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Analysis of 7rd elastic scattering data to 500 Mev
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An energy-dependent and a set of single-energy partial-wave analyses of md elastic scattering
data have been completed. Amplitudes are presented for pion laboratory kinetic energies up to
500 Mev. These results are compared with those found in other recent analyses. We comment on
the present database and make suggestions for future work.

PACS number(s): 11.80.Et, 14.20.Pt, 25.40.Ep, 25.80.Hp

I. INTRODUCTION

The md system is an important component of the more
general vrlVX problem. At intermediate energies, the 7rd

and XA channels provide much of the inelasticity associ-
ated with pp scattering [1]. We have previously analyzed
the pp -+ pp [2] and ~d ~ pp [3] reactions. Here we give
the results of our analyses of vrd elastic scattering data.

A number of calculations have resulted in a reasonable
qualitative (and over some regions quantitative) descrip-
tion of hard scattering data [1]. The more theoretical ap-
proaches have had difBculty in describing all observables
[1],and have generally concentrated on limited kinematic
regions. In addition, several partial-wave [4—8] analyses
have been performed. These analyses have found some
motivation from claims [9] of dibaryon resonances in pp
and ~d ~ pp scattering reactions. Comparisons with
data have been complicated by the occasional appear-
ance and subsequent disappearance of sharp structures
in some polarization observables. We plan to examine
these questions through a coupled-channel analysis of pp
and md elastic scattering combined with 7rd m pp. How-
ever, as a first step, we have analyzed vrd elastic scattering
separately.

The present analyses include measurements to
500 MeV in the laboratory kinetic energy of the pion.
(This corresponds to laboratory kinetic energies between
287.5 MeV and 1287 MeV in the pp system. ) The value
of +s varies from 2.015 GeV to 2.437 GeV, and spans
the range of energies typically associated with dibaryon
candidates. This reaction displays the same "resonance-
like" behavior found in partial-wave analyses of pp + pp
and hard —+ pp scattering data. The interpretation of this
behavior generally arouses strong reactions, either for
or against the existence of intermediate dibaryon reso-
nances. In the present work, our goal is simply a refined
understanding of the md elastic scattering amplitudes.
Interpretations will depend upon the results of our larger
joint analysis of the pp and 7rd channels.

In the next section, we will make some comments on
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the database used in this analysis. In Sec. III, we will

outline the general formalism for 7rd elastic scattering.
Methods used in the partial-wave analysis will be dis-

cussed in Sec. IV. Our main results will be presented
in Sec. V. Here we will also compare with the available
data and other recent analyses. Finally, in Sec. VI, we

will summarize our findings and make some suggestions
for future investigations.

II. DATABASE

Experimental studies of ad elastic scattering began to
produce results in the 1950s. At this time, the first mea-
surements of total and differential cross sections became
available. The trend of vrd elastic scattering data accu-
mulation since 1952 is displayed in Fig. 1. The rapid
increase in the number and type of measurements in the
early 1980s was motivated by a growing interest in the
problem of exotics. This reaction was expected to give
further information on the existence (or nonexistence)
of dibaryon states suggested in analyses of WX elastic
scattering data. Numerous high-quality deuteron polar-
ization measurements were made. The total database
more than doubled, and several partial-wave analyses [4—

8] were carried out at this time. The present study has
utilized a set of data which is significantly larger, and
covers a broader energy interval.

Our total set of experimental data [10—57] (1362
points) includes measurements of the x+d (57) and 7r d

(67) total cross sections (o'z), sr+a (516) and x d (236)
differential cross sections (do/dO) with unpolarized tar-
gets, the deuteron vector analyzing power (iT&z) for x+d
(280) and n d (5), the deuteron tensor analyzing power

(T2o) for x+d (42), the combined deuteron tensor ana-

lyzing powers (T2g and T22) for 7r+d (123), and the lab-
oratory deuteron tensor analyzing power (t2o ) for x+d
(30). We have also included 6 unpolarized total elas-
tic cross sections (crz~). Energy-angle distributions for

do/dO, iT&q, and T2o are given in Fig. 2. Most of the
7r+d data are concentrated at low energies; the 7r d data
tend to span a wider energy range.

As shown in Table I, we have removed cry (2), do/dA
(88), rr& (3), iT&q (6), and t2o (35) data corresponding

0556-2813/94/50(4)/1796(11)/$06. 00 50 1796 1994 The American Physical Society



50 ANALYSIS OF md ELASTIC SCATTERING DATA TO 500 MeV 1797

600

~400

O

& 200

I I

20' 21' 22

j20

to 9% of the total. These measurements were the source
of serious conflicts within the database and were not in-

cluded in the analysis. For instance, many of the t20
measurements (33 points) were produced by the Ziirich
group [32). These were found to be in conflict with a num-

ber of independent measurements at LAMPF [27,28,56],
TRIUMF [52,54], and PSI [44].

III. FORMALISM
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FIG. 1. Data accumulation from 1952 to the present. Ar-

rows indicate the year when measurements of particular ob-

servables were first published.

The relations between partial-wave amplitudes and ob-
servables have been given in a number of previous theo-
retical and phenomenological studies. Many of the these
relations are given in the work of Grein and Locher [58].
They have been included here for completeness and to de-
6ne our notation. Due to parity conservation, there are
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FIG. 2. Energy-angle distribution of total
data set. (a) DifFerential cross section do/dO
for n+d, (b) differential cross section do/dQ'
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iTqq for z+d, and (d) deuteron tensor ana-
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TABLE I. Number and type of observables used in the present analysis to 500 MeV in the pion
laboratory kinetic energy. The number of excluded data is also given.

Observable
OT'

do./dA
el

CTT

&711

720

T22
)lab

20

Total
No. of energies

vr+d

No. of data
57

572
3

285
42
47
76
65

1147
239

Deleted data
0

b

0
5e

0
0
0

35g

96
16

No. of data
69

268
6
6
0
0
0
0

349
121

Deleted data

32
3d

0
0
0

0
38
11

See Refs. 19 and [29].
See Refs. [25, [40], [34], and [39].

'See Refs. [10], [19], [39], and [41].
See Refs. [19], [41], and [46].

'See Ref. [51].
See Ref. [35 .

sSee Refs. [32] and [54].

four independent helicity amplitudes for this reaction.
Thus, for a reconstruction of the scattering amplitude at
fixed values of the energy and scattering angle, one re-
quires seven independent measurements. The amplitude

H p(8) is labeled by the deuteron helicities (a and P) in
initial and final states. Here the angle 8 is the center-of-
mass scattering angle of the outgoing pion. Our notation
for the helicity amplitudes [58] is given below:

H++ =Hg ———) [(J+1)T~ ~ J ~+ J Tg+~ ~+~+(2 J+1) T~ ~+2 QJ (J+1) T~ ~ ~+~] dqq,
2

H+o =—H2 = ——) [g2 (J + 1) (Tz+, z+, —Tz, z, ) + V2 TJ, z+~] dio
2

Hp = Hs ———) [(J+1)T~ ~ q ~+ J Tq+, q+~
—(2 J+1) Tq q+2 QJ (J+1)Tq, q+, ] d~

2

Hpp = H4 = ) [J T~ y ~ y + (J + 1) T~+y ~+y
—2/J (J + 1) T~ y ~+y] dop,

J)0

where the d
&

are reduced rotation matrices. The sym-
metry relations

H p=( 1) +PH p, —

HQP ———HP 0

(2)

oT ——4vrog I0 sin0d0,
0

are also obeyed by the above helicity amplitudes. The
partial-wave amplitudes T, are labeled by the values

of L corresponding to the red final state, and I for the
md initial state. In the next section, and in our figures, we
use the notation sL&, and eg for the amplitudes (J—1)g

(J + 1)g as in Ref. [2].
The various observables for hard elastic scattering are

given in terms of helicity amplitudes [58,59] below:

I, = t,"o = 2 /H, /'+ 4 /H, /'+ 2 /H, /'+ /H4[', (3)
6(7

g 0)

aligned
OT

iTll = itll00

00
T20 = t20

00
T22 = t22

t10
10

t10
11

t10
21

22

tll
11

tll
1—1

ll
20
11

Zt21
ll
2 —1

= 4mog [2lmH~(0) + ImH4(0)],

= 87rog [ImHq(0) —ImH4(0)],
= —+6 Im[H2 (Hg —Hs + H4) ]/Ip,
= &2 ([Heal' —IH2I'+ IHs[' —IH41')/Io

—+6 Re[H2 (Hy —Hs —H4)]/Ip,
= v 3 [2 «(HiHs) —IH21']/Io

= 3 (IH~I' —IHsl')/Ip
= 3 Re[H2(Hg+ Hs)]/Ip,
= 3 Im[H2 (Hg + Hs) ]/Ip,
= 3 j2 Im(H;Hs)/Ip,
= 3 [Re(H'H4) + [H2[ ]/Ip,
= 3 [

—Re(Hs H4) + [H2[ ]/Ip,
= —+3 Im[H2 (Hg —Hs —2 H4) ]/Ip,
= —3 Im(H;H4)/Ip,
= —3 Im(Hs H4)/Ip,
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t,", = 3 +2 Im(H;Hi)/Ip,

t,",= —3 +2 Im(H;H3)/Io,

t.':= (1Hil' —4 IH21 + IHsl' —2 IH41')/Ip

t» +3 Re[H;(H, H, + 2 H4)]/I„
= +6 [Re(H H3) + 1H.I']/

t22ii= 3 [Re(Hi H4) —1H21 ]/Io

t,",= 3 [Re(HsH4) + IH21']/Io

t222i ——3 +2 Re(H2Hi)/Io,
t2i, = —3 +2 Re(H2Hs)/ip,

t,", =3 1H,
1

/Io,

1H31 /Ip

In these relations the factor o'g is equal to s z" j,
where k is pion momentum in the center-of-mass arne.
Here the t's are spherical harmonics [60]. The asterisk de-

notes complex conjugation. We have followed the Madi-
son convention [58] in defining a coordinate system. The

We also require some combinations of deuteron tensor
analyzing powers measured by experimentalists. In Ref.
[45], r2i and F2 are defined by

1
722 = T20+ T22

6

1 1
T2] +

2 2

1 1

6
T20 + T2] + —T22.

2

(5)

The laboratory deuteron tensor analyzing powers ex-
pressed [45] in terms of c.m. variables are

observables do./dO, oT", and o.l are the usual unpolarized
cross sections. o'T' "'

gives the spin-aligned total cross
section. The other observables involve either the polar-
ization of the initial or final deuteron (iTii, T2p, T2i, and
T22) or both. The following relationships are valid due
to parity conservation and time reversal invariance:

ELM ( 1'ilL+L'+M+M t L—ML'M' k j L' —M' ~

tLM
( 1)M+M ti 'M'

3 cos 8R —1 3 3 2t = T2p + 2 —sin 8R cos 8' T2i + —»n 8a T22)20 —
2 2 2

(6)

t2i = —sin8~cos8~ T2p+ (1 —2 cos 8R) T2i —sin8~cos8R T22,
2

lab 1 3 2 ~ 1+cos 8~t,', = —
2

sin 8R T~o —sin8~cos8~ T»+ T22,

where 8R is the deuteron recoil angle in the laboratory
frame.

IV. PARTIAL-WAVE ANALYSIS

The energy dependence of our global fit was obtained
through a coupled-channel K-matrix form, in order to
ensure that unitarity would not be violated. The "in-
elastic" channel was nonspecific but included to account
for the coupled pp and Nb, reactions. For single-channel
xd states (for example, sD2) this resulted in a 2x2 ma-
trix, and for the spin-coupled states (for example, 3P2,

F2) we had a 3x3 matrix. The matrix elements were
expanded as polynomials in the pion laboratory energy,
and an appropriate phase-space factor was included in
the hard elastic elements to ensure proper threshold behav-
ior. This analysis included 21 searched partial waves and
66 varied parameters. Amplitudes with J ( 5 were con-
sidered. The solution gave a y of 2743 for the 1362 data
and 333 experiments below 500 MeV. Coulomb modifi-
cations of the phase-space factors were attempted but
discarded in the final fit; the sensitivity to such refine-
ments appeared minimal.

Single-energy solutions were produced up to 300 MeV,
using a binning width of 10+5 MeV. We used mainly the

energy values chosen in previous single-energy partial-
wave analyses [4—7]. Starting values for the partial-wave
amplitudes, as well as their (fixed) energy derivatives,
were obtained from the energy-dependent fit. The scat-
tering database was supplemented with a constraint on
each varied amplitude. Constraint errors were taken to
be 0.02. This was added, in quadrature, to 5%%up of the
amplitude. Such constraints were essential to prevent
the solutions from "running away" when the bin was rel-
atively empty of scattering data These e. rrors were gen-
erous enough that they afforded little constraint for those
solutions where sufficient data existed within the bin.

Single-energy analyses are done in order to reveal
"structure" which may be missing from the energy-
dependent fit. Little compelling evidence was found for
such structure. Results of the single-energy analyses
are sununarized in Table II. A maximum of nine partial
waves ( Si, ei, Pp i 2, D23, and F34) were searched in
the single-energy analyses. The remaining partial waves
were fixed at the energy-dependent values.

Several Coulomb correction schemes were tested. Our
results were found to be relatively independent of the
chosen form. Differences are most apparent in charge-
asymmetry observables, as shown in Ref. [61]. In the
present analysis, we have adopted Hiroshige's formula-
tion [8].
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TABLE II. Single-energy (binned) fits and y values. N~, is the number of amplitudes (real +
imaginary) varied in the fit. g& is due to the amplitude constraints, yD is the contribution from
data, and XE is given by the energy-dependent 6t SM94.

T
(MeV)

65
87
ill
125
134
142
151
182
216
230
256
275
294

Range
(MeV)

58.0—72.0
72.0—85.5

107.5—125.2
115.0—134.0
124.0—142.8
133.0—152.0
141.0-160.6
174.0—189.5
206.0-220.0
220.0—238.0
254.0-260.0
270.5—284.4
284.4—300.0

54
24
82
170
258
284
154
168
99
53
125
40
132

arm

4
8
8
12
12
14
16
16
18
18
18
18
16

2Xc

2.4
0.4
0.7
5.1
4.2
8.1
11.0
19.6
1.6
7.8
2.9
2.9
3.3

2
XD

86.6
20.4
68.9
154.1
293.6
345.4
186.9
300.3
121.3
51.3
132.5
17.4

228.5

2
XE

129.9
30.3
68.9
205.0
362.1
442.6
256.3
445.8
148.1
96.5
200.6
42.6
263.6
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FIG. 3. Partial-wave amplitudes from 0 to 500 MeV. Solid curves are the real parts of amplitudes; dashed curves are the
imaginary parts. Single-energy solutions are plotted as solid circles (real part) and open circles (imaginary part). All amplitudes
have been multiplied by a factor of 10, and are dimensionless.
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V. RESULTS AND COMPARISONS

Results for the partial-wave amplitudes, defined in
Eq. (1), are shown in Fig. 3. Over our energy range, the
dominant amplitudes are the Sq, Pq, P3, D3, D3)
and Ii4. The compatibility of our energy-dependent and
single-energy solutions is also evident in Fig. 3. The lack
of single-energy solutions beyond 300 MeV is due to the
data distribution displayed in Fig. 2.

As mentioned in Sec. IV, the energy-dependent solu-
tion gives a reasonable overall fit to the data. While the
y3/datum was about 2 for the selected database, a much
higher value would have resulted from the total set of
measurements. Some of the data confiicts are apparent
in Fig. 4, where we have given predictions for observ-
ables at T + ——256 MeV. The data are generally well
described at this energy, except possibly the most for-
ward iTqq measurements. We should mention that vr d
measurements account for only about a quarter of the
total data set. In addition, there is a noticable difFer-
ence in the y2/datum (1.86 for m+d versus 2.55 for s d).
Various m+d total cross sections are plotted in Fig. 5.

We have also compared our results to those &om
several other groups. The last single-energy partial-

wave analyses for 7rd elastic scattering were published

by the Grenoble-Rehovot [4], Osaka [5], Saskatoon [6],
and Mexico-Karlsruhe [7] groups. These results have

generally covered a more narrow energy interval (seven
points from 82 to 292 MeV in [4], eight points from 114
to 325 MeV in [5], nine points Rom 117 to 324 MeV in

[6], and two points at 256 and 294 MeV in [7]). The
energy-dependent analysis of Ref. [8] covered the region
between 65 MeV and 275 MeV. We have plotted our
energy-dependent results along with several analyses in
Fig. 6. The figure displays the experimental version of
model (iv) Rom Ref. [7], and the version of Ref. [6] using
Blankleider-Afnan [60] model amplitudes as input. The
agreement is qualitative at best.

VI. SUMMARY AND CONCLUSIONS

In this work we have analyzed a vrd elastic scattering
database which is significantly larger than those used in
previously published analyses. A reasonable fit to this
database was found. While there are considerable difFer-
ences between the results of this and previous analyses,
one common qualitative feature is present. Several dom-
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inant partial-wave amplitudes display a "resonancelike"
behavior. The correlation between these amplitudes is
particularly evident in the Argand plot of Fig. 7. This
behavior is very similar to that found in our recent anal-
yses of 7rd ~ pp [3] and pp [2] elastic scattering data.

The present work is completely free of model-based
constraints. Previous analyses have generally used theory
as a guide where insufficient experimental information
was available. This factor is a likely source for some of the
discrepancies evident in Fig. 6. The evolving database
provides another.

While we have analyzed data to 500 MeV, the results
above 300 MeV should not be taken too seriously. Most
of the database is concentrated below 300 MeV, with only
about 200 measurement covering the region between 300
MeV and 500 MeV. Clearly, we require much additional
(and more consistent) data to define a unique solution
(both above and below 300 MeV). We should mention
that the present solution predicts a rich structure for
many of the spin-transfer observables defined in Eqs. (3).
While only a few of these quantities have been measured,
some new PSI measurements [62] of tiiii, it2oi, iti2ii, and t2i2

240
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' en I
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0 -i~ I

0 100

g PP
T

200 300 400 500
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FIG. 5. Total cross sections o' for z+d scattering. (a) Un-
polarized total cross section crT (solid curve), (b) contribution
[3] from vr+d ~ pp o~&~ (dashed curve), (c) the total elastic
cross section crT' (dotted curve), and the remainder Ao given
by aT —crz,

' —0.7,".
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7fd ——)7Td

amplitudes, and observables may be obtained either in-
teractively, through the sAtD system (for those who have
access to TELNET), or directly &om the authors.
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