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q deformations in the interacting boson model for nuclei
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q deformations of the Hamiltonian with SO(6) or U(5) symmetry in the interacting s, d boson
model are discussed. The deformations are introduced through q-deformed U(5), SO(3), and the
boson pairing algebra SU(1,1). It is shown that the SO(6) or U(5) dynamical symmetry remains after
deformation. The deformed Hamiltonian under the two limiting cases can be applied to describe
energy spectra of certain isotopes. As examples, energy spectra and some E2 transition rates of
even-even Cd, Pt, and Xe are fitted and compared with the experimental results.
Finally, the physical meaning of q deformation is also discussed.

PACS number(s): 21.60.Fw, 02.20.+s, 03.65.—w

I. INTRODUCTION

Quantum algebras [1—3] continue to attract the atten-
tion of mathematicians and physicists. Besides their ap-
plications to statistical mechanics, and conformal field
theory [4—6], there have been several applications in
molecular spectroscopy [7—9], the fine structure of the
hydrogen atom [10], the aufbau prinzip for atoms and
monoatomic ions [11], squeezed states [12,13], the nu-
cleon pairing problem [14—16], and rotational spectra
of deformed and superdeformed nuclei [17—19]. A q-
deformed two-dimensional toy interacting boson model
(IBM) was first proposed by Bonatsos et al. [20,21],
in which they constructed the toy IBM Hamiltonian in
terms of q-deformed boson creation and annihilation op-
erators. However, the extension of this construction to
the real IBM is rather difBcult because the q-deformed
s, d boson algebra should satisfy the coproduct rule which
does not meet the needs of the properties of the subal-
gebras of U~(6) in terms of three well-known chains to
SO~(3). Actually, some dynamical symmetries will be
lost if one persists in constructing the q-deformed IBM
Hamiltonian in terms of q-deformed 8 and d boson op-
erators directly. One can construct U~(6) from s and
d q-boson operators. Nevertheless, one cannot get the
subalgebra chains corresponding to the three IBM lim-
its. In fact, SO~(6), SO&(5), as well as SO~(3) are not
the subalgebra of Uz(6) in this case.

In this paper, it will be shown that the q deformations
can be made through another way, namely, the q defor-
mation of Lie algebras rather than of boson creation and
annihilation operators, which can be achieved by using
deforming functionals initiated by Curtright and Zachos
[22,23). In Sec. II, we will discuss q deformations of U(n),
SU(2), and SU(l, l) which are useful for our purpose. In
Sec. III, we will construct the q-deformed IBM Hamil-
tonians for the SO(6) and SO(5) limiting cases. As ex-
amples, the energy spectra and some B(E2) values of
some even-even Cd, Xe, and Pt isotopes are calculated
and compared with the experimental values. Finally, the
physical meaning of the q deformations will brie8y be
discussed.

II. q DEFORMATIONS OF U(n), SU(2),
AND SU(l, l)

Before discussion on the q deformation of the IBM, we
will give a short introduction to q deformations of U(n),
SU(2), and SU(1,1). In the following, we always assume
that q is not a root of unity.

A. q deformation of symmetric boson algebra U(n)

The generators of the symmetric boson algebra U(n)
can be written as afar with 1 ( i, j ( n, where a, (a;)
are the boson creation (annihilation) operators. Then,
generators of q-deformed algebra U~(n) can be realized
in terms of U(n) generators by using the deforming func-
tionals [24]

for q & i, j ( n, where as usual, for given x,

(2)

We always assume that the operators given by (1) are

acting on the representations in which ata, with i
1, 2, . . . , n are integer valued, i.e., a,-a; g N. In fact, the
functionals given by (1) can be realized under any basis
of U(n) because any basis of U(n) can be constructed in
terms of these boson creation operators.

Because of the commutation relations of U(n), the
functionals (1) indeed satisfy the commutation relations
and Serre relations of Uv(n). The maps F;~ are func-

tionals of the U(n) generators g: a,.ai. In our appli-
cation the generators E~. should be Hermitian. One
should keep the quantity under the square root real in
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(1). This requires that q is real or a phase (q = e'~ )
with 2k' ( ]7 ]N ( (2k + 1)x, where k = 0, 1, 2, . . . , and

B. q deformation of SU(2) and SU(1,1)

We assume that generators of SU(2) SO(3), jy, jo,
satisfy the commutation relations

N =) ata;

[io i+] = +J+, i[+ i ]=-io .

(3) The Casimir operator of SU(2) can be written as

C. = 2i i++i.(io+ 1)

(4)

is the total number of bosons. Consequently, the func-
tionals (1) are invertible, and their inverses F provide
a realization of U(n) in terms of quantum algebra U~(n)
generators.

The deforming functionals for SU~(2) were made by

Curtright and Zachos [22,23]. In this case, one first

rewrites the classical Casimir operator C2 of SU(2) as

j(j+1),where j is the formal operator [(1+4C2)~~ —1]/2.
Then, because of the commutation relations of SU(2)
generators jg and jo, the functionals

Jo = Qo(g) =io,

J' = Q-(g) = i-&[io+3]&[io —j —1]&/2(io+ j)Uo —j — ))' ',

where the operators of (6) are acting on the representa-
tions in which j and jo are diagonal simultaneously, sat-
isfy the commutation relations of SU~(2). In this case,
J+~ are Hermitian when q is real or a phase (q = e'~ ~)

with

2k' ( ]7'] (2j „+1) ( (2k + 1)vr,

S = S f [So + S —1]q [Sp —S]q/(So + S —1)

x(So —S)}'~'

satisfy the SU~(1,1) algebra [25,26]

[So S~] = +S~, [S+,S'] = —[2So], .

The Casimir operator of SU~(1,1) can then be written as

[Sp, S~] = +S~, [S+,S ) = —2Sp .

The Casimir operator of SU(1,1) is

C2(SU(1, 1)) = Sp(Sp —1) —S+S

(7)

where k = 0, 1,2, . . . .
The SU(l, l) algebra is generated by Sy, Sp, which sat-

isfy

C2(SUq(1, 1)) = [So]q[So —l]q —S+S

with eigenvalue

C2(SUo(1, 1)) = [K]~[r —l]~ .

In this case S+ is Hermitian only when q is real.

(12)

(13)

Let ]rp) be the basis vectors of SU(1,1), where r can be
any positive real number, and p = r, e+ 1, . . . . We have

C, (SU(1, 1))]rp) = r(K —1)~Kp),

Using the commutations relations given by (7), one can
check that the deforming functions

s'0 =S

S~~ = ([Sp + S —1]~[Sp —S]~/(Sp + S —1)

x(Sp —S)) ~ S+,
(1o)

III. q DEFORMATION IN THE SO(B) AND U(5)
LIMITINC CASES

A. U(5) limiting case

In the IBM U(5) limiting case the Hamiltonian can be
expressed in terms of Casimir operators of U(5), SO(5),
and SO(3) [27,28]

II = ACg(U(5)) + BC2(U(5)) + CC2(SO(5))
+DC, (SO(3)), (14)

where A, B, C, and D are parameters. The wave func-
tions of this limit are denoted, as usual, by ~NndvaLM).
The q deformations of U(6) DU(5) DSO(5) DSO(3) can be
achieved in the following way. First, by using the deform-
ing functionals for SO(3) given by (6), the q-deformed
angular momentum operators in the IBM can be written
as
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Lqo = Lo ——~10(dtd)p,

Lq+ ——~10([Lp + L]q [Lo —L —1]q /(Lp + L){Lo—L —1)) (dtd)~,

I,' = ~10(dtd)', ([Lo+ L], [Lo —L —1], /(Io+ I)(Lo —I. —1)) ~

where L is the formal operator ((1+4C2) ~~ —1)/2, and
tl

C2 is the Casimir operator of SO(3). In order to keep Lq+

Hermitian, q" should be real or a phase (q" = e'~ ~) with
2k' & (4N + 1)]q "i & (2k + l)vr, where k = 0, 1, 2, . . . .
Secondly, we know that the basis of U(5)&SO(5) is si-
multaneously the basis of SU~(1, 1) &U(1). Their com-
plementary relation can be expressed as [29,30]

~NngvaLM) = ~N, K" = 2{v+ 2),

S+ = (dt dt)/2, S"(d d)/2,

S," = —,') (dtd„+d„dt) .

(17)

Then the Casimir operators of SO(5) can also be ex-
pressed in terms of the Casimir operators of SU"(1,1).
In fact,

C2(SU"(1, 1)) = Sp(Sp —1) —4(dt. d )(d d) (18)

p,
" = ~

(ng + s ), aI M),
(16)

with

C (SU"(1,1)) = —, + -'C (SO(5)) . (19)

where K" and p" are quantum numbers of SU"(l,l)
and U(1), respectively. In the IBM, the generators of
SU"(l, l) are nothing but the d-boson pairing algebra

Thus, the generators of the q-deformed algebra SU (1,].)
can be expressed in terms of Sy, Sp given by (17). They
are

So (d) = So

S' (d) = ([S,"+S" —1], [S,"—S"],/(S,'+ S" —l)(S,"—S"))'i'S", (2o)

S'-(d) = S"GSo+ S" —-1]. [So —S'lq /(So+ S"—1)(So —S"))",

where S" is a formal operator

-', (1+ [4C,(SU"(1,1)) + 1]'~'j .

Because of the complementary relation (16), the oper-
I

ators S+~ (d) are Hermitian when q' is real or a phase

(q' —e&l 'I) with

2k' & iq-'~(N + '-, ) & (2k + l)m,

where k = 0, 1,2, . . . . The Casimir operator of SUq (1, 1)
acting on the basis vector [NngvaLM) gives

C2(SUq. (1, 1))INngvaLM)

5

C'(U. (5)) =) (q" "' ' —q'"")/(q —q ')'
i=1

) qE +E +2i qgq Eq— (22)

where dt (d„) with p, = —2, —1, 0, 1, 2 are denoted as

a; (a, ) with i = 1, 2, ..., 5. In this case q should be real
because the second-order Casimir operators of Uq(5) are
nonunitary if q is a complex number. The eigenvalue of
(22) is

C'. (U, (5)) = &[5], —5q'""+ (q'"' —»q'&/(q —q ')'
(23)

= [(2v+ 1)/4]q [(2v+ 5)/4]q ]NnqvaLM) . (21)

Finally, using (1) we can write the Casimir operator of
Uq(5) as [31]

+2(Uq(5))]q-+1 [2nd(nd + 5) + 25]/5
= 2C, (U(5))/5+ 5 . (24)



50 q DEFORMATIONS IN THE INTERACTING BOSON MODEL. . . 1879

In the following, we assume that the general q-

deformed Hamiltonian can be expressed in terms of the
Casimir operators of Uq(5), SUq (1,1), and SOq (3),
where q, q', and q" are diferent new deformation pa-
rameters which should satisfy the conditions given above.
Hence we have

Hqq q
—A[nz]q + BC2(Uq(5)) + CC2(SUq (1,1))

+DC2 (SOq (3)), (25)

where the parameters A, B, C, and D may also be de-
formation parameter dependent. Under the basis vectors
~Nn~vnLM), the eigenvalue of (25) is given by

Eqq q~ (navL) = A[nq]q + B([5]q —5q "' + (q
"' —1)q )/(q —q )

+C[(2v + 5) /4]q [(2v + 1)/4]q + D[L]q [L + 1]q (26)

It should be noted that the eigenvectors of the de-
formed IBM Hamiltonian given by (25) are just the basis
vectors of U(6)DU(5)DSO(5)ISO(3). That means the
U(6) DU(5) DSO(5) DSO(3) dynamical symmetry remains
after deformation.

S~ ——(dt dt —stat)/2,

S' = (d d —sa)/2,

So" ——
4 ) (dt d„+ d„dt ) + -(ata + sat),

(28)

B. SO(8) limit

In this limit the Hamiltonian can be written as

H = nC2(SO(6)) + pC2(SO(5)) + pC2(SO(3)) . (27)

with the complementary relation

~ovnLM) = ~N, m'" = (o'+ 3)/2,

y,
' = (N+3)/2, e" = (v+ 2)/2, nLM) .

(29)

The basis vectors of U(6) DSO(6) DSO(5)DSO(3) are de-
noted by ~NovnLM). Similarly to the U(5) limit case,
the basis vectors of this chain are simultaneously the ba-
sis vectors of SU'"(1, 1), SU"(1,1), where SU'"(l, l) is the
s, d boson pairing algebra generated by

It should be noted that p is not a good quantum number
in this case.

The generators of the q-deformed algebra SU'~(1,1)
can be expressed in terms of SU' (l, l) generators
through the following q-deforming functionals:

Sq(ad) = S''
S+(ad) = ([S"+ S"—1] [S' —S"1 /(So'+ S"—1)(S'"—S"))' 'S"
Sq (ad) = S ~([S ~+ S ~ 1],[S ~ S ~] /(S ~+ S ~ 1)(S a S ~))~/2

(3O)

In this case, S+(ad) is Hermitian when q is real or a
phase (q = e'~~~) with 2k+ ( ]r](N + 2) ( (2k + 1)x for
k =0, 1,2, . . . .

Similarly to the SU~, (1,1) case, the eigenvalue of

C2(SU' (l, l)) is

C2(SU' (1,1)) = [(o + 1)/2]q[(o + 3)/2]q . (31)

V?hen q —+ 1,

E„,- = [( +1)/2], [( +3)/2].
+P[(2 +1)/4]. [(2 + 5)/4].
+~[L]q-[L + 1].- (34)

where q, q', and q" should satisfy the conditions given
before, and n, P, and p may also be deformation param-
eter dependent. Because the eigenvectors of Eq. (33) are
just the basis vectors of U(6) &SO(6)DSO(5) DSO(3), the
U(6) DSO(6)DSO(5) DSO(3) dynamical symmetry still
remains after deformation.

C.(SU'(1, 1))],-.= —.'C.(So(6»+ —.
' (32)

C. E2 transition rates
Similarly to the U(5) limit case, the general q-deformed

Hamiltonian can then be written as

Hqq&q&: nC2(SU (1~ 1)) + PC2(SU &(1~ 1))

In the original IBM, the E2 transition operator is usu-
ally written as

T„(E2) = e2(s d+ d s)~ l . (35)
+pC2(SOq (3))

with eigenvalue

(33)
In the q-deformed IBM, one can write the E2 operator in
terms of q-deformed s and d boson operators, namely,



1880 FENG PAN 50

) 1/2

T(E2 ), () [
— ][ + ].

( (N —nd) (nd + 1) )
( 1/2 - 2

[nd]~[N —nd + 1],1
n,d(N —n,d + 1) )

(37)

where the following q deformation for 8 and d boson op-
erators has been chosen [24,41]:

T„(E2,q) = e2 (q) [st (q) d(q) + dt (q) s(q)]„, (36)

where e2(q) is the effective charge which may also be q
dependent. Equation (36) can also be expressed in terms
of the usual s and d boson operators similarly to Eq. (1),

In the U(5) limit case, reduced matrix elements of
Eq. (37) can be calculated directly. However, in the
SO(6) limit case, the d-boson number operator nd as well
as n, are not good quantum numbers. In order to calcu-
late the reduced matrix elements of Eq. (37) in this case,
the SO(6) DSO(5) DSO(3) basis vectors can be expanded
in terms of U(5) ~SO(5)DSO(3) basis vectors [30]. Then
the reduced matrix elements in the SO(6) limit can be
obtained &om those in the U(5) limit case. The results
are very complicated because no closed form of the re-
duced matrix elements exists. For example, we have

B(E2;r + 1, 2r + 2 m r, 2r) = e2(q) F (N, q, r),2m+ 5

and

1/2
d' (q) =

I("d)

(3S)

B(E2;r + 1,2r m r, 2r)

= e2(q) F (N, q, r), (40)
(47 + 2)

Other deformations of Eq. (35) are also possible, but the
calculation will be rather complicated. where

) 1/2

F(N, q, r) =
N —r )

(N r —1)!(N+—r+ 4)!(old —r)!!/

) 2N+1(N + 1)I(N ~d)1(nd + r + 4)11(nd r) I

Z/2
([nd + 1]~[N —nd]v(N —nd) ~ (N —r)!(N + r + 3)!(nd —r + 1)!!

nd + 1 ) 2++ (N + 1)!(N—nd)!(nd —r + 1).'(nd + r + 3).'!
ng ——even g

1/2 1 2( [nd + 2]q[N —nd]&(N —nd)+ (N+r+4) ( nd+2

In Table I, we list some theoretical B(E2) values in the
U(5) limit case, which are calculated by using Eq. (37).

It can be seen that the q-deformed version of T(E2)
(37) is analogous to the original IBM so that the selec-
tion rules are the same as those in the original model.

TABLE I. Theoretical B(E2) values in the q-deformed

U(5) limit.

(41)

I

Furthermore, the ratios of B(E2) values along the yrast
band are close to those in the original model, and the ra-
tios decrease with increase of the deformation parameter
]r]. A comparison of q-deformed B(E2) ratios with those
in the original model for both SO(6) and U(5) limits is
shown in Fig. l.

One can also calculate explicitly the following B(E2)
ratio:

Transition
2 + 0+
2+ + 0+

2 1
4+ -+ 2+
6+, ~4+,
O+ + 2+

3 1
O+ ~2+
2+ m2+
0+ -+ 2+

23 -+ 0+
2+ mo+

B(E2) values

e:(q)[N].
0
e'(q)[N —1].[2].
e'(q)[N —2).[3].
0

'(q) [N —2].[31.
e2(q) [N 1)~[2)~

0

(q) [N —2]~[3]~

B(E2,2i —+ 0+) (42)

where )r~ is the deformation parameter. In Table II, we
list some R values for different ]r] in both limits when
N ~ oo. The facts presented above manifest that all
features of the original IBM remain after the deforma-
tion, while B(E2) ratios decrease with increase of the
deformation parameter )r).
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TABLE II. B(E2) ratio R in SO(6) and U(5) limits when N + oo.

U(5)

1.98 1.82

SO(6)
!r!= O.I

0.9991 x
!~!= O.2

0.9986 x

D. Comparison with the experimental results

We take even-even Cd as an example for the
q-deformed U(5) limit, and even-even iso issPt and
124 12sXe for the q-deformed SO(6) limit. The parame-
ters A, B, C, and D in the U(5) limit case are all taken to
be deformation parameter independent, while p is chosen
to be p(q) = pq2 after the fits to the experimental energy
levels. By comparison to the experimental data, we find
it is reasonable that deformation parameters q and q' are
taken to be real, while q" is taken as a phase q" = e'~

which was shown to be related to the stretching effects in
the moment of inertia of nuclei in rotational regions [17].

II
The operators L~+ should be Hermitian, and the eigenval-
ues of the Hamiltonian should be an increasing function
of L. To guarantee this one must have (I + 1)!r"!( ir/2.
In the case of Cd isotopes, we restrict L „=8, while for
Pt isotopes we find I „=13. These L values are higher
than the observed L in the lower-lying spectra (E 3
MeV) of these isotopes. The real deformation parameters
are chosen to be q = &' —el&I Using the least squares
fits, we find that the energy levels can best be fitted by
using a set of fixed parameters A, B, C, and D for the
U(5) limit case, and n, P, and p for the SO(6) limit case,
while!r! and!w"! differ from nucleus to nucleus. For Cd
isotopes there may be two-particle —two-hole excitations
created across the proton shell closure at Z = 50. A col-
lective band is expected to be built on the mixed intruder
plus normal 0+ states configuration mixing [44]. This will
afFect both energy spectra and E2 transition rates. As a

first approximation, this is not taken into account in our
calculation. The calculated energy spectra of these iso-
topes and the corresponding experimental values [32—40]
are shown in Figs. 2—4, while the corresponding data are
given in Tables III—V, respectively. The quality of the
fits is indicated by the quantity

(43)

11S~ 114~ 114 )ls 114

where Nt t l is the number of the energy levels fitted for
the isotopes.

The deformation parameter !v! is obtained from the
fits to the energy spectra. Then we use this!r! value to
calculate the E2 transition rates for the corresponding
nucleus by using Eq. (37). The q dependence of the ef-
fective charge e2(q) will be determined by the best fits
to the experimental values. In our calculation, we chose

e2(q) = e2q for Cd isotopes, and e2(q) = e2q for
both Pt and Xe isotopes. The results are given in Tables
VI—VIII, respectively. In all cases the quality of the fits
is measured by

& Ix)= O
~ I.I=O.1

2— I +,
4p'

4+ I

0+
2+

jI C
2

8 I 0 2 4 6
L (5)

I

! I I I I i

0 2 4 6 8 10

FIG. 1. B(E2) ratios for N = 7 along the ground state
band in SO(6) and U(5) limits.

FIG. 2. Energy spectra of even-even Cd isotopes.
The corresponding data are given in Table III.



1882 FENG PAN

2.—
Xe Xe

2+

0+

Xe Xe

4+ t

3'

FIG. 3. Energy spectra of even-even Pt isotopes.
The corresponding data are given in Table IV.

0

FIG. 4. Energy spectra of even-even Xe isotopes.
The corresponding data are given in Table V.

) [B(E2,i),„p —B(E2, i)ii, ~ (44)

IV. SUMMARY AND DISCUSSION

In this paper, the q deformations of the SO(6) and U(5)
Hamiltonian in the IBM are discussed. The energy spec-
tra and some B(E2) values of the even-even iio ii4Cd,

Pt, and Xe isotopes are 6tted rather well

by using the Hamiltonian with two more deformation

where Xt t ~ is the total number of values used in the its
for these isotopes.

parameters. From these examples, we have shown that
the main characteristics of the deformed U(5) and SO(6)
spectra as well as the B(E2) values remain unchanged.
In fact, the q deformation does not change the dynam-
ical symmetry any more, but just inputs all high-order
terms of a certain type, which preserves the underlying
dynamical symmetry. This can clearly be seen from the
following facts.

From Eqs. (25) and (33) one knows that the q-deformed
Hamiltonians in both U(5) and SO(6) limits are ex-
pressed in terms of q-deformed SO(3), SU(1,1), and
U(5) Casimir operators. q-deformed SO(3) and SU(1,1)
Casimir operators can be expanded in terms of unde-

TABLE III. Lower-lying energy spectra of even-even " " Cd (in keV). The theoretical values
~ II

srecslculatedbyusingEq. (26) withq = q' = e andq" = e* . TheparametersareA = 543 keV,
B = 22 keV, C = —11 keV, and D = 10 keV. The experimental data are taken from Refs. [32—34].
o is defined by Eq. (43).

114Cd

I
0+
2+

1
0+
2+
4+

1
0+

3
3+

1
4+

2
6+

1
2+

Th.
0

663.06
1391.78
1329.93
1469.93
2042.81
2162.81
2242.81
2462.81
2347.10

Exp.
0

657.76
1473.77
1475.78
1542.43
2078.65
2162.79
2220.06
2479.93
2287.44

Th.
0

648.34
1326.77
1279.34
1383.98
1915.52
2021.29
2076.67
2177.50
2159.82

Exp.
0

617.57
1224.06
1312.32
1415.38
1870.94
2064.22
2081.00
2167.00
2156.23

Th.
0

625.20
1209.11
1197.23
1305.40
1716.66
1823.90
1881.70
1993.04
1869.79

Exp.
0

558.45
1134.53
1209.71
1283.74
1859.69
1864.26
1932.07
1991.10
1841.94

Jr/ = O. 226

o = 62.312

[rf = O.17

o = 41.883

fr/ = 8 x 10

a = 60.038
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TABLE IV. Lower-lying energy spectra of even-even Pt (in keV). The theoretical values
IC

are calculated by using Eq. (34) with q = q' = e and q" = e'~ . The parameters are o = —172
keV, P = 200 keV, y(q) = llq keV. The experimental data are taken from Refs. [35—38]. o is
defined by Eq. (43).

190pt 192pt 194pt 196pt

L Th.
0+ 0
2+ 264 54

22 564.55
4+1 703.21
02 900.00
3+ 1025.98
4+ 1103.21
6+ 1289.58
03+ 1720.00
2+ 1464 54

Exp.
0

295.80
597.64
737.04
920.86
916.62

1128.20
1287.73
1670.50
1203.02

Th.
0

266.00
566.00
720.00
900.00

1032.00
1120.00
1362.00
1548.00
1466.00

Exp.
0

316.51
612.47
784.58

1195.15
920.92

1201.05
1365.40
1546.87
1278.09

Th.
0

272.27
574.81
742.24
909.73

1053.23
1148.91
1412.01
1479.78
1495.12

Exp.
0

328.45
621.99
811.32

1267.15
922.74

1229.54
1411.86
1479.22
1511.94

Th.
0

277.25
584.25
761.15
926.89

1078.51
1179.59
1457.57
1397.50
1540.68

Exp.
0

355.69
688.67
876.86

1135.28
1015.03
1293.29
1430.10
1402.73
1361.56

frf = o
Ir"I = 0.&&

o = 93.318

frf = 0

a = 122.567
fr"f = o

~ = 127.167

frI = 0.1386
fr"f =0

cr = 111.22

formed Casimir operators of the same type [24,41]

C, (SO,(3)) = L,' L' + [L,,],[L, + 1],

= C, (SO(3)) —
3, [C,(SO(3))]'Irl'

+—.'. [C.(So(3))]'I I'+" (45)

where we assumed that q is a phase q = e'~ I. For small
value and low spin states, the q-deformed SO(3) Casimir
operator is equivalent to a higher-order power of the un-
deformed operator. The situation is very similar in the
SU(1,1) case:

C2(SUs(1, 1)) = [~]a[ac —1]e

= ~(~ —1) + ', [~(~ —1—))'fr I'

+—[ic(K —1)] Ir I +, (46)

where q is real, ic =
2 (o +3), and n = g4 + C'2[SO(6)]—2

is a formal operator for SO(6), and e = i (2ij + 5), and
v =

2 (+9+ 4C2[SO(5)] —3) is a formal operator for the
SO(5) case.

The expression for the U~(5) Casimir operator is very
complicated. We do not even know whether it can be ex-
pressed in terms of a combination of the undeformed U(5)
Casimir operators. However, the eigenvalue of C2(Us(5))
has the following combination

TABLE V. Lower-lying energy spectra of even-even Xe (in keV). The theoretical values
are calculated by using Eq. (34) with q = q' = e and fr"I = 0. The parameters are n = —180
keV, P = 248 keV, p = llq keV. The experimental data are taken from Refs. [39—40]. o is defined

by Eq. (43).

0+
1

2+
1

2+
2

4+
1

0+
2

3+
1

4+
2

6+
1

0+
3

2+3

Th.
0

314.00
686.00
840.00

1116.00
1248.00
1336.00
15?8.00
1620.00
1802.00

124X

Exp.
0

354.02
846.88
879.17

1268.73
1248.30
1438.30
1548.71
1650.40
1628.38

Th.
0

347.62
718.66
923.24

1151.02
1326.37
1443.27
1764.75
1764.39
1908.23

126'
Exp.

0
388.63
8?9.88
941.90

1313.81
1317.40
1488.40
1634.90
1760.40
1678.44

Th.
0

358.22
754.95

1000.36
1211.80
1422.16
1562.39
1948.05
1880.75
2074.99

128X

Exp.
0

442.91
969.58

1033.15
1582.97
1429.56
1603.41
1737.04
1877.32
1999.64

o = 97.333
frf = 0.142

o = 112.392
I
= O.233

u = 156.215
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TABLE VI. E2 transition rates of even-even Cd isotopes. Theoretical values are calculated
by using Eq. (37). All values are in W.u. The asterisk indicates that the parameter e2 is fixed
by this value. The parameter li [

is determined by the fits to the energy spectra. o' is defined by
Eq. (44), in which experimentally undetermined values are not included. Experimental data are
taken from Ref. [44].

Transition
2+ -+ 0+

1 1
2+ m0+2 1
4+ -+ 2+
+~4+

0+ 2+

0,+ -+ 2+
2+ + 2+
0+ -+ 2+
2+ ~0+
2+ + 0+

Th.
27.4'

0
43.73
52.351

0
52.351
43.73
43.73

0
27.4

110Cd

Exp.
27.4(3)
1.34(20)

46(16)

29.59

0.3
(15

Th.
32.7576

0
54.47
67.678

0
67.678
54.47
54.47

0
32.7576

112Cd

Exp.
30.2(3)
0.65(10)

61(7)

0.01238
99(8)
45.582
51(13)

0.34
55

Th.
39.81

0
70.772
92.886

0
92.886
70.772
70.772

0
39.81

114cd

Exp.
31.09(19)
0.50(4)

61(5)
119(39)

0.0027
109(8)
22.074
27.3(16)
0.33(2)

16(2)

o = 7.753 o = 13.402 o. = 24.376

& (U, (5)) = ([5],—5q'"'~'+ (~'"' —I)&')/(0 —
&

')'
= 5+ —'.&2(U(5)) + —,', (5t-"2(U(5)) + 4n~&~(U(5)) —5n~)[~I+" (47)

where nd is the eigenvalue of the U(5) Casimir operator
of the 6rst kind. Prom this expansion one can easily see
that the eigenvalue of the Uv(5) Casimir operator can
equivalently be expressed in terms of the eigenvalues of
the undeformed ones though the U~(5) Casimir operator
but probably cannot be expanded in terms of the unde-
formed U(5) Casimir operators.

The above discussion shows that the q-deformed
Hamiltonian just involves all high-order terms of a certain
type that keeps the underlying symmetry unchanged.
Furthermore, the q-deformed Hamiltonian is equivalent
to a higher-order power of the undeformed Casimir op-
erators as long as the deformation parameters are small.
However, in order to sum up the expansions to some or-

TABLE VII. E2 transition rates of even-even Pt isotopes. Theoretical values are calculated by using Eq. (37). All

values are in e b . Experimental data are taken from Refs. [35—38] and [45,46]. Others are the same as Table VI.

Transition
2+, ~0+,

4+ ~ 2+

6+ ~ 4+
1 1

2+ -+ 0+

22+ ~ 2+

4+ ~2+

02 ~ 22
+ +

0+ ~2+
2 1

42+ ~ 4+,

4+~2

190pt

Th.
0.5643

0.7716

0.8439

0.7716

0.4421

0.8439

0.402

Exp.
0.5915

192pt

Th.
0.4629

0.6269

0.6752

0.6269

0.3537

0.6752

0.3215

Exp.
1.893

0.0132

Th.
0.3567

0.4566

0.5002

0.4566

0.2620

0.5002

0.2382

194pt
Exp.

0.374

0.47

0.38

1.4x 10

0.58

0.21

1.2716

1.2323

0.2059

0.00227

196pt

Th.
0.276'

0.3596

0.3647

0.3596

0.191

0.3647

0.1736

Exp.
0.264
0.276
0.409
0.38
0.421
0.40

3x10
2x10 '

0.34
0.318
0.177
0.17
0.142
0.14
0.022
0.021
0.193
0.18
0.003

o. = 0.463 o. = 0.072
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TABLE VIII. E2 transition rates of even-even Xe
isotopes. Theoretical values are calculated by using Eq. (37).
All values are in W.u. Experimental data are taken from
Refs. [39,40]. Others are the same as Table VI.

Transition
2+ -+ 01+

124~ 126X 128X

Th. Exp. Th. Exp. Th. Exp.
47.5' 47.5 38.223 40.414 31.562 36.3

1/2

t()
~

[ n~]~~ t
q

N-
= (1+ —,', [(N —ng) —1]]r]

+ ~44o [(N —nd) —10(N —nz) + 9]]r]
)st (48)

and

1/2
d' (g) =

I

= (1+ &'~(n~ —1)l&l'

+ y44o (ng 10ng + 9)]r] + )d (49)

where N and np are the quantum numbers of the total
number of bosons and of d bosons, respectively.

In the original IBM, the neglect of higher-order terms
does not represent any fundamental constraint (and in-
deed has been relaxed in the latter applications of the
model), but rather stems from the desire to keep the
complexity of the overall Hamiltonian at a manageable

der, the Hamiltonian should include many terms, which
leads to energy eigenvalue expressions with a large num-
ber of terms and parameters. The situation is similar in
the transition operators. For example, the q-deformed 8
or d boson operators can also be expanded in terms of
the undeformed one:

level. The q-deformation technique enables us to input
all high-order terms of a certain type and only add a few
parameters to the Hamiltonian, which can be regarded
as a possible extension of the original IBM. The multi-
parameter deformation given by (25) and (33) are also
possible, and need to be further investigated.

In Refs. [42,43], in order to calculate the energy spec-
tra of isotopes in the transitional region, the parameter
A in the U(5) limit is written as A = Aoe ( -~" '). In
fact, all parameters in the IBM are N dependent. The
deformation parameter q plays a role similar to that of
ee~ " '~. A detailed analysis of this relation is nec-
essary although we have not done it here.

In conclusion, the q-deformation technique provides
us another way to introduce higher-order terms, which
may be possible corrections to the many-body problem,
and keeps the complexity of the overall Hamiltonian at
a manageable level. This technique was also successfully
applied to the description of rotation-vibration spectra of
diatomic molecules [47], and to the nucleon pairing prob-
lem [16]. q deformation of the SU(3) limit in the IBM is
also under consideration.

Note added. After completion of this work, the au-
thor became aware of Refs. [48,49], in which the authors
discussed the same problem &om a somewhat difFerent
point of view. In particular, the relations between the
generators of quantum algebras and the ordinary 8 and
d boson operators were not mentioned in those papers.
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