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Boson analyses in the Ge isotopes
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The strong variation in energy of the first excited 0 state in the even-even Ge isotopes is in-
vestigated with pairing type interactions in various model spaces. Although it had been possible in
previous work to describe this variation in a BCS ra—ndom ph-ase ap-proximation (RPA) calculation
in the neutron configuration only, the corresponding exact diagonalization disagrees with the BCS-
RPA results and experixnent. It is furthermore shown that the behavior of the Qrst excited 0+ state
cannot be obtained by a reasonable variation of parameters in the exact neutron pair calculations.
This suggests that the model space be enlarged to include proton, neutron, and proton-neutron
pairing. The construction of the corresponding basis is then simplified by performing a boson map-
ping and employing the ideal collective boson basis. This, however, may lead to the occurrence of
spurious states, even at fairly low energies, and three separate methods by means of which they can
be identified are discussed. Although the enlarged model space gives a desired lowering of excitation
energy of the first excited 0+ states in an exact diagonalization, the strong experimental variation
could not be achieved with this simple interaction. Nevertheless, the analysis yields further and new

insight into applications of boson mappings, specifically about how and when spurious states may
be identified in calculations which are performed in a truncated space not invariant under a given
collective algebra.

PACS number(s): 21.60.—n, 27.50.+e

I. INTRODUCTION

Boson mapping procedures are usually associated with
two types of application. First, they are used to inves-
tigate the microscopic basis of phenomenological boson
models and to estimate, qualitatively and quantitatively,
various features of the boson model parameters which are
used to fit nuclear spectra. Second, they may be used to
simplify calculations in fermion model spaces and may
thus aid in introducing truncation schemes for calcula-
tions in large model spaces.

In this article, attention is paid to the second type
of application. The specific physical problem we focus
on concerns the behavior of the first excited 0+ state as
a function of neutron number in the sequence of nuclei" Ge (see Fig. 1). Its energy varies strongly over the
range of isotopes, being lowest for 2Ge where it is also
the lowest excited state overall.

This behavior suggests the presence of an intruder
state. If one wants to explain this feature in an inter-
acting boson model (IBM-) type [1, 2] or other boson
expansion [3] method, one invariably needs an additional
mechanism which introduces the variation of energy of
the intruder 0+ state. The strong variation in energy
of the first excited 0+ state as well as the rest of the
low-lying states shown in Fig. 1 can be described [1] by
introducing an 8' boson, with an appropriate variation of
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its single-particle energy e, , into the interacting boson
model which usually involves only s and d bosons. (In
the IBM fit presented in Ref. [1] the intruder state was
considered to be the dominant component in the first ex-
cited 0+ state in Ge and Ge and in the second excited
0+ state in sGe and Ge.) The motivation for this is
that ground state of each nucleus is regarded (to lowest
order) as comprised of N s bosons (N is the number of
fermion pairs in the valence shell) and the intruder 0+
state as (N —1) s bosons and one s' boson. Both the s
and 8' bosons represent correlated nucleon pairs coupled
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FIG. 1. Energy spectra of even Ge isotopes.
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to angular momentum 0. In an attempt to understand
the content of the 8 and 8' bosons, the monopole pairing
interaction was considered in Ref. [1].

Calculations with the monopole pairing interaction
could, independently of the latter consideration, also be
regarded as a direct way to search for a lowest order de-
scription of the intruder 0+ state.

As the variation in energy of the intruder 0+ state oc-
curs as a function of the number of neutron pairs, one
is naturally led to investigate the effect of the neutron
monopole pairing interaction. In Sec. II we recall that
the observed variation could be obtained from a BCS—
random-phase-approximation (RPA) calculation in the
neutron configuration only. However, it is also shown
that results &om the corresponding exact diagonaliza-
tion of the monopole neutron pairing Hamiltonian dis-
agree with the BCS-RPA calculation and experiment.

This large disagreement casts doubt about the validity
of BCS-RPA theory for some nuclei, at least in the mass
region of germanium. We mention three instances where
BCS-RPA theory was in fact applied to such nuclei. In
a study of the energy spectra of germanium isotopes,
Weeks et al. [3] coupled a BCS-RPA solution of the pair-
ing vibration in the neutron configuration to a calculated
collective quadrupole oscillation. Pedrocchi and Tamura
[4] obtained significant lowering of the first excited 0+
state in Se and Kr isotopes by taking into account the
monopole pairing vibrational mode from BCS-RPA the-
ory. Tazaki et al. [5], too, made use of BCS-RPA theory
in a study of, amongst others, the nuclei, Zn, Ge, Se, Kr,
and Sr.

In Sec. II it is also shown that the variation of the first
excited 0+ state cannot be obtained by varying parame-
ters in the exact neutron pair calculations within reason.
This led us to enlarge the model space to include pro-
ton, neutron, and proton-neutron monopole pairing. The
construction of a basis in which to diagonalize the Hamil-
tonian is then simplified by performing a boson mapping
and employing the ideal collective boson basis. It is well
known, however, that this may lead to the occurrence of
spurious states, even at fairly low energies [8]. Methods
by means of which they can be identified are discussed
in Sec. III A.

In Sec. IV we shift our focus &om the search for a de-
scription and fit of the intruder 0+ state to a study of
the effects of truncation on the boson basis used for such
a calculation. We use our present model to investigate
how and when spurious states may be identified in cal-
culations which are performed in a truncated space not
invariant under some collective algebra.

II. THE MONOPOLE PAIRING INTERACTION
IN THE NEUTRON CONFIGURATION

In this section, where we consider the pairing interac-
tion in the neutron configuration only, the presence of
only four single-particle energy levels in the valence shell
(see Fig. 2) presents us with the opportunity to perform
both BCS-RPA and exact calculations and to compare
results.

In the BCS-RPA formalism the configurations ob-
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FIG. 2. Valence single-particle energy levels in ~2 Ge
nuclei. The energy values shown (in MeV) are for Ge as
given in Ref. [3].

tained in an initial BCS calculation are introduced in a
subsequent RPA calculation. The RPA part of the calcu-
lations should be compared and contrasted with the RPA
formalism used in the context of particle-hole excitations.
There the RPA formalism typically describes nuclei with
closed shells and the relatively large energy gap between
the closed and valence shells plays an important role in
the applicability of the theory. However, throughout the
sequence of Ge isotopes under consideration there are, in
both the proton and neutron configurations, only open
shells, so that the RPA only becomes applicable after
some additional considerations provided by BCS theory.

In the BCS formalism one transforms, by means of
the Bogoliubov transformation, &om the nucleon repre-
sentation to a quasiparticle representation. Whereas the
Hartree-Fock procedure treats interactions between par-
ticles mainly in terms of a single-particle potential, the
BCS method goes further by incorporating part of the
residual pairing interaction in the single-particle energies
of the quasiparticles.

The BCS formalism gives an expression for the lower
bound (denoted by 2b, ) of the energy gap between the
ground and first excited states in even-even nuclei. Under
certain conditions a sufBciently large energy gap guaran-
tees (as in the case of closed-shell nuclei) the applicability
of a subsequent RPA calculation in which the results of
the foregoing BCS calculation are then used.

Results of a BCS-RPA calculation [1] are shown in
Fig. 3. One indeed finds that the gap 4 has a min-

imum value at Ge and furthermore that the pairing
vibration calculated in BCS-RPA has a minimum energy
at Ge. The value of the energv of the first excited 0+
state in this calculation is found to be at the right value,
using very acceptable model parameters. (Single-particle
energy levels are from Ref. [3]—see also Fig. 2.) A sat-
isfactory description therefore seems to have been found
using only a very schematic interaction. However, if one
diagonalizes the pairing Hamiltonian in the neutron va-
lence space exactly, the nice agreement disappears (see
Fig. 3), and in particular one finds that the BCS-RPA
approximation is in fact at its worst where the excitation
level is lowest, i.e. , for Ge.
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FIG. 3. First excited 0+ state from BCS-RPA and exact
neutron coa6guration calculations.

It is not too difficult to find reasons for this breakdown
of the BCS-RPA approximation. In the BCS part of the
BCS-RPA calculations the neutron quasispin operators
S+(j),S (j), and S,(j) become, under the Bogoliubov
transformation,

S+(j) = )
m&0

S' (j) = ) a-a
my0

(2 1)

(2.2)

S,'(j) = zi ) at a —A~ (2.3)

where a and a are quasiparticle creation and annihila-
tion operators, respectively. [The label o, represents jm,
while at = (—1)' a~t .]

In the RPA part of the calculations [7, 1], a Holstein-
Primakoff mapping of the operators in expressions (2.1)—
(2.3) is performed:

tained in the expansion of the square root. This is done
under the assumption that the number of quasiparticles
in any subshell of the valence shell is small compared
to the multiplicity of that subshell. This assumption is
supported by the fact that the ground state in the BCS
formalism is represented by the quasiparticle vacuum and
the first excited state by a distribution of two quasiparti-
cles over the valence shell. However, the approximation
might become poor when there is a subshell present with
j =

z (A~ = 1) as, indeed, there is in our case (see Fig. 2).
Another reason for the disagreement may be found in

Fig. 3 from the graph for b, (which is one-half of the
lower bound of the energy gap in the BCS solution). The
largest disagreement between the exact and the BCS-
RPA results is obtained when 6 takes on small values.
This is to be expected since, as pointed out already ear-
lier in this section, the RPA part of the calculation is
regarded as reliable only for relatively large values of the
energy gap.

We now show that several attempts to describe the in-
truder 0+ state in the exact neutron pair calculation (us-
ing the exact boson method) by only varying the model
parameter within reason were unsuccessful.

The first model parameter to be varied in the exact
diagonalization of the neutron pairing Hamiltonian was
the pairing interaction strength t . Figure 4 shows the
variation in the calculated energy of the first excited 0+
state as a function of G for the interesting case of Ge.
The neutron single-particle levels were kept fixed as given
in Fig. 2. It is clear that the variation of G brings us
nowhere near the experimental first excited 0+ energy.
The behavior of the full series of isotopes as a function
of 0 can be seen in Fig. 5.

As a next attempt to describe the first excited 0+ state
of r2Ge within the neutron configuration only, we varied
the single-particle energy of the j =

z level between its
limits —1.09 MeV and 1.80 MeV as given in Fig. 2. The
j =

z level was varied because it is the last filled sub-
shell in an unperturbed picture and we refrained from
changing the range of valence single-particle energies by
keeping the j =

2 and j =
2 levels fixed. We also kept

3.5—
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where O~ =
2 (2j+1), while the operators Bt and B~ are

standard boson operators satisfying [Bz,Bt,] = /i~&i and22

[Bz,B~~] = [Bt,Bt,] = 0. The expression 2BtB~ is to be
associated with the number operator for quasiparticles in
single-particle level j.

Everywhere where (O~ —BtBz)i/2 from Eqs. (2.4) and
(2.5) appears in the Holstein-Primakoff mapped Hamil-
tonian, only the lowest order term, namely QA~, is re-
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FIG. 4. First excited 0+ state of Ge as a function of
the neutron pairing interaction strength G in exact neutron
configuration calculations.
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FIG. 6. First excited 0+ state from exact neutron config-
uration calculations as a function of the j =

~ single-particle
energy.

III. THE PAIRING INTERACTION
W'ITH PROTON, NEUTRON, AND

PROTON-NEUTRON PAIRING

Keeping the interaction as simple as possible, we en-

larged as a next step the model space to include both pro-
ton and neutron as well as proton-neutron pairing. The
Hamiltonian considered is an extended monopole pairing
interaction,

H = ) s*„n' + ) s'„n,'„—Gp) S~(i)S"(i)
'v

—G„) S7(i)S"(i) —2Gf ) S+(i)S (i), (3.1)

where the indices i and j run over the difFerent single-

G fixed at the value which gave the minimum in Fig. 4.
The results in Fig. 6 show that the variation of the

j =
2 single-particle energy does bring us closer to the

experimental first excited 0+ state of 72Ge, but not suf-
ficiently so. The behavior of the full series of isotopes as
a function of eq~2 is shown in Fig. 7.

We conclude that it is not possible to describe the in-

truder 0 state retaining a neutron pairing interaction
only, not even by varying the model parameters within
reason.

particle levels in the shell, p(n) refers to proton (neutron)
degrees of freedom, and f denotes the proton-neutron
pairing part. S+(i) and S (i) are creation and anni-
hilation operators for pairs of type 8 in single-particle
level i. A charge-independent interaction is obtained for
G„=G„=Gy ——G, with the operators S+ and S con-
structed in such a way that the interaction terms, taken
together in Eq. (3.1), constitute a scalar with respect to
isospin [8].

The operators appearing in the extended pairing model
Hamiltonian (3.1), are generators of SO(5)SO(5)
(enumerated by the single-particle levels) [6]. Although
this allows an analysis with methods of group theory, one
still encounters the standard diKculty of de6ning state
labels in addition to those which siinply follow from the
chain of subalgebras. A simpler computational &ame-
work is obtained by erst representing bifermion excita-
tions in terms of bosons, mapping the Hamiltonian, and
then diagonalizing it in a boson Fock space spanned by
all those bosons appearing in the collective realization
[6]

Here each SO(5) is realized in terms of collective bosons
of the proton, neutron, and proton-neutron pairing type,
the creation (annihilation) operators of which we refer
to by Br (B~),B"(B„),and B~(B~), respectively, with
a further label for each single-particle level. In terms of
these bosons the collective part of the Hamiltonian (3.1)
takes the form [6]

Hg = ) e~(2B,"B„'+B, B~) ~
+ -(p w n)

—
i G~ ) (0;B,"B' —B,B,B*B„—.B,"B, B].B'„. —B, B, B.„'B.')

~

—(p e+ n)
a2

—2Gy) (20;B, B~] —B, B, B~B~ —2' B,"B*B~—2B, B,"B„'B~)—B,"B,"B~B~) . -

U

(3.2)
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The number of bosons of the various types are denoted
by Np(i), N„(i), and Ny(i). It is a simple matter to con-
struct the so-called ideal boson basis

~ N„(i)N„(i)Ng(i))

A. Identi8cation of spurious states

As already stated, it is well known that for a closed
collective subalgebra, physical eigenstates and eigenval-
ues are not contaminated when a boson mapped Hamil-
tonian is diagonalized in the complete boson Fock space
[6]. Spurious states can, however appear in a nontrivial
way and their identification is thus of utmost importance
in app1icatioas of the boson method. Ia this section we
consider the application of three methods to deal with
this problem.

In Ref. [1], where only the lowest few eigenvalues
and eigenstates were calculated, a rather cumbersome
inethod was used to identify spurious states. First, the
physical eigenvalues were determined for separate proton
(with Gp = G) and neutron (with G = G) configuration

with the constraint that 2g, Np(i) + Q,. Ny(i) equals
the total number of protons and similarly for neutrons.
Furthermore, 2N„(i) + Ny(i) is constrained by the de-
generacy of level i, and similar for neutrons. It is also a
simple matter to diagonalize the non-Hermitian Hamil-
tonian (3.2) and to obtain the spectrum and left- and
right-hand eigenstates.

Although the above constraints lead to the correct enu-
meration of ideal boson basis states, one problem re-
mains, namely that, as discussed by Geyer et al. [6],
the boson basis is generally overcomplete in as much as
it may contain (independent) boson states with fermion
counterpart states which are linearly dependent. Al-

though physical states and energies emerge unharmed
from the diagonalization [6], it may lead to spurious
states and, since some of these states may occur in the
lower part of the spectrum, they must be properly iden-
tified and eliminated.

+X, ) St(i)st'('), (3.4)

with A„, A„, and Af arbitrary.
As is shown in Ref. [6], it follows from the invariance of

the physical subspace of the ideal boson basis under the
action of arbitrary physical operators that the mapped
operator O~ has the property that, for any spurious bra-
eigenstate (/spur ~

of H~,

(4'spur
~
eB

~ Wphys) = 0 (3.5)

while

(@phys /
eB

/ 4'spur) 3 (3.6)

where
~ /phys) is any nonspurious, i.e. , physical state.

This provides us with a method to identify the spurious
states.

The second method due to Dobaczewski [10], applied
to and discussed for SO(5) in Ref. [9), is referred to as R
projection. It amounts to replacing each boson creation
operator appearing in a particular eigenstate by the bo-
son image in which that boson operator appears as the
leading order term, e.g. ,

BP: (SP+)zi ——BP(A —Np —Ny) —B~B~B„.
(3.7)

Here (S+)D denotes the Dyson image of the pairing op-
erator SP+ in fermion space. As shown in Refs. [10,9], the
R projection of a spurious state gives zero, namely,

&
~ 4spur) (3.8)

where [ @,p„r) is the state conjugate to a spurious bra-

calculations. [Spurious states are very simply avoided
in these separate calculations by just taking care that
the boson numbers do not exceed the maximum num-
ber dictated by the corresponding O~—no implicit linear
dependence is then possible among the simplified states
(3.3) which have only one type of boson. ] These physi-
cal eigenvalues were then located among the eigenvalues
which were obtained from the diagonalization of H~ [Eq.
(3.2)] with Gp ——G„=G and Gy = 0. Of the latter ones,
several were then seen to be spurious. By increasing the
value of Gt in small steps until it reached Gy = G in
successive diagonalizations, the physical energies could
be followed to the point where they correspond to the
charge-independent pairing interaction.

This method of identifying spurious states becomes im-
practicable when physical and spurious states lie close
together, and especially so when one wants to do several
calculations in order to move through parameter space in
search for a fit to experimental data. We now implement
two simpler methods which have been discussed recently
[6, 9].

In the first method [6] a physical operator 0 is intro-
duced with the requirement that it can be expressed in
terms of elements of the collective algebra —otherwise it
is arbitrary. A typical choice which we make is

0 = Ap ) SP~(i)SP (i) + A„) S+(i)S"(i)
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eigenstate, while it gives nonzero when applied to a phys-
ical state.

B. Exact diagonalization of the
charge-independent pairing interaction

Results for the first physical excited 0+ state from the
exact diagonalization of the pairing interaction in both
the proton and neutron configurations are given in Fig. 8.
They show that the increased model space leads to much
lower first excited energies than those attainable in the
neutron configuration only. A strong energy dependence
with a minimum at Ge is, however, not achieved. Fur-
ther improvement might be achieved when single-particle
energies and interaction strengths are varied, although
this is unclear.

To illustrate, finally, that the appearance of spurious
states in these calculations is a very real possibility, we
mention some results obtained for Ge with G = 0.275
MeV. The dimension of the ideal boson basis constructed
according to expression (3.3) is 1033. Among the ten low-
est eigenvalues obtained &om the diagonalization of H~
[given in Eq. (3.2)] in this basis, the third, fifth, seventh,
and tenth are in fact spurious.

IV. EFFECTS OF TRUNCATION
OF BOSON BASIS

different aspects still remain rather transparent.
We first simplify the model to an SO(5)4 SO(5)s

structure, where the indices 4 and 6 indicate the (2j + 1)
values of the single-particle levels retained. The Hamil-
tonian (3.2) is again diagonalized under different condi-
tions, while monitoring the success with which spurious
states can be identified.

If Gf ——0, the space can be decomposed into

(SO(3), 8 SO(3)s)„...„3(SO(3)4 8 SO(3),)„.„„.„
and in this space the usual pairing calculations can be
carried out exactly. In this case there are no spurious
states associated with linear dependence, as one need not
introduce bosons of type f Fo.r relatively small values
of Gf one may want to introduce f bosons but restrict
Ny to some small value and, by doing so, truncate the
SO(5)4 SO(5)s basis. This represents a truncation to a
space with no underlying algebraic structure, and it is of
interest to see whether the spurious states, which it will
contain in general, can be identified.

We show two sets of calculations of this type. In Fig. 9
the results are shown for the case of four protons and
eight neutrons for various strengths Gf. The possible
values of Nf = g,. Nf(i) in this case are 0, 2, and 4. If we
allow maximum values of 0 or 4, we deal with the SO(3)
and SO(5) cases discussed above, respectively. When re-

As discussed, the diagonalization for the (multi) SO(5)
model and the resulting identification of spurious states
can be accomplished in an exact fashion, while taking full
advantage of the relative simplicity of a boson calcula-
tion. However, general shell-model calculations are usu-
ally characterized by the necessity to truncate the basis.
As in the (generalized) pairing model, it would be ideal
to truncate to some collective subspace. Since it is gener-
ally not possible to find such a closed collective subspace,
one is mostly content to find a subspace which is weakly
coupled to the truncated part. In similar circumstances
on the boson level many questions arise about the identi-
fication and the effect of spurious states. Applications of
this nature are, e.g. [11],where the question of spurious
states is mostly dismissed. We now pursue these ques-
tions further, capitalizing on a model calculation where
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stricting the maximum of Nf to 2 we have an interme-
diate case which does not correspond to an underlying
algebra. It is this case which is shown in Fig. 9, together
with the exact SO(5) result. In the upper part of Fig. 9
the lowest five energy levels are shown as functions of Gy.
The full lines are from exact calculations and the dotted
lines from those restricted by Nf & 2. The dashed line
connects a spurious state of the exact calculation. The
middle part of Fig. 9 shows the norm of the vector Rlg;)
divided by the norm of the R-projected ground state for
the corresponding four excited states.

In the bottom part of Fig. 9 the ratios
I(tie~11)Ill(1leal1) I

are given. Here Ay is taken to be
zero in the expression for O~. From the exact calculation
one clearly identifies the fourth state to be spurious be-
cause both RlvP4) and (4IO~I1) vanish. In the truncated
calculation this is no longer true, but we do observe that
these quantities remain small for this state in the case of
small values of Gy and one concludes that weakly coupled
modes may be handled in such an approximate way. It
is important to note that when the operator O~ is used,
one still has to construct it having the strongly coupled
subspace in mind. If, for instance, in this case one chose

Af p 0, thea (4IO~I1) would not tend to zero with Gf in
the truncated calculation and state 4 would not appear
spurious, although it is.

In passing we note that, as originally envisaged [6],
conclusions about the status of a state should not be

I I I I I

drawn from a single matrix element calculated with the
test operator O~. This could, e.g. , mislead us to believe
that state 3 is spurious because (3IO~I1) tends to zero
with Gy, while the true state of affairs is only revealed if
one looks at (3IO~li) for several i, &om which it becomes
clear that the state is in fact physical.

In the second example shown in Fig. 10 we introduce
another truncation scheme, typically employed in IBM-
type calculations. The single-particle model space is the
same as above, but we consider six protons and six neu-
trons. The possible numbers of f bosons in the upper
level are Nf(2) = 0, 1,2, 3, 4, 5, 6. In the calculations
we restrict the value of Nf(2) to Nf(2) ( 6 —N&~z and

plot the various results for the truncation parameter N&~z

ranging from 0 to 6. Again, the extreme values Nf2 0
and 6 correspond to exact model results and in between
we have a truncated space with no underlying algebra.
In general, we again expect that spurious states can be
identified for N&z ranging from 1 to 5 only approximately,
and then only for small Gf. Among the lowest nine states
shown in Fig. 10, three are spurious, as can be seen from
the R projection or 0 method. These are the states
4, 7, and 9. It is interesting to note that they behave
differently in the truncated calculations. States 4 and
9 retain their spurious character and can be identified
exactly even in the truncated calculation, while state 7
mixes with the physical states so that Rlgq) g 0 for
nonvanishing Gy. However, this mixing is again small
for small Gf, we can trace it for all N&~z considered, and
the weak-coupling arguments again hold.
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FIG. l0. The same as in Fig. 9 but for the dependence
on N&s. The parameters of the Hamiltonian [Eq. (8)] are the
same as in Fig. 9, but n~ = n = 6. The choice of t y = 0.05
MeV guarantees the weak coupling. For the details, see the
text.

V. CONCLUSIONS

The large discrepancy we found between BCS-RPA
and exact calculations of neutron monopole pairing vi-
brations for even-even Ge nuclei indicates that caution
needs to be exercised when BCS-RPA theory is applied
in studies of nuclei in at least the mass region of germa-
nium. The presence of a j = 1/2 level seems to play an
important role in the breakdown of BCS-RPA.

It was furthermore established that the variation of pa-
rameters within reason in exact diagonalizations of the
inonopole pairing Hamiltonian in the neutron configura-
tion only is insuKcient for a first order description of the
intruder 0+ state in even-even Ge nuclei.

As a next step, the model space was increased to in-
clude both proton and neutron pairing as well as proton-
neutron pairing. In this extended pairing model, the
first excited 0+ state has indeed been found at a much
lower energy than was possible in the neutron pairing
case. However, the strong experimental variation in en-
ergy with a minimum at Ge could not be achieved with
this simple schematic interaction.

The extended model calculations, carried out in a bo-
son space, were simultaneously used to investigate the
identification of spurious states. It was first illustrated
how spurious states, associated with the use of a simple
but complete ideal boson basis (for the extended pair-
ing model), could easily be identified. An independent
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aspect studied in this context is the feasibility of iden-
tifying spurious states in truncated spaces. For weakly
coupled states, spurious states can still be identi6ed. For
this the physical operator method is the simplest, but
it appears that one has to be careful in order to avoid
misinterpretation. The R projection is somewhat more
cumbersome, but it appears that the interpretation re-
mains relatively straightforward.

At this stage we may summarize the problem of ap-
pearance of spurious states in the Dyson boson mapped
systems as follows. In the noncollective SO(4A) algebra,
spurious states already appear when the boson number
for a particular kind of boson exceeds 1. For this case the
number of different kinds of bosons grows with A. On the
other hand, in the collective models like SO(5), SO(8),
Sp(6), etc. , the number of difFerent kinds of collective
bosons is Gxed. It is then apparent that for sufficiently
large 0, which characterizes the total dimension of the
fermion space, a stage is reached where no spurious states
appear.

In this regard it is useful to study the coherent state
overlap for a particular model [9]. From it one may de-
duce that, e.g. , for the SO(8) model spurious states ap-
pear for boson number N when N ) 0/2, 0 = 2(2k+ 1),
for the Sp(6) model when N ) 0/3, with 0 = 3(2i+1)/2,
and for the SO(5) model when N ) 0 with 0 = j + 2.
Generally speaking, such results seem to confirm the nat-
ural expectation that for a "sufficiently large" space (or

"sufficiently small" boson number) spurious states are
avoided. However, if a multi- j con6guration space is used
which includes a relatively small shell or, alternatively,
one deals with a direct product of algebras including one
pertaining to such a shell, the situation may not be that
simple. If only the total boson number is then taken into
consideration, spurious states are likely to appear, but
can be identified in the full boson space as discussed in
the paper. On the other hand, if a truncation is carried
out, spurious states may mix strongly and obscurely with
physical ones. When the truncation involves only one al-

gebra appearing in a product, spurious states stemming
from the unharmed algebra(s) may, however, still be iden-
ti6ed, as also discussed. Otherwise, and especially when
collective bosons are determined dynamically, truncation
leads to spurious states which are not easily identi6ed
by the rather simple adaptions of the exact identification
procedure considered here. In such instances an effec-
tive operator approach has been developed and used [12,
13]. Further investigations are still required to establish
whether approximations can then be found which lead to
simpli6ed practical identification methods for these cases.

%hen a simple basis truncation is introduced in a
boson calculation, an overoptimistic assessment is that,
merely because of the possible large size of the fermion
space, one need not be concerned about spurious states.
Our investigation shows that this view is unwarranted in
general. Nevertheless, a large model space can be helpful.
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