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Can we do without the Majorana term in the effective nuclear interaction?
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We present phenomenological evidence that the strength of the Majorana term necessary to
reproduce collective M 1-transition strength data could be significantly smaller than is conventionally
assumed and therefore more in line with naive microscopic considerations. We also find that g-boson
effects are important to the reproduction of the summed M1 strength.
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I. INTRODUCTION

Despite the schematic character of the Interacting Bo-
son Model (IBM), it provides a remarkably successful
platform for the systematization of the low-energy col-
lective properties of medium-to-heavy nuclei. Among its
successes, one that is widely held to be particularly signif-
icant is its ability to reproduce collective M1-transition
strength data associated with the scissors mode dis-
covered after the introduction of the model [1]. In
this connection, two previously neglected aspects of the
model emerged as crucial: states of “mixed” (as opposed
to maximal) proton-neutron symmetry and a repulsive
“Majorana interaction,” which pushes up states of less
proton-neutron symmetry relative to the states of maxi-
mal symmetry. Within the Interacting Boson Model, the
scissors mode corresponds to the excitation of 17 states
of mixed proton-neutron symmetry; the energies of these
states depend strongly on the strength of the Majorana
interaction.

The phenomenological success of the IBM indicates
that it is, in the jargon of many-body theory, a descrip-
tion in terms of the appropriate effective degrees of free-
dom. The ingredients of the corresponding renormaliza-
tion paradigm have been known in broad terms for some
time. Briefly, they comprise truncation of the relevant
shell-model space to a collective fermion-pair subspace,
followed by the mapping of the fermion-pair states onto
boson states. In practice, the reliable calculation of such
renormalization effects is very difficult. Applications of
the Interacting Boson Model have, therefore, rested on
the ad hoc introduction of plausible forms of effective op-
erators dependent on free parameters which are then fit
to experiment. Despite the potentially arbitrary charac-
ter of such choices, it is nevertheless possible [2] to obtain
good agreement with energy level and E2 transition data
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with an IBM Hamiltonian which adheres closely to the
structure suggested by the shell model with parameter
values consistent with effective interactions in the shell
model [3].

As regards g-factor and M1 transition data, the situ-
ation is somewhat different. We shall not dwell here on
the anomalies [4] in the values of the effective g factors
of bosons required to describe static magnetic moments
(it may be that these anomalies can be resolved by relax-
ing the assumption of F-spin purity common to previous
studies [5,6]). Instead, our focus is on the Majorana inter-
action. It is currently accepted [7] that phenomenological
studies support the choice of Hamiltonians which include
a rather strong Majorana term. There is, however, no di-
rect counterpart of the Majorana interaction in the shell
model. The question thus arises are renormalization ef-
fects absolutely essential for a good description of M1
transition data? The issue is all the more intriguing be-
cause renormalization effects would seem to be inessential
for energy level and E2 transition data.

The standard value of the Majorana interaction
strength has been obtained by fitting the systematics of
the scissors mode centroid [8]. A peculiarity of this work
is the use of a Hamiltonian with the nonstandard form

—kK (Qp + Qn) : (Qp + Qn) (1)

for the quadrupole-quadrupole piece of the effective inter-
action instead of the more usual choice —k Qp-Q,. [Here,

Qp (Qn) denotes the conventional IBM-2 quadrupole op-
erator for proton (neutron) bosons.] Since the effective
interaction between like and unlike nucleons is certainly
different, use of the interaction in (1) is questionable from
a microscopic point of view. In fact, we believe that the
large value of the Majorana strength inferred in [8,9] is a
consequence of the artificial symmetry of the interaction
in (1).

Anticipating our results below, we can state that, in
addition to a Majorana shift, there is a “deformation”
contribution to the centroid energy of the scissors mode.
Although not made explicit by the present derivation, the
deformation term has its origin in the prosaic following
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effect: the attraction exerted by the Qp . Qn interaction
increases with the degree of overlap of the neutron and
proton density distributions. As a result, the reduction
in the energy of a mixed-symmetry state by the Qp . Qn
interaction is not so great as the reduction in the energy
of the fully-symmetric ground state. It is this difference
which gives rise to the deformation contribution in the
centroid energy of the scissors mode. It is also appar-
ent that this difference is underestimated if the neutron-
proton blind interaction in (1) is adopted.

II. AN IBM-INSPIRED MODEL FOR M1
STRENGTH

Our aim, in the first instance, is to obtain a simple
(albeit approximate) expression for the centroid energy

[ _dE E Su(E)

E, = =
Joo dE Sui(E)

(2)

of the M1 excitation strength function Sps1(E) which
makes transparent the dependence on effective IBM pa-
rameters. In the calculation of E., we employ sum rules
which follow from the result

Sai(E Z <0+ }T* (M1)§(E — H) Tu(Ml))0+>,

where TM(MI) denotes the M1 transition operator, H
the Hamiltonian of the system, and |0") the correspond-
ing ground state. The utility of sum rules in elucidat-
ing the properites of M1 transitions has been demon-
strated previously [10-12]. Our model for the strength
function Sps; (E) treats its ingredients in two contrasting
ways. On the one hand, to address problematic aspects of
renormalization identified in previous M1 strength func-
tion studies [12,13], we adopt rather general IBM-2 ex-
pressions with an explicit g-boson degree of freedom in
the effective operators T,(M1) and H. On the other
hand, to obtain analytically instructive results, we intro-
duce a simple mean-field approximation to the ground
state |07). Our adoption of the g-boson degree of free-
dom is motivated by the observation that the variation
in properties of the ground-state band along an isotopic
chain can be described within the sdg variant of IBM-2
with Hamiltonian parameters which are reasonable from
a shell-model point of view under circumstances when
this is not possible within sd IBM-2 [14]. (As we shall see,
the impact of the g boson on the summed M1 strength
is non-negligible.)

To facilitate comparison with previous work, we fol-
low [13] in our choice of the M1 transition operator and
the Hamiltonian. Thus, we adopt for T(M1) the one-

body operator
= o X (dm +arkr),  ®

1=2,4
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where gP (g7') and L? (L}) denote the effective g-factor
and angular-momentum operator for proton (neutron)
bosons of spin [, respectively, and for the Hamiltonian

H=Y a@+af) - Qp-0n - fE-F. (3)

1=2,4

In this instance, the Majorana interaction is taken to be
the quadratlc Ca.51m1r invariant formed from the F-spin
generators F, = sTsn + d’r dn + gp gn, F_ = FT and

Fy = 5 [F+, F_] (s:7 denotes a s-boson creation oper-

ator, etc.). As regards the other terms in ﬁ, € is the
single-particle energy of a spin ! > 0 boson relative to
the s-boson single-particle energy (the single-particle en-
ergies are taken to be the same for proton and neutron
bosons), A7 (A7) the number operator for proton (neu-

tron) bosons of spin /, and Qp the quadrupole operator
(p=p,n)

. ~ ~1(2)
Q, = dlsp + Sldp + X [dldp]

)
1.

+ x4 [d*g +gld, ](2) + x5y 913 (5)
dg P P gg IpIP

Below, we shall employ the notation {x}.} to denote
the quadrupole operator parameters it being understood
that x5, = 1= X3, X524 = Xgg = X2, €tc.

As regards the ground state, we assume from the out-
set that it has complete neutron-proton symmetry or, in
technical terms, that it is a state of good F spin [15] with
the F' spin taking on its maximal value (Fmax). Given
our interest in the estimation of ground-state expecta-
tion values, this is an appropriate idealization. Although
there is confusion about the precise extent of F' # Fiax
components in low-lying collective states, the extensive
numerical and phenomenological studies reported in [7]
indicate that, as far as the ground state is concerned,
these F-spin impurities probably never occur at more
than the few percent level. Accordingly, the contribution
to a ground-state expectation value from the maximal
F-spin component of the wave function will be dominant
if it is nonzero (we shall return to this point below when
we apply our results to the Sm isotopes).

The advantage in assuming good maximal F' spin is
that we can, without any further approximation, sub-
stantially simplify the expectation values to be evalu-
ated. The IBM-2 to IBM-1 projection scheme [7] can
now be invoked to transcribe the IBM-2 expectation val-
ues of interest (in an IBM-2 ground state |0F, N, N,)
containing N, proton bosons and N,, neutron bosons) in
terms of expectation values in a N (= N, + N,) boson
IBM-1 ground state |0*, N). The computational advan-
tages aside, the projection facilitates the identification of
several of the essential features of expectation values.

This last point is well illustrated by the expression for
the summed M1 strength ¥ps; [the denominator in (2)]
deduced along these lines. Modulo some two-body terms
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of negligible magnitude (we return to this point later),
one finds that projection yields

3 NN,

X Z (6g)?l(1+1) (0, N
1

A |0T, N), (6)

where dg; = g7 — gf* and 7, is the number operator for
the spin [ bosons of IBM-1. [Formally, the integration in
(6) is over all energies; however, comparison of the result
with the summed experimental strength is circumscribed
by the usual restrictions which apply to the application of
the IBM.] Consistent with [16], projection makes explicit
the celebrated P-factor dependence [17] of the summed
strength (P = N,N,/N). The novel feature of the result,
which may be viewed as a natural generalization of the
Ginocchio M1 sum rule [16] on inclusion of the g-boson
degree of freedom, is that it makes clear that the summed
strength depends on boson occupation numbers weighted
by the corresponding spin squared. This is at odds with
previous studies [12,16], which have included only the s-
and d-boson degrees of freedom and which have inter-
preted the summed strength to be a model-independent
measure of the d-boson occupation number. In fact, the
spin-weighting enhances the significance of the contribu-
tion from any g-boson admixture in the ground state rel-
ative to the d-boson contribution; in the application to
Sm isotopes to be discussed below, we find that the g-
boson contribution to the summed strength is at the 20%
to 30% level, the contribution increasing with increasing
deformation (cf. Table 2). In this respect, rare-earth nu-
clei are perhaps different from lighter nuclei where there
is evidence that G-pair effects are unimportant [18].

In [16], the presence of a g-boson contribution in the
summed strength is discounted on the grounds that it
would introduce terms which do not scale with N, and
N, in an empirically acceptable manner (i.e., do not scale
as P). We do not find this formal argument compelling:
explicit evaluation within the Hartree-Bose approxima-
tion (discussed below) shows that terms in ¥ s, propor-
tional to the P factor remain dominant on inclusion of
the g-boson degree of freedom.

To evaluate the IBM-1 expectation values obtained af-
ter projection, we invoke (where necessary) a second ap-
proximation, namely the representation of |0%, N) as the
Hartree-Bose condensate

1 N
|.’L‘0, T, 134) = W (bt) I—), (7)

where |—) denotes the vacuum state and the deformed
boson creation operator

bt = zost + mzd;', + w4g2;, (8)
with 3, :1:,2 = 1. The wave function {z;} is determined

in the usual way by application of the Rayleigh-Ritz vari-
ational procedure; the expectation value in the conden-

sate state of the IBM-2 to IBM-1 projection of the Hamil-
tonian is used. We expect the Hartree-Bose approxima-
tion to yield at the very least qualitatively reliable results.
For the deformed systems of interest to us, improvements
in quantitative accuracy can be achieved by invoking the
1/L. expansion [19], of which this Hartree-Bose approx-
imation is the leading term.

The use of the Hartree-Bose approximation is, in part,
a matter of computational convenience and, in part,
a matter of taste. Determination of the ground state
|0F, N) by exact diagonalization in the large spaces ap-
propriate to deformed systems constitutes a formidable
numerical problem [13]. By contrast, numerical solution
of the variational problem is straightforward regardless
of the boson number N. An added advantage of the
mean-field approximation is that various results become
more susceptible to physical interpretation. Pertinent to
our work is the expression for the sum rule of (6) in the
mean-field approximation: the right-hand side of (6) re-
duces to

3, N,N,
1 09)es N -1) L ©)

where

Le = N Y I(l+1)af (10)
l

is the average angular momentum squared of the conden-
sate and (6g2)eg is obtained by weighting the (8g;)%’s by
the fraction f; of the average spin squared of a condensate
boson carried by a spherical boson of spin [, i.e.,

(69%) ¢ = Zl(l+1)w?(691)2/2 (l+1)a? . (11)
l l

Provided (dg2).s is insensitive to details of the structure
of the ground state (the case if the microscopically plau-
sible values of g ~ 1 and g ~ 0 for the boson g factors
are used), the summed M1 strength acquires the dynami-
cal interpretation of being a measure of the mean angular
momentum squared of the ground-state condensate L..
As the latter depends quadratically on the nuclear defor-
mation parameter § (through its dependence on z; and
x4 which are proportional to 4), (9) provides a natural
explanation of the celebrated quadratic increase in Xz,
with 6 first reported in [20]. This dependence should
apply for all isotope chains where (6g2).g is effectively
constant.

Our result in (9) for the summed strength resembles
the standard sd-IBM result in [16] with the ground-state
expectation value of the d-boson number replaced by L.
and the difference in d-boson g factors (g5 — g3)% by
(6g%)esr- Since (0g%)eg will, in general, vary within a
chain of isotopes, whereas (g5 — g7)? is usually treated
as a constant, introduction of the g-boson degree of free-
dom leads, in effect, to one additional source of variation
in ¥ pr1, namely the factor (§g2)eg. Variations in (6g2%)cg
at the level of 20% or so would resolve the anomalous P
dependence of X pr; identified in [16] for the Gd and Dy
isotopes.
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III. THE CENTROID OF THE M1 STRENGTH
DISTRIBUTION

It is reasonable to expect that the centroid energy, be-
ing a measure of the mean energy of states excited by
the scissors mode, is insensitive to the choice of g fac-
tors, and, in practice. we have indeed found this to be so
(cf. our comments below). We take advantage of this fact
here to simplify our presentation and make more trans-
parent the interpretation of our result. Since exstant mi-
croscopic calculations indicate that the spin dependence
of effective boson g factors is weak [21], we restrict our-
selves to the special case in which the effective boson g
factors are strictly independent of the boson spin [, i.e.,
g; = gp and g' = gn.

Evaluation within our model of the energy-weighted
summed M1 strength [the numerator in (2)] begins with
determination of the connected double commutator

[(T(M1)) , [H, T(MI)H(O) (12)

followed by IBM-2 to IBM-1 projection of its ground-
state expectation value (we invoke the standard relation
between energy-weighted sum rules and such double com-
mutators [22]). For the present choice of boson g factors,
the double commutator involving the quadrupole piece
of the Hamiltonian is particularly simple:

[(Fon)., [@ - @n, 23r1)]]”

19,
V3 2n 9p

which is obviously compatible with the expression for
this commutator within the restriction of IBM-2 to s-
and d-boson degrees of freedom [11]. Another simplica-
tion is that the two-body contributions to ¥js; vanish
exactly. Our expression for the centroid energy thus re-
duces to [23]

- gn)2 Qp : Q?n (13)

k (0%, N| : Q(x") - Q(x™) : |0F, N)
S, (I + 1) {0+, N|a [0+, N)

(14)

E. = fN + 3

Above, Q(x") denotes the quadrupole operator within
the sdg variant of IBM-1 [its definition parallels that in
(5)] with {xf.} as the choice of quadrupole parameters;
the normal ordering is with respect to the spherical s-
boson condensate |zg = 1, £z = 0 = z4).

As asserted in the introduction, our result for the cen-
troid energy comprises two distinct contributions: a shift
due to the Majorana interaction (i.e., the f N term)
and a term involving the ground-state expectation of
the quadrupole-quadrupole interaction. We refer to the
latter as the deformation term because this expectation
value vanishes in the Hartree-Bose approximation if the
ground state is spherical.

The remarkable feature of the Majorana shift in (14) is
its simplicity. In fact, it coincides with the splitting the

Majorana interaction induces between a fully-symmetric
state of F' spin Fi,.x and a mixed-symmetry state of F'
spin Fiax — 1 (recall that Fax = N/2). Hence, the
same result for the Majorana shift would have been ob-
tained within the crude (but transparent) model of the
scissors mode as an excitation of a single mixed symme-
try state of F' spin Fia.x — 1. The implication is that,
with the present choice of Majorana interaction, the Ma-
jorana shift does not depend on details of the structure
of the scissors mode.

We commented above that we expect a priori the cen-
troid energy E. to depend only rather weakly on the
choice of boson g factors. A peculiarity of our result
for E. is that it is completely independent of the boson
g factors. This is no longer the case when the present
restrictions on the ! dependence of the boson g factors
are relaxed. However, numerical studies suggest that the
value taken on by the general expression for the centroid
energy (which is too involved to be reproduced here) re-
mains fairly insensitive to the particular choice of g fac-
tors. Thus, use of (14) should continue to suffice in prac-
tice (i.e., to within an accuracy of ten percent or so).

An important feature of the deformation term in (14)
is that it can be computed without having to specify
the Majorana interaction strength. The IBM-1 Hamil-
tonian parameters and IBM-2 quadrupole parameters on
which it does depend can be fixed by methods (explicated
in [7]) which invoke spectroscopic information on the low-
lying members of the nuclear spectrum but which do
not require a priori knowledge of the Majorana strength.
Hence, the deformation term may be viewed as a known
contribution to E., and below we treat it as such. Cou-
pled with the fact that (14) is independent of g factors,
this means that we are in a position to use information on
centroid energies to pin down the Majorana interaction
strength.

IV. APPLICATION TO THE SM ISOTOPES

It is known empirically that the scissors mode cen-
troid energy is about 3 MeV. It can be argued on gen-
eral grounds that the deformation term is of comparable
magnitude (a few MeV or so). Obviously, the issue of
whether a Majorana shift is also needed or not, and if
so how large, can only be settled by detailed calculation.
Among those nuclei for which there is data on the scissors
mode, we consider the samarium isotopes because we can
gauge the strengths and weaknesses of our model by com-
parison with the calculations of [13] for these isotopes (as
in the present work, the point of departure in [13] is the
sdg variant of IBM-2). Specifically, we are able to make
a quantative comparison of g factors 9ot of 21 states
and a qualitative comparison of summed M1 strength
for these isotopes. In the presentation below, we first
discuss these comparisons before turning to numerical
results on the deformation term in the centroid energy
E.. Throughout, we adopt for the Hamiltonian H of (4)
the parameters used in [13], leaving open, however, the
value of the Majorana strength f. (We are at liberty to
do this, because, within our model, g factors of 27 states
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TABLE I. The Hartree-Bose ground state.

A 146 148 150 152 154
N (N,) 7(1) 8(2) 9(3) 10(4) 11(5)
o 1 1 0.844 0.753 0.708
T3 — — 0.518 0.621 0.660
T4 — — 0.137 0.213 0.251
L. — — 18 32 43

and the summed M1 strength, like the deformation term
in E., do not depend on the choice of Majorana interac-
tion strength.)

To calculate the g factors 9ot We have employed the
basic Hartree-Bose result implied by our assumptions on
the ground state, namely [4]

9 = Y fran, (15)
1

where the spin fractions f; were introduced above in con-
nection with (11) and

N N, .
q = ngf + 5o (16)

To enable comparison with the 9oy results quoted in [13],
the following choice of elementary boson g factors is
made: g¢§ = 0.95, g7 = —0.15, and g/ = rgj with
r = 1/2 [in the terminology of [13], this is set (c)]. The
Hartree-Bose wave functions {z;} found with the choice
of Hamiltonian parameters made above and needed to
evaluate the spin fractions fj, are given in Table I. The
prominent feature of the Hartree-Bose description of the
Sm isotopes is that it displays a spherical-to-deformed
shape transition with increasing N,; within our model,
evaluation of 2] g factors is possible only for members of
this chain of isotopes for which the Hartree-Bose state is
deformed (i.e., 159Sm, %2Sm, and 54Sm).

Results for the g factors 9o+ are presented in Table II.

As regards our primary concern of the comparison be-
tween our results and those of [13], we conclude that the
agreement, even at the level of quantitative comparison,
is satisfactory: the discrepancy (10% or less) is always
comparable with 1/L. (cf. Table I), the order of magni-
tude of the leading 1/L. correction. Less satisfactory is
the comparison between either of these calculations and
the experimental data on g factors, but we shall not pur-
sue this matter here (see [6]).

0.8 — T T T T T T
- A
3 o6l 4 .
Z L o
o -
9 L
n % _
g
@ r <o 1
o 04 =
©
Ef J
o L 4
- g
3 r ]
2 02f 3 .
L _
0 IlLléLJIJ_LIIII'IIlI_L]J_I_l|lIIAIlIII
146 148 150 152 154 156 158 160

A

FIG. 1. Summed B(M1) values versus mass number A for
the Sm isotopes. The diamonds are the results of our calcu-
lations [for g-factor set (a)] and the squares are the experi-
mental results of [20]. The summed M1 strength is scaled
by the prediction of sdg IBM-2 in the SU(3) limit [24]. To
highlight the variation in summed strength associated with a
spherical-to-deformed shape transition, we include results for
the radioactive isotopes *°Sm and '*®*Sm.

By contrast, our results on summed M1 strength in-
dicate that our model is adequate for the description of
the M1 strength data of interest to us. A calculation
of ¥pr1 with (9) and the “microscopic” set of boson g
factors gf = 1, gf* = 0 (set (a) in [13]) is in excellent
agreement with the experimental data of [20] (cf. Fig. 1),
the transitional nucleus #8Sm excepted. This level of
agreement is achieved without adjustment of free param-
eters. The increase in ¥ s, observed with increasing N,
is a clear reflection of the spherical-to-deformed shape
transition. Comparison with Fig. 2 of [13] shows that
the results of our model bear a strong resemblance to
those of [13] (148Sm again excepted). Another similar-
ity is found if the sensitivity of ¥ps; to the Majorana
strength is considered: in [13] it is observed that X
is essentially unchanged if the sizeable Majorana inter-
action used (0.1 MeV) is switched off; within our model,
the assumption of F-spin purity for the ground state au-

TABLE II. 27} g factors, summed M1 strength, and the deformation term.

A 148 150 152 154

92+ (Exp.) 0.246(22) 0.345(30) 0.420(25) 0.350(25)
Our calculation — 0.53 0.44 0.38
Calculation of [13] 0.51 0.46 0.41 0.36
Sm [uk] [Set (a)] — 1.07 2.05 2.77

g-boson contribution (%) — 19 28 33

Set (c) — 1.16 2.05 2.63
2-body contributions [Set (c)] — 0.050 0.089 0.096
E. [MeV] (Exp.) 3.07 3.18 2.98 3.09
Deformation term — 2.44 2.46 2.57
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tomatically implies that ¥,s; is completely independent
of the Majorana interaction (this is made explicit by the
IBM-2 to IBM-1 projection invoked).

In support of our earlier assertions on properties of
the summed strength ¥ps;, we include in Table I values
typical of the percentage of the g-boson contribution as
well as of the magnitude of the two-body contributions
discarded in (6). [We adopt g-factor set (c) for the latter
since, the two-body contributions vanish identically for
set (a).] The negligible change in s, on substituting g
factor set (c) for set (a) does not reflect an insensitivity
to boson g factors per se, but is a consequence of the fact
that the g factors of the g bosons in set (c) are chosen so
as to compensate for changes arising from the different
choice of d-boson g factors [13].

The outcome of the summed strength comparisons is
somewhat flattering to our model: given its reliance on
a Hartree-Bose ansatz for |0%, N), it is reasonable to
expect the model to work for the deformed nuclei (i.e.,
1528m and 154Sm) but not for the transitional nuclei (i.e.,
148Gm and !°Sm). There is another reason to doubt
the reliability of our results for #8Sm and !°°Sm: the
neglect of the effect of nonmaximal F-spin admixtures in
the ground state.

The issue of the sensitivity of the summed M1 strength
of the Sm isotopes to F-spin admixtures has been
touched upon in an independent study of their impact on
the g factors of 2] states [6]. It is found that, for **Sm,
the change in the summed strength with increasing F'-
spin impurity of the ground state is negligible: as the
F-spin impurity increases from 1% to 10% (the considera-
tions of [6] indicate that the F'-spin admixture is unlikely
to be larger), the summed strength varies from 2.49u% to
2.50;@\, [25]. By contrast, in 148Gm, the summed strength
does display a marked sensitivity to the degree of F-spin
impurity. A similar level of sensitivity has been noted
for %°Sm in [12] (information on the isotopes consid-
ered in [12] is given in [26]). We believe that this trend
is reasonable. Neglect of F-spin admixtures is permiss-
able only when the contribution from the maximal F-spin
component to the summed strength is dominant; as the
spherical regime is approached, this contribution tends
to zero. The conclusion we draw from these results is
that our assumption of F-spin purity is adequate as long
as we confine ourselves to well-deformed nuclei (as we do
below).

Given that the quantitative success of our model for
the transitional nucleus °°Sm is fortuitous, a detailed
comparison of our evaluation of the deformation term
with experimental centroid energies E. is appropriate
only for the deformed nuclei '>2Sm and *4Sm. For these
two nuclei, it can be seen (cf. Table II) that the defor-
mation term accounts for all but about 0.5 MeV of the
experimental centroid energies. The uncertainty in our
estimation of the deformation term (because of neglect
of F-spin admixtures in the ground state, uncertainties
in Hamiltonian parameters and boson g factors) is un-
likely to be more than 10% or so. Thus, the discrepancy
between the deformation term and the experimental cen-
troid energies is significant. If we attribute this discrep-
ancy entirely to the presence of a Majorana shift, then

we arrive at an estimate of the Majorana strength f of
about 50 keV independent of the choice of isotope. This
is a factor of four smaller than the standard range of
values of f for these isotopes obtained with the (revised)
empirical formula of [9].

V. CONCLUSIONS

In this paper, we have introduced a model for M1
strength associated with the scissors mode in deformed
nuclei which allows us to explore the consequences of in-
troducing the g-boson degree of freedom in a simple and
transparent way and, identify in a clear manner the in-
fluence of the Majorana interaction on the summed M1
strength and its centroid energy (under the assumption
that the ground state is F spin pure).

Despite the introduction of the g-boson degree of free-
dom, our result for the summed strength [Eq. (9)] can
be cast into a form which resembles Ginocchio’s sd-IBM
sum rule. The principal modification is the appearance of
a wave function dependent renormalization of the boson
g factors. In a parameter-free calculation of the summed
strength for the Sm isotopes, our result yields excellent
agreement with experiment. This calculation confirms
the existence of a non-negligible g-boson contribution to
the summed strength, the importance of which increases
with increasing deformation.

Within our model, the effect of the Majorana inter-
action is confined to an innocuous shift in the centroid
energy of the M1 strength distribution: f N, where f
is the Majorana interaction strength and N the sum of
the number of proton and neutron bosons. In addition,
there is a deformation term in the centroid energy which
stems (in our work) from the attractive Qp - Q. in the
Hamiltonian and may be treated as a known contribu-
tion. In line with our comments in the introduction, we
find that a Majorana interaction strength significantly
weaker than the standard value suffices to reproduce ex-
perimental centroid energies of the Sm isotopes; the de-
formation term accounts for all but 0.5 MeV or so of the
centroid energy. In fact, our estimate of the deformation
term is almost certainly an underestimate. The inclusion
of even a weak hexadecupole interaction in the Hamilto-
nian (a possibility raised by the importance of g-boson
effects for the summed M1 strength [24]) would have
the effect of enhancing the deformation term, thereby
marginalizing the contribution of the Majorana interac-
tion still further.
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