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Microscopic multicluster description of the neutron-rich helium isotopes
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The neutron halo structure of He and of He is studied in a microscopic three-body and five-body
model, respectively. Various cluster arrangements are included to embody a variety of correlations
between the clusters. The intercluster wave function is determined with the stochastic variational
method. The He and He energies are reproduced with the same effective force very well. The radii
and densities are compared with the results of empirical analyses. The calculated difference of the
neutron and proton radii exceeds 0.8 fm, confirming the thick neutron skin. The two-neutron removal
spectroscopic amplitudes are calculated and used for evaluating the momentum distribution and the
P decay spectrum, which are sensitive to the halo structure. A fair agreement with experiment is
obtained.

PACS number(s): 21.60.Gx, 27.20.+n, 23.40.Hc

I. INTRODUCTION

The measurement of the interaction cross section [1]
and the momentum distribution of &agments in neutron
removal reactions [2] of the light unstable neutron-rich
nuclei revealed the unusually large matter radii, and led
to the concept of the so-called halo [3] or neutron skin

[4] structure of such nuclei. The description of the halo
nuclei has since become a challenge for theoretical nuclear
model calculations.

In a previous paper [5], we studied the ground states
of the nuclei He and He. The He nucleus, with its ex-
tremely large neutron excess, is one of the most intriguing
examples of the halo nuclei. To give a realistic description
of this nucleus, one has to go beyond the He+n+n-type
or 4He+(2n)+(2n)-type three-body models, because in
the former the assumption of the He inert core is obvi-
ously questionable, while in the latter the assumption of
the dineutron clusters may exaggerate the neutron cor-
relation. In fact, it has recently been shown [6] that a
picture for He consisting of He plus a two-neutron halo
is not justi6ed by the &agmentation cross section data of
the helium isotopes.

In our microscopic multicluster approach the helium
isotopes comprise an o, cluster and single-neutron "clus-
ters. " In this model, the intercluster wave function is
a superposition of terms of difFerent relative coordinate
arrangements, and each term is a product of nodeless
harmonic oscillator functions with diferent width param-
eters. The Qexibility of the model enables us to include
various kinds of important correlations in the halo nuclei
on an equal footing. To determine the combination co-
eKcients, the "stochastic variational method" was used,
which is an extraordinarily good procedure to select the

important states.
The present model has some advantages over the previ-

ous approaches. Unlike the cluster-orbital shell model [7]
and the three-body [8,9] approaches, we do not have to
use the passive-core-plus-outer-nucleons approximation
and we take into account the Pauli principle properly.
Although the halo nuclei have been investigated by dif-
ferent versions of the microscopic cluster model [10], our
approach is unique as it treats more than three clusters
microscopically.

The aim of this paper is to demonstrate that this model
provides realistic wave function of halo nuclei, that is,
to show that the physical properties extracted from the
wave functions are close to the experimental results.

The plan of this paper is as follows. In Sec. II we
brieHy sketch the model used. In Sec. III we present the
results of the numerical calculations. Section IV contains
a summary and some conclusions.

II. THE MICROSCOPIC MULTICLUSTER
MODEL

In this section we brieQy outline the most important
part of our formalism. A more detailed description is
given in our previous paper. To describe the system of o.
plus n single neutron clusters, we build up a trial func-
tion which is a sum over various cluster arrangements p,
each associated with a particular set of intercluster Ja-
cobi coordinates p~~, . . . ,p". The spins of the clusters are
coupled to S, and the orbital angular momenta 1;—:I,,"-

belonging to the Jacobi coordinates p~ are coupled to
L. The wave function of the intercluster motion is ap-
proximated by a linear combination of nodeless harmonic
oscillator functions of difFerent size parameters:
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where v,".

&
is the kth size parameter of the ith relative

motion in the cluster arrangement p.
The wave function belonging to arrangement p and

angular mornenta [S, (lq. ..l )L]JM can be written as

yP
[S (l1...l )LIJM

(2)

where A is the intercluster antisymmetrizer, @sM, is a
vector-coupled product of the intrinsic wave function of
the n particle, 44~„and the n neutron spin-isospin func-
tions 4". The function I'~() ) )~ is a vector-coupledz(t, ...i„)L,
product of the intercluster relative functions I'".

&& (p,". ),
where K stands for the set of the indices (kt, ..., k„) of
the size parameters. The sequence of angular momen-
tum coupling is chosen so as to follow the pattern of the
Jacobi coordinates. The intrinsic wave function, 4'4g„
is constructed Rom a harmonic oscillator Slater determi-
nant with size parameter v.

The variational trial function @e11,(@sII,) of He (sHe)
is a combination of different arrangements and the inter-
cluster angular momenta:

) ~ )~ [S,(ig. . .l„)L]JM'
P l1...l

This function contains a great number of terms, due not
only to the different arrangements and angular momenta
but, especially, to the various size parameters. Owing
to this fact our trial function becomes so Hexible that
it can describe both various types of correlation between
the clusters and the spatially extended halo structure. In
the previous paper we tested various methods to select

v,".

&
that span most adequately the state space, while the

dimension of the basis is kept feasible. The most eK-
cient procedure found. is the following. We generate size
parameter sets randomly chosen from an interval which
corresponds to the physically important region. The pa-
rameter sets that satisfy an admittance condition are se-
lected to be basis states. We admitted a candidate if it,
together with the previously selected basis states, low-

ers the energy more than a preset value, a=0.005 MeV.

To avoid declaring convergence prematurely during this
procedure, after ten failed attempts, we removed the con-
dition, and accepted the next candidate. The repetition
of this procedure yields excellent numerical convergence
in energy and reduces the number of trial terms consid-
erably.

In this paper we use the same potential as in the
previous one, i.e., the central effective interaction of
Thompson, LeMere, and Tang [11],restrict ourselves to
I = 0, S = 0 and neglect the Coulomb force. This inter-
action is chosen so as to reproduce the most important
low-energy nucleon-nucleon scattering data and therefore
it does not bind the dineutron. The parameter u of the
interaction was set to reproduce qualitatively the p3j2
o.-nucleon phase shifts and the binding energy of He

(u = 1.15). The nucleus He does not exist in nature,
and this interaction does not produce it in a bound state.

In our previous study the size parameter of the o. par-
ticle was chosen so as to minimize the energy of the o.

particle (v = 0.303 fm ). This choice, however, gives
smaller radii than the empirical values by about 8% for
the o. particle and for SHe. In the present work we ad-
justed the radius of the o. particle to its realistic value

(v = 0.270 fm 2), allowing the n particle to be slightly
less bound and expecting the radius of He to come closer
to the experimental findings (the experimental data and
our results are compared in Table I). After fixing the pa-
rameter u and v the model does not contain any free
parameter for the description of He.

III. RESULTS

In the calculation for He we used the same config-
urations as in the previous work, that is, lq ——l2 ——0
partial waves for the o. + (nn) configuration (Tpp) (the
Tqq channel is Pauli forbidden) and lq = l2 ——0, 1 par-
tial waves for (nn)n (Ypp, Yjq). To elucidate the role of
the inclusion of the different cluster arrangements, we

repeated our calculation using only the Y-type channels
but including (Y22) and (Yss) as well. The energy falls
as —0.382 MeV (in (Ypp)), —0.601 MeV (in (Ypp, Yqq)),
—0.823 MeV (in (Ypp, Yzz, Y22)), and —0.923 MeV (in
(Ypp Yg] Y22 Yssj). At the same time, the energy in the

(Tpp, Ypp, Yjy) model space is —0.990 MeV, and inclu-

TABLE I. Ground-state energies (in MeV), root mean square matter, proton and neutron radii

(in fm) of He, He, and He. Empirical values of the radii are taken from Ref. [4]. Values in

parenthesis are from Ref. [15].

&exp @theor
matter

+emp
matter

+theor
neutron

+emp
neutron

~theor
proton

+emp
protonr theor

He
He

'He

—28.30 —25.243 1.63 (1.57)
—0.975 —0.994 2.33 (2.48)
—3.112 —3.301 2.49 (2.52)

1.63
2.46
2.40

1.64 (1.57)
2.59 (2.61)
2.69 (2.64)

1.63
2.67
2.53

1.64 (1.57)
1.72 (2.21)
1.76 (2.15)

1.63
1.80
1.71
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sion of higher partial waves ((Too, T22, Yoo, Yii, Y22, Yss))
changes it by less than 5 keV (—0.994 MeV). We can con-
clude, in accordance with Ref. [12], that with the inclu-
sion of difFerent rearrangement terms the higher partial
waves may safely be omitted.

For the description of He we selected the arrange-
ments found dominant previously, but complemented
them by some l = 1 partial waves as well. Thus the
following six channels were coupled:

nnnn n, ann nn, ann nn,

A AA A A& AA yn1A n& An gnat AA

The lower indices indicate that l = 1 partial waves
were taken in the corresponding relative motion. These
partial-wave pairs were then coupled to total angular mo-
menturn L = 0. These configurations of He, in fact,
contain the most important configurations of sHe. Us-

ing the procedure described above the energy minimum
has been reached after 124, 91, 57, 64, 31, 19 steps in
the successive channels, lowering the energy, in turn, as
—2.49, —3.07, —3.23, —3.28, —3.29, —3.30 MeV. By con-
sulting Table I, we see that He is overbound by about
200 keV. This little overbinding is partly due to the fact
that the interaction chosen overbinds He by 20 keV. If
it were fine tuned to reproduce the energy of the He, a
more perfect agreement would be obtained, as discussed
in Ref. [5].

We have calculated the rms point matter radii of sHe
and sHe. The results are shown in Table I. EfFort was
made to extract the radii of these nuclei by using the
relevant interaction cross section data. However, the ex-
tracted values disagree, as listed in Table I, according to
the type of model analysis performed. (See Ref. [13] for
a detailed theory of evaluating the various &agmentation
cross sections for the halo nuclei in the framework of the
Glauber theory [14].) The empirical estimates for the dif-
ference of the proton and neutron rxns radii (thickness of
the neutron skin) are 0.87 fm for sHe and 0.93 fm for He

(by Ref. [4]) and 0.4 fm for sHe and 0.49 fm for sHe (by
Ref. [15]). The calculated difFerences of the proton and
neutron radii (0.87 fm for He and 0.82 frn for sHe) are
close to the recent results of Ref. [4], showing the thick
neutron skin. The only striking discrepancy between the
empirical estimates and our model is that our calcula-
tion gives smaller matter radius for He than for He.
We shall discuss this point in Sec. IV. To illustrate that
the model space has been adequately spanned, we note
here that the radius of He, after about first 150 steps,
did not change significantly.

The point nucleon density distribution has also been
determined. Although there is no experimental density
distribution available, we can compare our results to the
qualitative empirical estimates. In a recent paper [4]
Tanihata et al. have attempted to deduce the point nu-
cleon density distributions of He and SHe. They as-
sumed a harmonic oscillator density distribution com-
bining the Os and the Op orbitals with diferent harmonic
oscillator size parameters. They calculated the interac-

tion cross sections of these nuclei using the optical limit
of the Glauber model. The oscillator size parameters
were determined by fitting the results to the experiments.
However, referring to Ref. [13], we note that the optical
limit approximation is not very accurate in evaluating the
cross sections of the halo nuclei characterized by spatially
extended density distributions. We present our density
distributions and their results in Figs. 1(a) and 1(b).
The calculated density distributions are not far from the
empirical ones and reproduce the most pronounced prop-
erty, namely the distribution of neutrons extending far
beyond that of protons.

Another important quantity that helps to reveal infor-
mation about the wave function of the halo nuclei is the
two-neutron removal spectroscopic amplitude of He and
sHe defined by (see e.g. , [16])

( 6!
94H (r R) I I

(@4He~(ni —r)~(s 2
—R)l@4H )

q 4!1!1!&

and

(a) 6He

1O'

C
1O'

103

r (fm)

(b) 8He

1O' .—

10

r (fm}

FIG. 1. Empirical (short-dashed line) and theoretical (solid
line) proton and neutron density of He (a) and He (b). The
long-dashed line showers the calculated matter density. The
distributions are normalized to the number of nucleons.
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8!
~ ' R) =

I 6I„„~ (~ R.~(& — )~(~ —R)I+ .). 10,

(5)

Here pq is a Jacobi coordinate connecting two neutrons
an p~ is the 3acobi coordinate connecting the c.m. of
these two neutrons with the c.m. of the rest; r and
R are respective parameter coordinates. Note that the
intrinsic wave function of He il'd E . (4) d

5
eH~, in qs. 4 and

( ) is the same. The norm squares of these ampli-
tudes (the two-neutron removal spectroscopic factors) are
(gdHqigsHq) = 1.39 aild (g H ig R ) = 1.36. These spec-
troscopic factors are larger than unity but this is not

~ ~

surprising as the two-neutron spectroscopic factors in the
pure harmonic oscillator limit, i.e., when the wave func-
tion of the relative motions are shell model harmonic os-
cillator functions of the same size parameters, are 8 and
13x25 8
s„24 for He and He, respectively [16].

The radial spectroscopic amplitudes

E 5

4

0 I i ~ ~ I I

0 1 2 3 4 5 6 7 8 9 10
R (fm)

(b) He

g, «, (r, R) = f diYoo(r)' f dRYoo(R)*g «, (r, R) (i)

g.«.(r, R) = f drYoo(r)* f dRYoo(R)'g «.(«, R) (g)

E5

4

are plotted in Figs. 2(a) and 2(b), respectively. We note
ere that the norms of these amplitudes are (g, (, ) =

(gBH Ig», ) = 1.32, thus about 95/0 of the spec-
troscopic amplitudes lie in the subspace of the Ii = 0 l2 ——eo e 1—
0 partial waves. Our model gives qualitatively the same
spectroscopic amplitudes for He as the three-body mod-
] ~, ~„ that is, it shows two prominent peaks: the

neutrons are close to each other, and the "ci I'k "
figuration, with two neutrons at almost the opposite sides
of the n particle (r = 2.75 fm, R = 2 fm). The two-
neutron removal spectroscopic amplitude of He has a
shape rather similar to that of He, although it is spa-
tially more compact. The positions of its peaks are al-
most the same as in the case of He, the magnitudes
of the peak are, however, about 1.25 times hi her thanimes ig er t an

The two-neutron spectroscopic amplitude defined
above can be tested by experimental data such as the mo-
mentum distribution of the fragment in the two-neutron
removal reactions and the P-decay spectrum.

The normalized momentum distribution of the frag-
ment in one direction is given by

1
p(g. ) = f dgrdg, dq(g(q, i)~~',

where g(q, k) is defined as

g(q, k) = drdR
aegir ii R(r R—).

(2m. )s

In this equation we assumed that the momentum distri-
ution measured in &agmentation reactions is propor-

O.O4 ~

0 1 2 3 4 5 6 7 8 9 10
R(&m)

FIG. 2. Two-n
rR rR

-neutron removal spectroscopic ampl't diu es:
r gsH (r, ) and rRgRH (r, R). The value of the magnitude
(in fm) as a function of r Rnd R is written on the contour
ines.

tional to the momentum distribution [g(q, k)[2 of the

fragment and the neutrons in the projectile. In general,
the reaction dynamics of the two-neutron removal process
gives modifications to Eq. (8). The change for the longi-
tudinal momentum distribution was found to be small at
high energies [17]. The transverse momentum distribu-
tion at high energies has not so far been analyzed fully
with the reaction dynamics included, but the shape of
the transverse and the longitudinal momentum distribu-
tion in the region of low momentum transfer was found to
be quite similar [18]. Therefore we may assume that the
observe transverse distribution can be safely corn d
o he momentum distribution calculated with the spec-

troscopic amplitude. The experimental and calculated
momentum distributions of the 4He &agment in the two-
neutron removal reaction ( He, He) [2] and of the He
fragment in (sHe, sHe) [19] are compared in Figs. 3(a)
and 3&b&. The characteristic features of the momentum
distributions are well reproduced particularly in the case
of He [Fig. 3(a)]. The width of the momentum distribu-
tion of sHe is slightly wider than in the experiment [Fig.
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FIG. 3. Experimental (solid line) and theoretical (dashed
line) normalized transverse momentum distribution of the

He fragment ln the ( He, He) [2] and the He fragment in
the ( He, He) [19] two-neutron removal reaction on a carbon
target. The two-neutron removal reaction cross sections are
189 + 14 mb and 202 + 17 mb for He and He, respectively.

FIG. 4. Absolute value of R f drr Fq(r)geH, (r, A) as a
function of R.

ity between the n particle and the deuteron, and Gp ——

2.996 x 10 ~2 is the dimensionless P-decay constant. The
phase space factor, or Fermi integral, f depends on the
kinetic energy Q —E available for the electron and the
antineutrino. The mass difference between the initial and
final particles is 2.03 MeV. The Gamow-Teller (GT) re-
duced transition probability is to a fair approximation

BGT(E) = 6&'(F~(r)&a(R) Ia'H. (» R))'

where Fg(r) is the radial part of the deuteron wave func-
tion and gE is the a-deuteron relative wave function in
the final state. See Ref. [10] for details. Figure 4 dis-
plays the effective function, R f drr2F~(r)geoH, (r, R), as
a function of R. The asymptotic behavior at large dis-
tances is described well enough to calculate the P-decay
spectrum. The calculated probability, &E, shown in Fig.
5, reproduces the experiment [21] reasonably well. The
quality of agreement is very similar to that of Ref. [20],

lO-4

3(b)]. This indicates that the relative motion between
He and the two neutrons in the halo should extend spa-

tially a little further. This point may be related to the
fact that the calculated He energy is overbound by about
200 keV.

The two-neutron removal spectroscopic amplitude of
He can also be used to calculate the P-decay rate into

a and deuteron. Recent theoretical analyses [10,20] have
revealed an extreme sensitivity to the halo description
up to distances as large as 15 fm. We show the P-decay
spectrum obtained with our wave function in order to see
how good it is at large distances. The P delayed deuteron
emission transition probability per time and energy units,
&E, can be expressed as

1P-5

10-6
X

LIJ
1p-7

10-8—

10
0 0.2 0.4 0.6 0.8 1

E (MeV)

1.2
I I

l.4 1.6 1.8

dW mc2
2 Gp f (Q —E)BGT (E), (10)

where m is the electron mass, v is the relative veloc-

FIG. 5. Transition probability dW/dE per time and energy
units (in s MeV ) in the c.m. frame as a function of the
c.m. energy E (MeV). The experimental points are from Ref.
[21].
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where a more sophisticated description of the final states
is used.

The P delayed triton and n spectra of sHe have also
been measured [21]. In this case the possibility of the
direct decay mechanism through the He resonance, that
is, He —+ t+ He(3/2 ) + e +v, and He —+ n + n, is
ruled out because a simple symmetry argument predicts
vanishing GT matrix elements for the P decay. A more
careful consideration on the P-decay mechanism is needed
to test the sHe wave function with use of the P-decay
spectra of 8He.

IV. SUMMARY

The use of the stochastic variational method allows
us to treat the light neutron-rich nuclei as a multiclus-
ter system. This method helps to keep the dimension of
the variational basis low and ensures that the wave func-
tion is good enough to describe the extended neutron
halo. In this paper we have calculated the ground-state
energy, wave function, and some physical properties of
the nuclei He and He in a fully microscopic framework.
The inclusion of various rearrangenment cluster config-
urations was shown to be quite effective to describe the
halo structure of the helium isotopes.

We set the only parameter of our simple central
nucleon-nucleon interaction to give the nearly correct
ground-state energy of He and by using this interaction
we reproduced the ground-state energy of He with fair
accuracy.

We have calculated the proton, the neutron, and the
point matter rms radii of these nuclei. The difference
between the neutron and proton radii in our model, i.e. ,

the thickness of the neutron skin, is in perfect agree-
ment with the empirical 6ndings. Unlike empirical esti-
mates, our model gives a little larger rms radius for He
than for He. This discrepancy may reHect the effect of
the overbinding ( 200 keV) of sHe or the use of a not

fully adequate effective interaction (e.g. , the neglect of
the spin-orbit force) but, at the same time, one may be
inclined to accept this result since the binding energy of

He (3.112 MeV) is much larger than the binding en-

ergy of He (0.975 MeV). To estimate the effect of the
overbinding of He on the rms matter radii of He and
He, we set the parameter u to 1.145. This choice gives

0.87 MeV for the binding energy of He, and results in
less overbinding of He ( 160 keV). While in this calcu-
lation the rms matter radius of He increased (r = 2.48
fm), that of He hardly changed, in fact it decreased by
0.004 fm. Therefore, the overbinding does not seem to
be responsible for the result that the rms matter radius
of He is calculated to be larger than that of He. The
calculated result that both the proton and neutron radii
of He are larger than those of He may be understood
if one assumes that the distance between the center of
mass of the n particle in He and the center of mass of

He is larger than the corresponding quantity in the case
of He. To understand the reason of the discrepancy of
the radii, one has to use a more sophisticated efFective
interaction, or the extraction of the proton or neutron
radii from the interaction cross section data has to be
carefully reinvestigated.

We have determined the proton, the neutron, and the
matter distributions. The results are in accord with the
empirical estimates and the relativistic mean 6eld calcu-
lations [4].

The two-neutron removal spectroscopic amplitudes
have been calculated and used to calculate the momen-
tum distributions of the fragments arising f'rom the two-
neutron removal reaction and the P decay of sHe into
o. and deuteron. The results are in fair agreement with
experiment.
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