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Functional approach to the electromagnetic response function:
The longitudinal channel
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In this paper we address the (charge) longitudinal electromagnetic response for a homogeneous
system of nucleons interacting via meson exchanges in the functional framework. This approach
warrants consistency if the calculation is carried on order by order in the mesonic loop expansion with
random-phase-approximation-dressed mesonic propagators. At the one-loop order and considering
x, p, and cu exchanges we obtain a quenching of the response, in line with the experimental results.

PACS number(s): 21.65.+f

I. INTRODUCTION

The inclusive cross section for electron scattering off a
nuclear target reads
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and allows the experimental separation of the longitu-
dinal and transverse electromagnetic response functions
RL,iT by means of a Rosenbluth plot of data taken at the
same Q2 and difFerent angles.

Such separation is grounded on two approximations,
namely the one-photon exchange and the negligibility of
Coulomb distortion of the electrons. In the inclusive cross
section the two-photon-exchange corrections are of order
of 1% [1] and may be safely neglected. Instead, the use of
different kinematics, differently affected by the Coulomb
distortion, could make the separation somehow question-
able [2—4].

Even within these limits, however, the Rosenbluth sep-
aration of RL,iT has recently become available for a wide
variety of nuclei, in different energy and momentum re-
gions [5—13] and has provided new, unexpected outcomes:
the central problem seems to be that a free Fermi gas
(FFG) model is roughly able to reproduce the transverse
response —two-particle —two-hole (2p-2h) corrections im-
prove the agreement with the experimental data [14]
within a mesonic theory; on the contrary, the FFG model
prevision in the longitudinal channel is almost twice as
large with respect to the experimental results. The most
recent data on 4oCa [13] seem to weaken this conclusion:
we will come back to this point later on.

Many attempts to simultaneously explain both the re-
sponses have been carried out (we restrict our consider-
ations to heavy and medium nuclei) but the results of
these theoretical efforts are still largely unsatisfactory.
Both details and a critical discussion about them can be
found, for instance, in Ref. [15].

At lower q calculations performed along the random

phase approximation (RPA) or Tamm-DancofF approx-
imation schemes improve the agreement with the data
[16—20] as far as collectivity can strongly influence the
response. However, at momenta on the order of 300 or
400 MeV/c this mechanism cannot be efFective anymore,
but still the discrepancy between the experimental data
and the theory survives.

An interesting suggestion comes &om the bag model:
a partial decon6nement mechanism could be effective in-
side nuclear matter, leading to the so-called "swollen nu-
cleon hypothesis": the corresponding change in the elec-
tromagnetic (e.m. ) form factor could well account for
the quenching of the quasielastic peak (QEP) [21—23];
the experimental outcomes in the transverse channel re-
main, however, unexplained: If the nucleon is swollen,
RT should be quenched too. A possible solution was
suggested by Ericson and Rosa-Clot [24]: In a mesonic
model the swollen nucleon can be seen as a bare nucleon
surrounded by its mesonic cloud, now feeling the presence
of the other nucleons of the medium so affecting in some
unspeci6ed way the photoabsorption. It is easy to see
that such a mechanism is channel dependent, giving us a
chance of explaining both the longitudinal and transverse
response functions in the frame of a mesonic theory.

We shall investigate this last topic in detail, examin-
ing in the present paper the longitudinal response func-
tion; we plan, in two other following papers, to study the
transverse response and the nuclear sum rules as well.

Two crucial points need to be clari6ed just &om the
beginning, in order to give a de6ned content to the words
"mesonic theory": by one side a complete speci6cation
of the dynamical model is needed —this means to decide
which kinds of mesons and baryons are considered as true
degrees of freedom, to establish a Lagrangian governing
their dynamics, and, furthermore, to discuss which other
quantities need to be parametrized to obtain a realis-
tic description of the system; on the other side, a well-
defined theoretical scheme is asked for, one that is able
to select which approximations can be safely carried out
to obtain a practically manageable and well-behaved ex-
pansion without violating general theorems.

A few years ago we proposed a scheme based on the
saddle point approximation (SPA) applied to the gener-
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ating functional for a system of nucleons and pions [25]:
this step can be performed after the explicit integration
of the fermionic degrees of freedom; in the resulting ex-
pansion the ring-dressed meson propagators are the mean
field level of the theory, the higher order corrections be-
ing expressed in terms of a loop expansion with respect
to these ring-dressed boson propagators.

In [25] we concentrated on a relativistically covari-
ant vr-N system, but the expansion derived there was
characterized by the topology of the diagrams: thus we
are free—as we shall prove in the following —to apply
the same scheme to the nonrelativistic restriction of the
model and to mesonic fields other than the pionic one.

In the present paper we shall include in the model both
the p meson, displaying a remarkably different behavior
in the spin-transverse channel, and the 633 resonance,
whose contribution is relevant to a realistic description
of the nuclear dynamics. This will provide both the the-
oretical framework for a planned forthcoming paper and
a self-contained explanation of the approach.

The results of a preliminary calculation were presented
in [26] in a purely pionic framework. The theoretical
expectation of strong cancellations in the selected class
of diagrams was supported by the almost complete sup-
pression of the one-loop corrections in the isovector chan-
nel; however, the longitudinal response was still overes-
timated.

In the present paper we extend the previous calcula-
tions to a richer dynamical model by allowing the ex-
change of p and u mesons and the excitation of 6 res-
onances in the intermediate states. These contributions
significantly improve the agreement with the experimen-
tal data.

The paper is organized as follows. In Sec. II the
bosonic loop expansion is presented and the one-loop cor-
rections are derived. The formalism is su%ciently general
to apply to the transverse channel as well, but the me-
son exchange currents (MEC) are not considered in the
present paper: they will be discussed when investigating
the transverse (magnetic) response. In Sec. III the dy-
namical model will be presented and discussed. In Sec.
IV we shall illustrate the details of the calculation and in
Sec. V the results will be presented. Finally, in Sec. VI
we shall comment and discuss our outcomes in connec-
tion with the experimental data. Some outlooks on the
perspectives of the present work are also presented.

A= dxdy t x Go x —y y

1
dzdy ) gt(z)r, g(z)V;(z —y)gt(y)r, Q(y),

(2)

where the I', denote the relevant spin-isospin matrices (to
exemplify, in the spin-longitudinal isovector channel I'; =
—io V~, ) for which we require a sort of orthogonality,
namely,

We next couple the system to some external classical
fields J; with the same quantum numbers of the cor-
responding p-h channels and write the generating func-
tional as

(4)

the response function in a given channel follows Rom

8' ln Z[J]
b J;(z)h J;(y) ~

(5)

1
R, (q) = ——8 d (x —y)e' ' "~II'(z —y) . (6)

in details in [25] the e.m. response function within the
functional approach for a system with nucleons and pions
only. Here we introduce two main modifications, namely,
the nonrelativistic approximation and the inclusion of
those short-range correlations (SRC) not coming from the
exchange of the mesons actually present in the model, to
allow the use of the presently available phenomenological
models of low momentum strong interactions, like, e.g. ,
the Bonn potential or other mesonic theory.

To preserve coherence as far as possible, but still re-
maining suKciently general, we confine ourselves to a
potential theory with local interaction in the various
particle-hole channels with assigned spin, isospin, and
helicity.

The classical action (in terms of Grassmann variables)
takes the form

II. THE BOSONIC LOOP EXPANSION

The functional approach to the nuclear many-body
problem was repeatedly described in previous works

[25,27—29], the central idea being the projection of the
action on a bosonic Hilbert space via a functional inte-
gration of the fermionic degrees of keedom. We studied

The thermodynamic limit is here understood, but it
is not in principle required: the present scheme, with
straightforward modifications, could apply to a finite sys-
tem as well; however, the required computational eKort
makes an actual calculation realistically not feasible.

The projection on a bosonic Hilbert space is carried
out by means of a Hubbard-Stratonovitch transformation
[30—32], i.e., by exploiting the identity

exp
~

— dx dygt(x)r;g(x)V(x —y)gt(y)r, Q(y)
~

= gdet V; 'D[o, ] exp
~

— dx dy o, (x)V, (z —y)o;(y)
~

(i t'i

2 )
x exp

~

i dxo, (x)yt(x)r, y(x) ~, -
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then substituting (7) into (4) and carrying out the re-
xnaining Gaussian integration over the fermionic fields.
We finally have (after a shift in the integration variable

0;)

Z[J;] = exp —) J;V,. J; 17[o]exp (iA,&), (8)
2

where

1 w ]Air ———) 0 V; 0;
. 1—iTr ) — ) 0;I';Gp

n=1 i

—) oV, J;.

This effective action has been derived in the kame of
a potential theory. However, a mesonic model leads to
the same form of the generating functional with the po-

tentials V; replaced by xneson propagators; the fields cr;
can then be interpreted as the true mesonic fields. Thus,
thanks to this unifying aspect of the formalism, we can
proceed without distinguishing between mesonic and po-
tential theories and attribute to the V s the appropriate
meaning, potential or meson propagator, directly when
needed. In Eqs. (8) and (9) the quantity V, appears,
thus raising the delicate question of its existence: this
problem can be formally solved by xneans of the change
of variable cr, -+ V,o; in the functional integrals, but we
prefer to keep the present form to preserve to ((r;) the
meaning of expectation value of the underlying mesonic
fields.

The next step is the evaluation of the last path inte-
gral in Eq. (8). We adopt the semiclassical expansion,
i.e., the path integral is evaluated within the stationary
phase approximation —or saddle point approximation in
the Euclidean word, in both cases SPA. This amounts to
imposing the stationarity of the effective action A,& with
respect to arbitrary variations of the fields cr;:

dt(z) = z, (z) —It f dyVz(z —y) $ f dy, x x (dy Gz(y —yt))
n=1

x) r,o"(yi)Gp(yi —y2) x ''' x ) I'so's(y )Gp(y„—y)1'z.

The solutions of Eq. (10) are clearly functionals of
the external sources J~", they will be denoted &om now
on by 0. because of the link that will become clear
in the following, with the randoxn phase approximation
(or more precisely, with the ring approximation, as it is
sometimes referred to).

A peculiar role is played by the scalar-isoscalar field (if
any), because it brings into the theory the only possible
tadpole; if so, a spontaneous syxnmetry breaking occurs
and a shift in the corresponding integration variable is

I

needed to force back the field expectation value to zero;
this procedure entails a finite renormalization of the non-
interacting nucleon Green's function Go with the Hartree
potential generated by the tadpole. In the present work
we do not introduce the o meson: then this procedure is
not needed.

We can solve the SPA equation in the form of Volterra
expansions for 0. as a functional of Jz. Having ruled
out the term with n = 1 in Eq. (10), the 0th-order term
of the expansion vanishes and we can write

(z) = ) f dyA z( ~y) Jzz(y) +'—) f dydzB' (z~y z)zdz(y)d (z) + G(d )

1= A&(x~y) Ji, (y) + BI', (x~y, z) Ji, (y—)J (z) + O(J ).

Substituting the form (11) into (10) and collecting the terms linear in J; one gets for A& the equation

Az(z~y) = z;f dzdt Vt(y —z)IIt't(z —t)Az(t~y) + b zb(z —y), (12)

II~ l denoting the Lindhard function. The reasons for this unusual notation will become clear later; see Eq. (21).

We use, when no confusion can arise, the convention that a sum is understood when some spin-isospin index is repeated two
and only two times. In the same way a repeated space-time variable is meant to be integrated.
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Then, since the RPA-dressed potential (or meson propagator) reads

1

y & ~.II(2) ' (I3)

the solution for AI, takes the form

&~(xly) = &~p~(x —«)V '(z —y)h'~. (I4)

It is remarkable that formally

A= 1

1 —nVn~2~' (15)

so that if no interaction in the jth channel is allowed (V~ = 0), then

4 (xly) = h.~h(x —y)

The equation for B reads

B (z z~
y'z) = u V(v —u)II z (u —v)B;„(v~yz) + 2TzI';I', I'zV(z —u)Gv(u —v) (&2'&tvzV, )(v —y).

o( — ) ( RPA Vk ') (t —«) Go( —&) (17)

with the immediate solution

'
(B~yzzz) = 2'&I' I' I'z&2)tvz(z —u)G (u —v) (tyuvzV, ) (v —y)Gv(v —t) (6&tvzVz ) (t —z)Gv(t —u). (18)

Having solved the SPA equations, the generating functional reads

gB RPA (PA~„[o.]Z[J~] = exp —) J,V, J; e' «~ 2 j det
I 2, ' * *) ho;(x)ho;(y)

1
2

Let us consider first of all the mean field response functions: to obtain the linear response it sufBces to replace in
A,& the SPA solutions for 0; up to the first order in J;; only the term with n = 2 of the sum in (9) comes into play
and then

b2lnZ
8JhJ; ~ 1 —n, V;II~'~

' (20)

i.e., the response function is given by its RPA approximation.
When the potential is vanishing the mean field response reduces to the FFG one. To exemplify in the case we are

interested in (the response to a scalar-isoscalar plus scalar-isovector probe, a charge longitudinal p) and if the effective
interaction carries only the vr, p, or ~ quantum numbers, both the mean fields turn out to coincide with the FFG
ones. Instead, in the spin transverse channel (the magnetic one) the p-meson propagation is able to dress at the mean
field level the FFG response.

I et us now come to the one-loop corrections: the fermionic loops up to n = 4 are relevant. We define, following
the notations of [33,34], the functions

II ' (x, y) = G()(x —y)G()(y —x),
II~ ~(x, y, z) = Go(x —y)G()(y —z)G()(z —x),

II~ l(x, y, z, t) = G()(x —y)G()(y —z)G()(z —t)
x Gp(t —x),

(2I)
(22)

(23)

which are symmetric for cyclic permutations of the arguments: the second derivatives of A,& result in

b A = V,-'(* —y)t„- v, (.) (I,I,r„rt&'&(*,, .) + I,r,t.rrt'&(y, *,*))
htr, (x)h 0, (y)

—v„(z)v (t) {r,y, rzr„III'&(*,y... t)+V, r;rzI II"&(y, v, z, t)

+ r,r„r,r III'&(v. ..y, t)) .



50 FUNCTIONAL APPROACH TO THE ELECTROMAGNETIC. . . 1855

Next, using the well-known property

I tX Trlnx

the one-loop contribution to the polarization propagator becomes

g2
1-~&ap Z

2 b J;(x)bJ;(y)

b2A~~

bo;(x)brT, (y)
CJs =CT J p

The logarithm is required up to the order J2: thus we multiply in the exponent by V; (a quantity not affecting the
response because it is independent from J) and we expand the logarithm up to the second order before deriving it
with respect to the external sources. A tedious but straightforward calculation provides

n,'. -""(~,y) = t (aR»V,.-') (*—~)T r,r,r;r, n(')(s, u, t, ~)V, (u —~) (aR»V,
—

) (t —y)

+*(r „„v, ) (*—.)v(~ —.)rr r„r„r.(rr~4~(*, ~...~)+rr~'~(~. .., *)) (r'„„v, ) (~ —~)

+'(rr' „v, ) (*—*)r r,r, r„rr~'~(*, r, ~)v(~ —~)v (~ —~) (r r,r,r, r, rr~'~(. , ~,.)

+ r r.r, r„rr~'~(. .., ~)) (a„,„y ) (.—~).

The corresponding Feynman graphs are plotted in Fig.
1.

The theory, in the form here presented, has been devel-
oped for a system of nucleons interacting either through
a potential or through a meson exchange, without ex-
plicitly including the possible excitation of baryonic res-
onances. This drawback is overcome by replacing the
fermionic fields with fermionic multiplets, whose compo-
nents are the true Geld operators for the various kinds
of baryons. The diagrams so generated are topologically
identical to those of Fig. 1, but each fermionic line stands
now either for a nucleon or for a 6, or for whatever other
resonance we choose to include in the dynamical model.

(c)

III. THE DYNAMICAL MODEL

The approximations here described are suKciently gen-
eral to apply to various dynamical schemes. We now
describe the one we are going to follow. The complete
determination of the model requires the specification of
two ingredients —the form of the current and the poten-
tial we choose.

Concerning the first point, we recall that the response
to an e.m. probe in the longitudinal channel is usually
described, in a nonrelativistic context, by its nucleonic
part, neglecting any contribution coming &om the MEC
(contact term, pion in Sight, direct b, excitation). This
assumption seems quite acceptable, and we shall follow
it in this paper: In principle, however, we cannot ex-
clude a significant contribution coming fmm the MEC,
even in the longitudinal channel, when relativity is cor-
rectly accounted for. In the one-loop approximation, in
fact, we expect large cancellations between the various
contributions —and they were found indeed in the isovec-
tor channel in a preliminary calculation [26]: in such
a case even small contributions could become relevant.
Thus the corrections coming &om the MEC in the longi-
tudinal channel are for the moment neglected, but they
will be the object of a future investigation.

To study the longitudinal response we only need two
external sources, namely, I'T p

——I and I'T'—y = 73 the
full response being at the FFG level, with obvious nota-
tions,

1 1
RL, ———Rz —p+ —Rz —y .

4 4
(24)

(&3

FIG. 1. One loop diagrams: (a) exchange; (b) and (c),
self-energy; (d) and (e), correlation diagrams.

Both the response functions in (24) contain, of course,
the usual Sachs form factor G~„.

Next we come to the second, and more delicate, prob-
lem, namely, the choice of the V;. Three mesonic fields
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are known to dominate the nuclear dynamics (as can be
argued for instance from the N-N phase shift analysis
leading to the Bonn potential [35,36]), namely, those
of ~, p, and u mesons. To follow this scheme we
shall only consider those V; pertaining to the isovector
spin-longitudinal and spin-transverse channels and to the
isoscalar spin-transverse one. This does not mean that
we completely neglect the effective interaction in other
channels, which should be thought as arising, largely,
&om the two-meson exchange, a process accounted for
in our scheme by the diagrams (d) and (e) of Fig. 1. It is
important to remember, for instance, that the o meson
(carrying the scalar-isoscalar part of the interaction) was
introduced in the past to simulate the exchange of two
pions with the simultaneous excitation of one (or two) of
the intermediate nucleons to a A. In the present scheme
these contributions —often referred to as the "box dia-
grams" in the language of the Bonn potential —are ex-
plicitly accounted for.

We now examine the model interaction in the various
channels, starting &om the isovector spin-longitudinal
one. There, since the pioneering works of Migdal on pion
condensation [37,38], the effective interaction is described
by the one-pion exchange plus a short-range contribution
schematized by the I andau parameter g' which simulates
"whatever else can happen" in that channel [39—41]. In
the present schexne this assumption is insufficient for at
least two reasons: the first is that in a one-loop calcu-
lation a constant potential leads to (obviously spurious)
divergences, and the same happens for a p-wave static
pion exchange potential (see Ref. [42] for more details);
the usual mNN vertex form factor obviously removes the
divergence, but it leaves unaltered the unphysical high
momentum behavior of the interaction, which in this way
is simply hidden. The second reason is that, again at the
one-loop level, some diagrams can occur with two consec-
utive Landau effective interactions attached to the same
fermionic line [this is immediately seen to happen, again,
for diagrams (d) and (e) of Fig. 1, but the same is also
true for diagrams (b) and (c)]. This means that soxne
double counting can, in principle, be present in the calcu-
lation; thus we must better specify the physical meaning
we attribute to g' at the one-loop level.

When the momentum carried by one meson (or po-
tential) line is not limited by the kinematics, as instead
happens at the mean field (zero-loop) level, it is neces-
sary to account for a major efFect, usually referred to as
short-range correlations [43]: they prevent, for instance,
the pion to be exchanged between nucleons that are too
near the one to the other. This eKect can be ascribed,
within a mesonic theory, to a short-range repulsive inter-
action, thought as a heavier meson exchange occurring
before and/or after the pion exchange. In Fig. 2 the ex-
change of a pion between correlated nucleons is shown,
the wiggly line denoting a G matrix obtained only Rom
the repulsive short-range interaction. Remarkably such
an eKect could be well described by means of seemingly
completely diferent models, like, e.g. , exotic quark con-
figurations; within the present scheme it is simpler to
identify and understand the microscopical origin of the
channel dependence of the effect we are looking for.

FIG. 2. Diagrams inducing SEC on the pion exchange.

If V„(r) denotes the one-pion-exchange potential in
configuration space, the four diagrams of Fig. 2 are well
sixnulated by g(r)V (r), g(r) being the pair correlation
function (more precisely we should evaluate the matrix
element of V with correlated wave functions, i.e., solu-
tions of the Bethe-Goldstone equation, instead of mak-
ing use of plane waves [44]: the previous parametrization
corresponds to the static lixnit).

Within this scheme an overcounting of diagrams arises
when two successive correlated pions are exchanged (as
happens in all but the first diagrams of Fig. 1, when.

the first [diagrams (d) and (e)] or second [diagrams (b)
and (c)] term only of the RPA series is considered). The
diagrams presenting overcounting are displayed in Fig.
3.

In the static limit, however, two successive meson ex-
changes are oc g(r)2V2(r), while dropping the double

S
counting roughly corresponds to oc g(r)~V2(r). Thus,
due to the form of g(r), the eff'ect of the overcounting
is to amplify the suppression of the short-range part of
V (r), i.e. , in Fourier transforms, of its high momentum
components. This outcome is unavoidable &om a formal
point of view: it originates Rom handling an eHective
interaction as a true potential.

FIG. 3. Diagrams with overcounting in two successive cor-
related pion exchanges.
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Brown et al. [43] suggested for g(r) the very simple
form

g(r) = 1 —jp(q, r)

~(r)&-(r)
d3A: 2~2

:- &-(&) — 2, , b(lkl —q )

xV (k —cl), (26)

(with q, m ) which leads to the following expression
of the correlated potential in Fourier transforms:

&om these wide limits we assume q, T essentially is a &ee
parameter.

Finally we come to the isoscalar spin-transverse chan-
nel. As we are going to discuss in the following, phe-
nomenology does not impose severe constraints on the
cu-meson propagation in nuclear matter. Thus we simply
assume

2 2

widely employed in the literature [45] for two main rea-
sons: it gives a good description of the elastic pion-
nucleus scattering [46,47] and it corresponds to, in the
Landau limit and accounting also for the correlated p
exchange, a value for g' ~ 0.65, consistent with many
model-independent analyses. Furthermore, it cuts down
the high momentum components of the correlated poten-
tial because of the cancellation between the two terms in
(26) when IqI )) q, .

We shall adopt in the following a different form (main-
taining, however, the same philosophy), by writing the
potential in the isovector spin-longitudinal channel as

(27)

and in the isovector spin-transverse as

2 2

v~(q) = " ~
qq(q) —c~ Iv (q ) . (28)

A momentum dependence has been attributed to gl and
g~, such that

The form factors in (27), (28), and (32) are in the usual
dipole form

A —m
(33)

with cutoffs, respectively, chosen to be A = 1.3 GeV/c,
Ap = 2.5 GeV/c, and A = 1.5 GeV/c.

Finally let us discuss the coupling constants. We set
as usual f ~&/4m = 0.08 and f2N&/4m = 0.32; the value
we use for f ~~ is commonly employed in the literature,
somehow higher than the value obtained by the N-N
phase shift analysis carried out in constructing the Bonn
potential, but lower than the results of a recent fit [48]. It
is remarkable that the precise value of this parameter de-
pends on the details of the underlying dynamical model:
within the Bonn potential approach, in our opinion, it is
necessary to underestimate the +Nb. coupling, to effec-
tively account for the 6-6 repulsion inside a box diagram
[49,50]. Concerning the best fit of Ref. [48], the higher
value of the coupling constant was accompanied by a re-
duction of the cutoff so that the net effect is roughly the
same.

Coming to vector mesons, we write the relativistic in-
teraction Lagrangian in the form

n(~) ' ~r(~)' ":C.. (29)

- 22

g'r, (q) = 1 + (gp —1)
9 L, +9

2

~r(q) = C. + (ap —C.)
Q~~+ 9 .

- 2

Actually the functional forms we have chosen are gvgp~W&v+ 4 &&~ 0'(~"4v —&"&v)

which reduces, in the nonrelativistic limit, to
(30)

. (fv + gv)
4m

(31)
Let us 6nally de6ne C~ as

(34)

(35)

With these expressions we obtain the required high mo-
menta cancellations and we force the same Landau limit
gp in both channels, as it should be. Following [45—47] the
value of q, l. should be chosen around m, but, because
of the previous considerations about the double counting
problem, we suggest as an acceptable compromise a slight
increase of the value of q I, to q L, 0.8—0.9 GeV/c: in
this way we effectively remove the overcounting problem,
without altering the low-q behavior of the effective inter-
action. We have no phenomenological indications about
the precise value q T should have: surely it should lie be-
tween 1 GeV/c and 2 GeV/c. The lower limit comes
when considering that obviously the effect of the SRC
for the p-meson exchange should be sensible at shorter
distances with respect to 1/m~; the upper one is roughly
determined by the inverse size of the NN p vertex. Apart

(fv+ &v)' C f'zv~
4m m2 (36)

to give a meaning to Eqs. (28) and (32).
Using the values given by Ref. [51], one gets C~ 2.3.

The coupling constant of the cu is not well known. Holer
et al. [52] values correspond to 0.83 ( C ( 2.5; Grein
[53] and Grein and Kroll [54] provide, respectively, C
0.83 and 0.56. Finally the N-N phase shiR analysis of
Ref. [36] gives C = 1.5, the value we have adopted in
the present work. As will become clear &om our results,
the uncertainty over this parameter does not propagate
too much on the 6nal results, the overall u contribution
being small. Also the possible presence of a residual SRC
interaction in this channel —that we do not include in
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the present calculation —should not in8uence the 6nal
results.

Finally, the pNL coupling is also largely unknown.
The analysis of Ref. [36] provides C+ = 2.1 but other
values are also compatible. Here we have chosen C~ = 2.3
for both X and A. The corresponding cutofFs are also
chosen according to the Bonn potential parameters.

We remark that in the present approach the practically
unknown AA-meson vertices are not required.

FIG. 5. Diagrams vrith two 4 lines.

XV. EVALUATION OF THE DIACKAMS

The diagrams corresponding to the one-loop correc-
tions, described in Sec. II, are those of Fig. 1 {without 6
hnes), or those with one 6 line in Fig. 4 and with two
6 lines in Fig. 5. Everywhere the wiggly line denotes
a RPA-dressed meson (x, p, or u) and a double solid
line stands for a 4 propagator. Each term is a Feynman
diagram, i.e., we could further reduce it in Goldstone
diagrams by distinguishing all the possible time order-
ings [55]. Such a procedure entails an enormous increase
in the number of terms required: for instance, diagrams
(a), (b), and (c) (Fig. 1) generate 24 Goldstone diagrams
each, while 720 Goldstone diagrams come from (d) and

(e) (Fig. 1; remember that the internal mesonic lines are
RPA dressed, so they are not forced to connect equal-
times couples of points). Since, furthermore, different
particles may correspond to the internal mesonic lines,
diagrams (a)—(c) (Fig. 1) must be evaluated for three
different cases while (d) and (e) (Fig. 1) for nine: the ex-
plicit evaluation of all the separated Goldstone diagrams
is a hopeless task.

We can, however, bypass this problem without losing
any information by means of the results of Refs. [33,34],
where we carried out the analytic evaluation in momen-

turn space of the functions IIL L and IIL L describing a
fermionic loop with three or four external legs. We
proved that only one 8 function is truly necessary when
dealing with the generic Eeynman diagram II~"~: the in-
formation carried by the remaining 8's can be transferred
to the analytical properties of the diagram in momentum
space. Remarkably, this result can be proved by individ-
ually altering each Goldstone diagram, in such a way
that their sum remains unaltered. Thus the information
about the single Goldstone diagram contributions is lost,
but the overall Feynman diagram can be ezactty evalu-
ated. Furthermore, it is possible to choose a particular
energy-momentum region where the analytical proper-
ties of the diagram are simply defined (this is typically
a high-energy region): there the loop integral can be ex-
plicitly carried out and then one is able to come back to
the other kinematical regions through the study of the
analytical properties of the whole diagram.

In momentum space we shall employ for the fermionic
loops we are interested in the notation II~ L(p, q) and
IIL4L(p, q, k), p, q, k being the momenta entering the di-
agram, in clockwise order (the last momentum entering
each diagram is obviously 6xed by momentum conserva-
tion) .

The function II~ &(qq, q2), entering the diagrams (d)
and (e) (Fig. 1), can be expressed as

II (q&, q2) = m' I (q„q2) + I'( qp, q2 —q-&)

+I'(—q2 qi —q2)] (37)

where the function I is in turn de6ned as

(g) I'(qi, q2) =, , (Wi cos X —V2)
{2m) qqq2 sin X

yg —ky y2 —kp
x ln + (y2 cosy —yi) ln

yg+ k yg+ k

kyk2 —k~ cask + kPV 4
I

Aln
gyp2 —k~ cos g —ky ~E

(h)

FIC. 4. Diagrams with one A line.

In the last equation q» 2 denotes the norm of the 3-vector

qq 2 and y is the angle between them. Furthermore,

0mq~2 qq2
gX, 2 =

qx, 2



SO FUNCTIONAL APPROACH TO THE ELECTROMAGNETIC. . . 1859

G = Qg
—2gyg2 cos g + g2 )

2 — 2 2

6 = G —k&sin y.
(40)

(41)

The diagrams (a), (b), and (c) (Fig. 1) require two par-
ticular cases of II& ~, which can be expressed in terms of
II~ &, namely,

II('&(k, q, —k) = — II( &(k, q) + II( &(—k, —q)
q

—II (k, —q) —s~ (—k, q) ), (42)

(43)

The reader is referred to [33,34] for further details on the
analytical extension of the formulas.

The diagrams (f)—(k) (Fig. 5) can be evaluated ana-
lytically too, if the approximation

mmmm

mQ m
(44)

is assumed to hold: needless to say at the usual satura-
tion density this is nearly exact. The corresponding for-
mulas are not given here for obvious reasons of brevity.
The reader is again referred to [34], where all the details
are given: the analytical functions required in this case
are as simple as the former ones.

The relevant point is that all the fermionic loop inte-
grations have been now analytically performed, result-
ing in easily manageable functions. Thus the calcula-
tion of diagrams (a)—(k) (Figs. 1, 4, and 5) reduces to a
four-dimensional integral over a known analytical func-
tion (actually the integral is three dimensional because
the integration over the azimuthal angle is trivial) and
the s»m of the many thousands of Goldstone diagrams
required by our theoretical scheme is translated to the
sum of 51 Feynman diagrams, each one expressed as a
three-dimensional integral (the possible exchange of n,
p, and u being accounted for).

Explicitly, diagram (a) (Fig. 1) reads

4
II( &(k) = iTrl', I';I', I'; ll( &(k, q, —k)V;(q),

(45)

g4
11'(k) =tTr. r, r,r. ",11'(k,q, —q)V, (q)

(46)

with I' = (1+~s)/2; I'; and V; are the vertex and the
potential pertaining to the exchanged mesons; diagrams
(b) and (c) (Fig. 1) read, respectively,

Finally diagrams (d) and (e) (Fig. 1) are given by

d4
II("&(k) = Trl";I', I' ll( &(q, k)V;(q)

xV;(q+ k)TrI' I', I';ll( &(—k, —q) (48)

and

g4
II('&(k) = TrI', I', I'.ll( &(q, k)V;(q)

xV;(q+ k)TrI';I', I' ll( &(—q, —k), (49)

TABLE I. Table of the spin-isospin traces for the diagrams
(a) and (b) [diagram (c) coincides with (b)].

Particle Channel
T=0
T=1
e.m.
T=0
T=1
e.m.
T=0

Diagram (a)
12 q
—4q

2

2q
24q

—8q2

4q
4q

Diagram (b)
12q
12q
6 2

24q

24q
12q
8 2

where we explicitly indicated that two different particles
(i and j) can be exchanged. Diagrams (f)—(k) (Figs. 4
and 5) have the same structure of Eqs. (48) and (49),
but the proper expressions for the various II~ ~ functions
must be used [34], according to which line in the diagram
pertains to a nucleon or to a L.

The last step before the numerical evaluation of the
integrals is the calculation of the spin-isospin traces. In
the channels we are considering the various F's are, re-
spectively, o'. qr„, (o x q);v„, and (cr x q); for z, p, and
cu emission, respectively. For the case of a NA transition
vertex, the matrices cr and v„will be replaced by the
proper spin-isospin transition ones, usually denoted by S
and Tp.

The traces reduce to a coefficient in kont of the dia-
gram, including, if it is the case, an angular dependence.
Those pertaining to the diagrams (a), (b), and (c) (Fig.
1) are given in Table I, where the contributions of the
isoscalar and of the isovector part have been separated.
Diagrams (d) —(k) (Figs. 1, 4, and 5) require the study
of 72 di6erent cases, because in each of them we must
distinguish the particles exchanged inside (nine possibil-
ities). We can simplify the situation observing that the
diagrams can be characterized as follows. (1) The direc-
tions of the momentum Bow in the two loops of diagrams
(d) (Fig. 1), (f), (h) (Fig. 4), and (j) (Fig. 5) are op-
posite (we shall call these "direct correlation diagrams"),
while for (e) (Fig. 1), (g), (i) (Fig. 4), (k) (Fig. 5) cases,
they are the same ("exchange correlation diagrams" ); (2)
the diagrams are characterized by the exchanged parti-
cles, vr, p, and ~: we must keep in mind their momentum
space behavior, i.e., pseudoscalar (P) or vector (V) char-
acter and the isospin (0 or 1). (3) We must also account
for the number of 4's in the internal lines: n~ ——0, 1, or
2.

and

rl& &(k) = II('&(—k). (47)

T=1
e.m.

4q
2q

8q
4 2
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Then the traces can be factorized as 1.0

AT;-S„,

where S results from the spin part and reads

SPP = 4[q. (q+ k))

~pv —Svp = +vv = 4 q k —(q k)

(50)

(51) 0.2

T comes from the isospin traces and holds

T=O
Too 4)

TT=0 TT=0 P01 10
TT=' = y2,
T=1

T=l
TOO

T=1 T=1
Tp1 ——T1p ——4,

(»)
(53)
(54)

(55)

AT=1

(4l"

2l"
E 9r

(56)

(57)

where the sign in T11= is minus for the direct diagrams
and plus for the exchange ones; finally A depends upon
the number of 4's:

-1.0
0.0 40.0 80.0 120.0

u (McV)
160.0 R0.0

FIG. 6. Contribution to RL, of the x exchange, diagram
(a), for Ca at q = 300 MeV/c. Dotted line: first order;
dashed lines: remaning part of RPA; solid line: total.

Finally we note that in the diagrams (f)—(k) (Figs. 4 and
5), an ur cannot be exchanged: this reduces to 51 the
number of diagrams electively needed.

V. RESULTS

In this section we present the results of our calcula-
tion for the longitudinal response, which, in the infinite
nuclear matter limit, is related to the polarization prop-
agator

(a) (Fig. 1), singling out the first-order term from the
remaining part of the RPA series, to stress the role of
RPA dressing of the internal line; in Fig. 7 we plot the
total for diagraxn (a), as well as the contributions Rom
the different mesons. The relevance of the p (or, more
correctly, of the e8'ective interaction in the isovector spin-
transverse channel) is evident: this feature persists in the

by

11""(*,y) = (~olT 4"(~),~"(y)) I~o) 3.0

RL, (k, (u) = ———G@P(k)II (k, (u)
1 Z pp

7l p

= ———G@„(k) d(z —y)e'"' " II (z —y),
p

(59)

2.0—

p being the nuclear density.
We have shown in the previous sections that, with

the help of the analytical results from Refs. [33,34], the
computational problem reduces to the evaluation of one
three-dimensional integral for each diagram; the numeri-
cal integration remains, however, highly delicate because
the functions II~ ~ exhibit a large number of singulari-
ties. Moreover, the large predicted cancellations between
diR'erent terms require a great numerical precision.

The parameters used in the calculation are, unless oth-
erwise specified, go

——0.5, q~L, = 800 MeV/c, q, ~ ——1100
MeV/c and kp = 1.36 fm; we compare the results with
the data of Meziani et aL [7,8] on Ca and C.

In Fig. 6 we present the pion contribution to diagram

0.0-

-1.0-

-2.0 '

0.0
I

40.0 80.0 120.0
u (McV)

160.0

FIG. 7. Contribution to RL, of the m, p, and u exchanges,
diagram (a), for Ca at q = 300 MeV/c. Dotted line:
dashed line: p; solid line: u.
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other diagraxns.
Next we come to the self-energy diagrams [(b) and (c),

Fig. I]. In Fig. 8 we present the pion part, singling
out first-order and RPA corrections both for diagrams
(b) and (c); we remark that a large cancellation occurs
between them (they should cancel exactly in the case of
a constant potential). In Fig. 9 we display the total of
(b) and (c), again singling out the terms from different
mesons.

Concerning the self-energy diagrams, a peculiar diffi-

culty arises, namely the instability of the calculation at
the edges of the response region; the reason is that these
terms contain a self-energy insertion on the fermionic
lines, but this is only the first term of a Dyson series.
We know ab initio that summing the whole series would
correspond to a modification of the dispersion relation
for the nucleon and, consequently, of the response region
itself. It is not surprising then that the inclusion of the
first term. of the series only gives rise to wild oscillations:
the convergence of the loop expansion is warranted by
the smallness of the one-loop contribution with respect
to the mean field one; this is clearly not the case just
around the edges of the response region. On the other
hand, the inclusion of the whole Dyson series for the nu-
cleons is inconsistent with the loop expansion scheme and
it should lead to the violation of sum rules and general
theorems.

The sharpness of the Fermi surface is responsible for a
large part of the problem: Froxn the mathematical point
of view, in fact, the diagram diverges when a pole in the
denominator comes to the boundary of the integration
region, and this happens just because the Fermi surface
is sharp; this is not the case for a finite nucleus, thus the

5.0

3.0

1.0

CD
CD

H

-3.0—

-5.0
0.0

I

40.0
l

80.0 120.0
(u (MeV)

l

160.0
I

200.0

FIG. 9. Contribution to BL, of the m, p, and cu exchanges,
diagrams (b) and (c), for Ca at q = 300 MeV/c. Pion:
dotted line; p: dashed line; co: dash-dotted line; total: solid
line.

singularity could be removed by sxnearing somewhat the
Fermi surface. We stressed before that such a procedure
would require an enorxnous increase of the computational
difhculties, so we attributed to the nucleon a small finite
width at momenta near the Fermi surface to simulate
the same eEect. This correction is not included in Figs.
8 and 9 but it will be accounted for in the final result.

Next we come to diagrams (d) and (e) (Fig. 1). Here
vr, p, and cu can contribute in all possible combinations.
The single terms are shown in Fig. 10, where we have

1.0

1.5

0.5

CD
CD
CD

-0.5

\

I
I
I

'I

I

I
I

I
r I

/ Ir I/
/

/
/

/
/

//

I
I
I
I
I
I

-I
I

CD
CD
CD

0.6

-1.5

-0.6

0.0
l

40.0 80.0 120.0
(u (MeV)

I

160.0
I

200.0

FIG. 8. Contribution to RL, of the m exchange, diagrams
(b) and (c), for Ca at q = 300 MeV/c. Dotted line: Srst
order diagram (b); thick dots: Srst order diagram (c); dashed
line: RPA corrections diagram (b); dash-dotted line: RPA
corrections diagram (c); solid line: total.

-1.0
0.0

I

80.0
I

160.040.0
I I I I I

120.0 200.0
~ (MeV)

FIG. 10. Contribution to III, from diagrams (d) and (e) for
4 Ca at q=300 MeV/c. Dots: s's; dashes: pp; dash-dots: tow;

dots with stars: mp; dashes with stars: mes; dash-dots with
stars: pu; solid: total.
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0.5

0.3
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CD
CD

1.0

-1.0
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/
/

/
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/
/
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r

\

\

1 /
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\ j

-0.5
O. p
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l
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-5.0

0 0 40.0 80.0 120.0
(g (MeV)

160.0
I

200.0

FIG. 11. Contribution to RL, from diagrams (d) and (e) for
Ca at q = 300 MeV/c. Diagram (d): dashed line; diagram

(e): dash-dotted line; total: solid line.

plotted the sum of diagrams (d) and (e) separating the
two pions, two p's, two u's, aad finally the mixed (op,
7r&u, and ~) contributions. Figure 11 displays instead
separately diagrams (d) and (e). The effect of the b, 's in
the intermediate states is illustrated in Fig. 12, where we
reported the total contributions without, with one, and
with two 6's. It is remarkable the strong cancellation
occurring between the contributions from diagrams (b)

FIG. 13. Contribution to Rl, from diagrams (a)—(k) for
Ca at q = 300 MeV/c. Contribution of exchange dia-

gram (s): dashed line; self-energy diagrams (b) snd (c):
dash-dotted line; correlation diagrams (d)—(k): dotted line;
total. solid line

and (c), which would stroagly quench the response, aad
the ones &om the other diagrams featuring the opposite.
Finally we present separately the total &om exchange,
self-energy, and correlation diagrams in Fig. 13.

We evaluated all the results presented until now, al-
ways using the set of parameters given at the beginning

1.0

3.0

0.6

& 0.2

CD
CD
CD

-1.0

-0.2

-0.6

I

80.0
l

40.0
-1.0

200.()160.00.0 120.0
u (MeV)

FIG. 12. Contribution to Rl. from diagrams (d)—(k) for
Ca at q=300 MeV/c. No b.'s, diagrams (d) and (e): dashed

line; one intermediate D, diagrams (f)—(i): dash-dotted line;
two intermediate b.'s, diagrams (j) and (k): dotted line; total:
solid line.

-5.0
0.0 4p. p 80.0 120 0 160 0

~ (MeV)

I

200.0

FIG. 14. Sensitivity of the one-loop contribution to Rl.
to the many-body parameters. All parameters but the ones
explicitly indicated are those previously stated. Solid line:
standard parameters; dashed line: g' = 0.6; dotted line:
k~ = 1.2 fm; dash-dotted line: qr, = 900 MeV/c, qT = 1200
MeV/c. Rr. for Ca is displayed in MeV x1000 versus the
transferred energy (in MeV).
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of this section, with the coupling constants and cutoffs
of Sec. III. Before presenting the comparison between
our theoretical calculation and the experimental data we
examine the sensitivity of the results to small changes of
the parameters. Keeping the coupling constants and cut-
ofFs as fixed, we display in Fig. 14 the efFect of variations
of g', k~, and of the many-body cutofFs q~l. ,z-.

Finally we compare the experimental data in Figs. 15
and 16 for Ca and C, respectively. In the second
case we assume k~ ——1.2 fm to efFectively take into
account the relevant smearing of the surface in such a
light nucleus.

VI. DISCUSSIONS AND OUTLOOK

In the preceding section we presented the results of our
calculation with a given choice of the model parameters.
Now we need a critical analysis of these outcomes.

As a 6rst point, let us come back to our theoretical ap-
proach to the many-body problem. The loop expansion
automatically entails the ful61lment, order by order, of
general theorems, sum rules, and so on, because the loop
expansion is a (asyinptotic) well-behaved series of pow-
ers in a suitably chosen parameter, i.e., the coefIicient
multiplying the action, to be identified at the end of the
calculation with h. It is remarkable that, unlike the usual
application of SPA, in our case the formal parameter of
the expansion does not simply coincide with h, because
the Hubbard-Stratoaovich transformation makes the ef-
fective bosonic action itself 5 dependent. This implies,
in turn, that if the value of a given sum rule does not
depend oa h, then this sum rule must be ful6lled at the
mean 6eld level: contributions coming from higher orders
must separately vanish. This is the case, for instance, for
the usual f sum rule, which reads:

OQ 2

d~ R~~='(q, ~) =
0

2M'

if in R&+=0(q, ur) the electromagnetic nucleonic form fac-
tors are omitted. In fact the FFG longitudinal response
fulfills Ecl. (60); the contributions from quantum fluctu-
ations must then vanish, thus realizing explicitly the ex-
pected cancellations between Feynman diagrams at the
same order. We verified the f sum rule in order to check
the numerical accuracy and the inner consistency of our
approach. The task is complicated because this sum rule
is energy weighted, i.e., contributions of the high-energy
tail are emphasized. This requires, first of all, the exten-
sion of the integration well beyond the QEP region.

We considered the two extreme cases q = 300 and
410 MeV/c and then we extended the integration up to
a = 400 MeV (cf. Figs. 15—18), obtaining a saturation
of the sum rule on the order of 90% in both cases. To
be more specific, at q=300 MeV/c, the exact value of
the sum rule is q2/2M = 47.97 MeV: with the integral
extended up to ~ = 200 MeV (containing anyway the
whole region of the QEP) we obtain from the left-hand
side of Eq. (60) a value of 39.16 MeV, while extending the
integral up to ~ = 400 MeV we get a sum-rule value of

(61)

Our scheme contains, in fact, diagrams with one self-

energy insertion [diagrams (b) and (c), Fig. 1], but
the whole Dyson's series should be summed up to shift
the position of QEP. Thus we expect to account for the
strength of the peak but (1) the position of the peak
should remain around the free one; (2) at the border of
the QEP almost all the response is generated by the in-

finite series of self-energy insertions summed up through
the Dyson's equations. Since only the 6rst term of this
series is present, at the edges of the FFG response re-

gion the loop expansion necessarily fails. Just to give
the reader a visual feeling of how a simple shift could
afFect the response, we have reported in Fig. 17 one
of the results of Fig. 16, but shifting the curve of 30
MeV upward. With this (formally unjustified) trick, the
agreement with the data becomes impressive, opening
an interesting question: Clearly the corrections stem-
ming &om the loop expansion resonably describe, in a
channel-dependent way, the photoexcitation mechanism.
This was our main purpose, but, on the other hand, this
approximation fails to describe the mechanism leadiag
to the nuclear binding, as is clearly shown in Fig. 17.
This should be expected, but leaves the question: "Could
someone put all the things together'"

The discussion above concerned the theoretical frame-

42.39 MeV. At q=410 MeV/c, extending the integral up
to ~ = 400 MeV, we obtain a value of 80.47 MeV to be
compared with q /2M = 89.60 MeV. We consider this
result quite satisfactory because it is clearly believable
that the remaining contribution from the tail will satu-
rate completely the f suin rule. We remark anyway that
we estimate a numerical uncertainty of the calculation of
the order of 2%.

Coming to the detailed shape of the response, we ob-
serve that, a posteriori, the one-loop corrections to the
mean Geld results are sizable, but still remarkably smaller
than the mean 6eld itself; this is not a trivial point,
because the mesons included in the Iaodel strongly in-
teract with the nuclear matter: then very large correc-
tions, mainly for the case of the p exchange, could well be
expected —and this is the case indeed for some diagrams.
But large cancellatioas among them are present and the
final answers are reasonably small, indicating that the
loop expansion works properly at this order. We expect,
in fact, the loop expansion to be an asymptotic series
and only an explicit evaluation to a given order can es-
tablish if it is still in the convergence region or not. Of
course even an estimate of the two-loop corrections seems
presently too difIicult to be performed.

The previous statement (that the approximation
scheme works well at the one-loop order), however, is
not completely correct and one should assume a weaker
version of it because, as already remarked, we expect a
failure of the 6rst-order calculations near the edges of the
QEP. In fact our approach is not able to provide a shift
of the whole peak, which is instead induced by the dress-

ing of the nucleon in the medium, i.e. , by rewriting the
nucleon propagator as

1 1
2

J o —
~2

—~(p, po)
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FIG. 17. As Fig. 15, but the whole curve has been shifted
(see text for explanation). Only the case q = 300 MeV/c is
plotted.

work. Now we come to the dynamical model employed in
the present work. This topic is not so well grounded on
formal properties of field theory, but of course is much
more strictly linked with the physical domain: the model,
as it comes out clearly &om our discussion, is not param-
eter &ee. Many parameters are not experimentally well
determined. Our choice was to keep the coupling con-
stants and the cutofF as near as possible to commonly ac-
cepted values, using the Bonn potential as a guideline for
those quantities for which we have no suKciently clear ex-
perimental evidence. In this way the number of parame-
ters is drastically reduced. Even g' can vary only between
narrow limits (i.e., g = 0.5—0.6 in nonstatic conditions
[41]) and for ky we made the choice ky = 1.36 fm
for Ca and k~ ——1.2 fm for C, which seems quite
natural.

The many-body cuto8' q,L, can also vary, reasonably,
between 800 and 900 MeV/c, while, finally, the cutofF on
the spin-transverse channel has been treated as an ap-
proximately &ee parameter. Between these really narrow
constraints we have chosen the most favorable situation
to reproduce the experimental data of [8].

We observe that the choice of k~ and g' seems to be
quite reasonable, while, according to the discussion of
Sec. III, a rather higher value for q,g (such as, for in-
stance, q, L,

——900 MeV/c) should be preferable. The net
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eKect should be a small reduction of the quenching of the
quasielastic peak.

Very recently a new analysis of the Rosenbluth separa-
tion [13],based on experimental data taken at the Bates
Laboratory, seemed to indicate a reduction of the lon-
gitudinal response quite lower than the one previously
believed. The discrepancies between the two results in-
dicate that more careful experimental analyses are re-
quired. It is of course outside our scope to discuss the
validity of the experimental data: we only present here
a comparison of the two sets of results, together with
our theoretical outcomes obtained with two diferent sets
of parameters, namely, g' = 0.5, q, l, = 800 MeV/c,
q,T = 1100 MeV/c; and g' = 0.6, q, L, = 900 MeV/c,
q,z ——1200 MeV/c (see Fig. 18). The first set better ap-
proaches the results of Saclay, while the second is more
suitable to reproduce the Bates data, at least on the left
side of the peak.

To summarize, we believe to have shown that, within
a mesonic theory, a one-loop calculation provides a
channel-dependent photoexcitation mechanism able to
significantly quench the longitudinal response. The size
of this quenching is, however, not completely determined,
neither theoretically nor experimentally. In the present
model the major uncertainty comes from the effective in-
teraction in the p channel: combined changes in g', q, T,
and A~ can significantly acct the response —without
modifying, however, the trend illustrated so far. Exclu-
sive (ee', 2N) experiments are required to improve our
understanding of the p-h effective interaction [42] and to
better fix the parameters of the model. Coming to the
perspectives opened by the present approach, the next

step will be, obviously, to extend the calculation to the
transverse (magnetic) response, making use of the same
theoretical scheme: The number of diagrams to be eval-
uated increases rapidly, because both the MEC and the
direct photoexcitation of the 4 are present. In particu-
lar, the possible electromagnetic excitation of 4-h pairs
can be viewed as a channel-dependent vertex renormal-
ization in the medium (thus coming back to the idea of
Ericson and Rosa-Clot [24]) and could be well responsible
for the difFerent behavior of the longitudinal and trans-
verse channels. Remarkably this feature emerges at the
one-loop level. Unfortunately, some new parameters-
the meson-AA couplings —will enter the game. This cal-
culation is presently in progress.

More response functions can be evaluated along these
lines, such as, e.g. , the isoscalar-spin longitudinal and
transverse ones [56]. Here an interesting opportunity is
ofFered, because direct 6 excitation is forbidden in both
channels. Thus, if our guess about the relevance of the 4
excitation in simultaneously explaining the electromag-
netic responses is correct, the separation of the spin lon-
gitudinal and transverse responses in the 8 = 1, T = 0
channel should give rise to less pronounced di8'erences.

Furthermore, the same model can be applied to the
parity-violating responses [57], where good confidence in
the microscopical model is needed to establish the feasi-
bility of experiments able to detect the p-Zo interference
in the electron scattering.

Moreover, as far as higher momentum data will be-
come available, other issues will have increasing rele-
vance: First of all the study of relativistic e8'ects, at least
those coming the relativistic kinematics of the nucleons.
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