuration of all the Hg iso-

topes has a very large hexadecupole moment. We found
an anomaly in the charge radius at A = 180. This is
associated with the superdeformed configuration in the
ground state of this nucleus. The general trend of the
charge radius calculated by our RMF theory deviates
from the existing data for A = 184 and 186. Further
theoretical as well as experimental studies are desired to
resolve this discrepancy.
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