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Residue temperatures in intermediate energy nucleus-nucleus collisions
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With an improved Boltzmann-Uehling-Uhlenbeck (BUU) model, we have investigated the re-

action dynamics leading to the thermal freeze-out for Ar+ Sn collisions. Several criteria are

assessed for de6ning the proper thermal freeze-out time which separates preequilibrium processes

from equilibrium processes. One of these criteria, the time dependence of the thermal excitation

energy, provides consistent results for defining the thermal freeze-out. The other two criteria, the

emission rate of nucleons and the quadrapole moment of the momentum distributions, do not consis-

tently provide accurate freeze-out times due to the existence of long time scale collective vibrations.

The predicted values for the excitation energies and temperatures, obtained assuming Fermi gas

level densities, are quite sensitive to the equation of state and the impact parameter. Surprisingly,

both the thermal excitation energies and the residue temperatures, in the limit of a large ensemble

of parallel collisions, show little sensitivity to the in-medium nucleon-nucleon cross section.

PACS number(s): 25.70.Pq, 21.65.+f

I. INTRODUCTION

Nucleus-nucleus collisions have proven to be an excel-
lent laboratory for the study of statistical and dynamical
features of highly excited nuclear systems [1—5]. These
features evolve with incident energy. At incident energies
of a few MeV above the Coulomb barrier, the formation
of a fully equilibrated compound system (commonly re-
ferred to as "complete fusion") and its subsequent sta-
tistical decay is the dominant process for central colli-
sions. The statistical decay by emissions of p-rays, neu-

trons, and light charged particles as well as fission has
been well described by statistical models of compound
nuclear decay [6—11]. At incident energies above E/A =
15 MeV, however, the situation becomes more compli-
cated. First, complete fusion of projectile and target
becomes less likely, and one observes the onset of pre-
equilibrium emission mechanisms [12—21]. Second, the
limits of stability and the mechanisms for decay of very
hot nuclei are not well understood [22].

Experimental investigations to establish the limits of
stability of hot nuclei have &equently focused upon mea-
surements of traditionally well understood residue decay
channels which lead to the production of evaporation
residues or fission fragments. These measurements indi-
cate that fusionlike processes, particularly for Ar [21—30]
or Si [31,32) induced reactions, decrease rapidly with inci-
dent energy when E/A + 20 MeV, and eventually vanish
at E/A 35—40 MeV, close to the Fermi energy.

Total excitation energies and emission temperatures
have also been extracted from the velocities of fusionlike
residues [21—30, 33—35] and the spectra of coincident light
particle spectra [33—43]. Light particle inclusive spec-
tra have also been analyzed [31,36,37,44—46] to extract
temperatures and excitation energies of residues. These

analyses suggested that the maximum excitation energy
that a nucleus can sustain, decreases with the mass of
the composite system, from E'/A 5—6 MeV for light
systems with total masses A & 100, to a value of E'/A

3 MeV for a total mass A + 200 [33—46].
An alternative study of the thermal and statistical

limits of hot nuclei may be obtained by measuring di-

rectly the excitation energies and emission temperatures
of residues &om their decay products. Significant efforts
have been made recently, for example, to measure the in-

trinsic excitation energies of emitted fragments from the
relative populations of nuclear states of such fragments
[47—73]. These measurements indicate emission temper-
atures in the range of T 3—6 MeV, which increase
gradually with incident energy for incident energies of
E/A & 200 MeV. These measurements are also relatively
insensitive to the linear momentum transferred to the tar-
get residue [60] or the associated multiplicity of charged
particles emitted at forward angles [62]. However, there
is some evidence that excited state populations are more
consistent with thermal models in central collisions than
in peripheral collisions [66].

The disappearance of fusionlike cross sections and the
observed "limiting" excitation energies and emission tem-
peratures have been &equently interpreted to be a con-
sequence of the instability of hot nuclei at high temper-
atures [4,5,22—32,74—109]. For example, the static model
of Levit and Bonche [82] predict a limiting temperature
of T 5—10 MeV, above which nuclear matter becomes
unstable against hydrodynamic expansion. Calculations
of Friedman [74,75] based on nuclear expansion and those
of Friedman and Lynch based on surface emission [8] con-
firm this instability and indicate that hot nuclei undergo
a rapid fragment breakup in a narrow window of emis-
sion temperature located at about 5 MeV. Dynamical
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calculations by Boal et al. [103]suggest that constant val-
ues of the emission temperature were established quickly
over time scales comparable to the time scale for nuclear
breakup. Other calculations, using multiparticle phase
space models [85—91], or classical molecular dynamics
simulations [98,99], suggest that fragmentation can oc-
cur at a characteristic temperature whenever hot nuclear
systems expand to suKciently low densities.

In the present paper, we will investigate (1) whether
one can reproduce the observed thermal excitation en-
ergies and residue temperatures within the Boltzmann-
Uehling-Uhlenbeck (BUU) approach; and (2) whether
such residual excitation energies and temperatures can

carry information concerning the nuclear equation of
state and the in-medium nucleon-nucleon cross section.
To answer these questions, we have performed improved
BUU calculations [110—115]. A brief report of this work
was published recently [114]. In Sec. II, the numerical
details of the present calculations are described. In Sec.
III, the decomposition of the excitation energy and the
freeze-out time used in evaluating the residue tempera-
tures are discussed. In Sec. IV, the calculated residue
excitation energies and temperatures are investigated as
a function of incident energy and impact parameter. The
paper is summarized in Sec. V. Some details of the nu-

merical procedures are given in the Appendix.

II. BUU EQUATION IN THE LATTICE HAMILTONIAN APPROXIMATION

A. The BUU equation

We solve the Boltzmann-Uehling-Uhlenbeck equation [116—121]

0 4

Bt " " " (2x)s
+ v V„f~ —V'„U V„fq —— d k2dA ~~2[fsf4(1 —f~)(1 —f2) —f&f2(1 —fs)(1 —f4)],

dO
(2.1)

where f = f(r, p, t) is the Wigner transformation of the
one body density matrix and "&&" and viq are the in-
medium cross section and relative velocity for the collid-
ing nucleons, respectively. In Eq. (2.1), U is the total
mean-field potential parametrized as

U= Vc+U„+U,y (2 2)

here Vc, U„, and U,z~ represent the Coulomb potential,
the isoscalar nuclear potential, and the symmetry energy,
respectively. In our simulations, the isoscalar mean-field
potential U„(in MeV) is approximated [116,118,119] by

= &Pips + &(Pipe) (2.3)

where po ——0.17 fm is the saturation value of the nu-

clear matter density and p = p(r) is the local density
of nuclear matter. Values of A = —356 MeV, B = 303
MeV, and p = 7j6 correspond to a soft nuclear matter
equation of state (EOS) with compressibility coefficient
K = 200 MeV; while A = —124 MeV, B = 70.5 MeV,
and p = 2 correspond to a stiE EOS with K = 375 MeV.
The symmetry potential Us~~ is represented by

U.„=C[(p„—p„)/po]~„ (2.4)

where p„and p„are the neutron and proton matter den-
sities, and w is the isospin operator with eigenvalues
+1 and —1 for neutrons and protons, respectively. C
is a constant with a value C = 32 MeV. For simplicity,
o~~ = jdA "&&" is chosen to be isotropic and energy
independent. The mean-field and the Pauli-blocking fac-
tors in the collision integral are averaged over an ensem-
ble of Nt, „t parallel simulations, where Nq„t is varied
over the range of 50 & Nq, q & 300. Further details of
this test particle dependence are discussed in Sec. IV.

B. The lattice Hamiltonian method

The Boltzmann-Uehling-Uhlenbeck equation, given in
Eq. (2.1), is most frequently solved by the teat parti-
cte method [116—121], in which the Wigner function f is
approximated by

f(r, p, t) = ) b(r —r;(t))b(p —p;(t)). (2.5)
(2vrh)s

test

Here Nt„t is the number of parallel ensembles and b is
the Dirac delta function. Terms on the l.h.s. of Eq. (2.1)
are satisfied by demanding that the test particles follow
Newton's equations,

OH p,.

t9p, m ' (2.6)

p; = —V', U. (2 7)

1
(—V';U) = —[U(p(kg —1, k2, ks))

—U(p(kg + 1, k2, ks))]. (2.8)

Here l is the lattice spacing, and ki, k2, A:3, are the co-
ordinates of the lattice points closest to the particle. An
undesirable feature of this algorithm for our purposes is
the lack of strict energy conservation. In calculations,

The quality of the numerical algorithm depends on the
way the r.h.s. of Eq. (2.7) is evaluated.

In early BUU calculations, the mean Beld potential U
was calculated on a lattice upon which the local density
was evaluated by integrating Eq. (2.5) over momentum.
The gradient of the mean field potential could be evalu-
ated by taking a difference between the mean Beld at the
neighboring points,
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this may be exhibited by spurious emission of nucleons
from ground-state nuclei. Over a period of 100 fm/c, the
total energy can increase by more than 1 MeV per nu-

cleon [116].To calculate excitation energies of the order
of 2—3 MeV per nucleon, better energy conservation is
required.

Leuk and Pandharipande [122] demonstrated that an
excellent energy conservation could be obtained if a
smooth variation of the force on the test particles in
space is imposed, and the force and the nuclear densi-
ties on the lattice are calculated consistently. Following
these authors, we evaluated the average density pL, at
lattice location n by smearing out the test particle with
a form factor S,

a classical system of Nt„tA test particles is given by

A%test

H = ) ' +Ng, .eV.
2m

(2.i6)

BII p;
Bp; m' (2.17)

V
p,. = V;—H = —1V„„V;V= N„,e—) V;p

s9pse

With this Hamiltonian, it is straightforward to derive
Hamilton's equations of motion for individual test parti-
cles:

p(r): ). S( ')
i=1

(2.9)
= —Ne„, ) U(p )V;p . (2.18)

1
S(r) = ~, .g( )~(~)g( )

test
(2.10)

where r is the position of lattice point o., r, the position
of particle i, and Nt„t the number of parallel ensembles.
The form factor 8 has the form

[Note that for each force calculated by Eq. (2.18), the
sum runs over 64 different lattice points, slowing down
the simulations significantly. ] Since the Hamiltonian is
not explicitly time dependent, energy conservation fol-
lows because the trajectories of the test particles satisfy
Hamilton's equations.

g(q) = (nl —IqI)o(nl —Iq[). (2.1i) C. Ground state stability and conservation of energy

ls) S(r —r) =
testa

(2.12)

Here, I is the lattice spacing, and e(x) is the step function
with values of 1 for z ) 0 and 0 for z ( 0; n is an integer
which determines the range of S. In our calculations,
we take n = 2 [122]. (The choice, n = 2, appears to be
required for accurate momentum conservation [122]. It
has the consequence that each test particle contributes to
the density at 64 different lattice points, leading to rather
long computation times for the simulations. ) The specific
choice of the form factor S(r) in Eq. (2.10) satisfies the
normalization condition

Figure 1 shows the ground state density distribution
determined from Eq. (2.9) for both 4oAr (top) and i24Sn

(bottom) nuclei. Both of the computational ground state
nuclei have surfaces with an average skin thickness of

2.5 fm (corresponding to the density drop from
90% to 10% of the saturation density) by virtue of the
smearing of the test particle density over the lattice. This
value of skin thickness is close to the empirical value of
r. , = 2.4 fm [i23].

Figure 2 shows the time dependence of the binding en-

ergy per nucleon (top panels), the number of escaped nu-

independent of r, and therefore the total number of par-
ticles is exactly conserved:

l ) pL, (r )=A. (2.13)

2
t-"po, t'

pp
—p- &

(2.14)

where A, J3', C, and p are parameters of the mean Geld.
The total potential energy can be calculated by summing
over the lattice points,

V=l ) v (2.15)

It is simple to show that the potential energy density at
r is given by

Apo (p)' Bpo &pi +' 1
v(r)=

I
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FIG. 1. The density distributions as a function of radius

for Ar (top window) and Sn (bottom window) nuclei.
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FIG. 2. Stability tests and the conservation of energy for
the ground states of Ar (left column) and Sn (right col-
umn) nuclei. The top windows display the binding energy per
nucleon predicted by both the soft equation of state (open cir-
cles) and the stiff equation of state (open crosses) calculated
from Eq. (2.16). The central and bottom windows display,
respectively, the number of escaped particles, A„, ~,z, and
the root-mean-square radius R, , (see the text).

truly quantum-mechanical ground state, thus causing the
slight vibrations in the rms radii (coordinate space). This
e8'ect, nonetheless, is too small to be seen in the mo-
mentum space as reflected by the flatness of the binding
energy (top panels, Fig. 2).

Once nucleon-nucleon collisions are included, spuri-
ous emission of nucleons occurs due to insuKcient Pauli
blocking at the nuclear surface. With a nucleon-nucleon
cross section of o„„=41 mb, the average loss in mass is
less than 8'%%uo over a period of 160 fm/c. The total energy
is, nonetheless, well conserved. In our study, we have in-
vestigated the dependence of energy conservation on the
time step used in the numerical simulations. We Gnd that
change in the total energy is less than O. l MeV/A during
a time interval of 200 fm/c, provided the time step is less
than 0.5 fm/c. We have therefore chosen bt = 0.5 fm/c
in all our calculations.

III. DECOMPOSITION OF ENERGY AND
FREEZE-OUT CONDITIONS

A. Decomposition of the excitation energy

Since the residue continues to decay after its forma-
tion, the residue masses, excitation energies, and angular
momenta are sensitive to the &eeze-out time at which
observables are evaluated. To indicate how this &eeze-
out time was chosen and how the thermal energy of the
residue was estimated, we decompose the total energy
Et I calculated from Eq. (2.16), into collective and in-
ternal components, E, ii and E;„t, as follows [104]:

cleons (center), and the rms radius (bottom) for 4oAr (left
side) and Sn (right) nuclei propagated in the mean
Geld according to the lattice Hamiltonian method. In
this Ggure, calculations using the soft equation of state
are designated by open circles and calculations using the
stifF equation of state are designated by open crosses.
One can see that both equations of state produce an ef-
fective binding energy of B/A 8 MeV—. The binding
energy obtained for calculations with the soft equation
of state is somewhat larger since the corresponding po-
tential is deeper at low densities (nuclear surface). The
number of escaped particles A„, ~,d is determined by in-
tegrating over all particles at densities p & 0.07po. The
rms radii, which include all test particles, display some
slight collective vibrations that are remnants of the ini-
tialization procedure.

In our present model, the position and momentum of
each nucleon in a nucleus (both the projectile and the
target) are initialized using the standard Monte Carlo
procedure [116]which distributes nucleons uniformly in a
coordinate sphere and a momentum sphere with the radii
determined respectively by the corresponding radius and
the Fermi momentum of the nucleus. Since this proce-
dure reflects only the average properties of a nucleus (in
both coordinate and momentum spaces) rather than dis-
tributing nucleons quantum mechanically, which would
strictly obey the Pauli exclusion principle, the energy of
a groundstate nucleus is slightly higher than that for a

E,.t ——II = E,.(i+ E;„~. (3.1)

The collective energy is estimated by

~'() .E, () ——- —m dr,
2 p(r)

(3.2)

where

p(r) = .f f(r st)l'r, (3.3)

is the local density, and

4'(' =
(2.~)

f(r, p, t)d'p-
m

(3.4)

is the local collective velocity Geld. The internal energy
E;„t can be decomposed into a thermal excitation energy
Eth, and a "cold" internal energy E;„t(T= 0, A„,):

Eint = Ethe + Eint (T = 0& Ares) & (3.5)

where A„, denotes the residue mass. E;„t(T = O, A„,)
is the internal energy of a cold nucleus with the same
density distribution, p(r). It includes both the kinetic
energy density T(r) due to Fermi motion (required by
the Pauli exclusion principle) and the potential energy
density v(r):
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E;,(T = 0 A„.) = fjr(r) + v(r)]d r (3.6)
i. Thecal eeet'tation energy

In the Thomas-Ferini limit, r(r) has the form

(3.7)

The potential energy density v(r), given by Eq. (2.14),
includes both nuclear and Coulomb interactions. Prom
Eqs. (3.1)—(3.7), it is clear that the thermal excitation
energy of the residue is obtained, after the collective en-

ergy and cold Fermi energy for the zero-point motion are
subtracted &om the total excitation energy of the residue.

It is instructive to consider the various excitation en-

ergy components contained in Eqs. (3.1)—(3.6) for the
case of an isolated nucleus at its ground state. Obvi-
ously such a nucleus should have no collective energy,
E, ll ——0, and no thermal excitation energy, Eth, ——0.
The total energy E& t is therefore equal to the internal
energy E; t(T = 0, A„,) of a ground-state nucleus with
a central density p = po. In our later discussions, we
denote this energy of ground state by Es, (A„,). Obvi-
ously, Es, (A„,)/A„, should be about —8 MeV on the
average; however, this result is not obtained unless one
corrects for spurious collective motion. Because of the 6-
nite numbers of test particles at each of the lattice points
in the numerical simulations, calculations of the local cur-
rent j(r) via Eq. (3.4) yield nonzero values even if the
whole nucleus is at rest. This results in a positive value
for the collective energy E, ii, calculated via Eq. (3.2).
This spurious collective energy, arising from finite statis-
tics of test particles, can nevertheless be easily estimated,
and we provide methods for determining this spurious
collective energy in the Appendix. After subtracting this
spurious collective energy, the application of Eqs. (3.1)—
(3.6) always yields a negligible collective energy for an
isolated nucleus in its ground state. Such spurious con-
tributions to the collective energy have been subtracted
&om all our calculations using the momentum analysis
method discussed in the Appendix.

B. Freeze-out conditions

In general, the excitation energies of residues vary con-
tinuously with time in our calculations. Nevertheless, in
each simulation an unique maximum in the thermal ex-
citation energy following the preequilibrium cascade can
be identified. This defines a &eeze-out time where the
maximum thermal excitation energy of an equilibrated
residue is achieved. The sensitivity of this maximum
thermal excitation energy to diferent parameter choices
for the BUU transport equation is one of the major fo-
cuses of this paper. %e further evaluate the appropriate-
ness of this &eeze-out criterion by examining the nucleon
emission rate and the quadrapole moment of the momen-
tum distribution. Variations of the two latter quantities
did not contradict our assignments of the &eeze-out time.
The sole variation of these two quantities with time, how-
ever, did not provide clear signatures for the &eeze-out
time due to the presence of long time scale macroscopic
oscillations.

In Figs. 3 and 4, we display the decomposition of the
excitation energy for Ar+ Sn collisions at b = 0 fm,
assuming a soft EOS (Fig. 3) and a stifF EOS (Fig. 4), re-
spectively. Several features of the reaction dynamics are
immediately apparent. First, &om the time dependence
of potential energy (bottom curve), it is clear that the
system undergoes a compression during first 30 fm/c, an
expansion between 30 fm/c & t & 100 fm/c (70 fm/c for
the stiff' EOS), and finally a relaxation to a more tightly
bound configuration at 160 fm/c (120 fm/c for the stifF
EOS) for calculations with the soft EOS. The binding en-

ergy E; t(T = 0) (third curve from the bottom) exhibits
a similar behavior at a smaller scale. Second, the en-
ergy of f'ree particles increases rapidly after t & 40 fm/c,
suggesting much of the collective energy E, ll is taken
away by particle emission. Finally, the thermal energy,
E~h„which is our particular interest, exhibits two max-
ima: one global maximum at t = 30 fm/c and one local
maximum at tf„= 160 fm/c (tf„= 120 fm/c for stifF
EOS). The maximum at t 30 fm/c is partly an artifact
of the initial momentum distributions, in which the lon-
gitudinal velocities of the projectile and the target nuclei
cancel each other, causing a minimum in the computa-
tion of the collective energy. Because this first maximum
occurs during the preequilibrium cascade, it cannot be
associated with the maximum thermal excitation energy
of an equilibrated residue. The second maximum occurs
after the initial preequilibrium stages have finished and

I I I I
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I I I I

I
I I I I

I

I I I I

~Etot

0—
0

—10 —
E

t
O

-20
Q

nucleon

fermi

—30

I I I I I I I I I I I I I I ~ I

50 100 150 200
t (fm/c)

FIG. 3. Decomposition of the excitation energy as a func-
tion of time for Ar+ Sn collisions with the soft EOS at
E/A = 65 MeV, b = 0 fm. The bottom line is the nuclear
potential energy. From this bottom line up are, respectively,
Coulomb energy (difference between the second and the bot-
tom lines), Fermi energy required by the Pauli exclusion prin-
ciple (difFerence between the third and second lines), kinetic
energy of emitted particles (difference between the fourth and
third lines), collective energy of bound nucleons (difFerence
between the fifth and fourth lines), and thermal energy (dif-
ference between the top and fifth lines). The freeze-out time
is indicated by the dotted line.
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FIG. 4. Same as in Fig. 3 but for Ar+ Sn collisions
with the stifF EOS at E/A = 65 MeV, b = 0 fm.

the residue has contracted to a more compact spatial
configuration; the thermal energy gradually decreases at
later times due to the evaporative cooling. The second
maximum in the thermal excitation energy is clearly the
maximum thermal excitation energy following the pre-
equilibrium cascade; we label the time corresponding to
this maximum as the &eeze-out time. As shown by the
dotted lines in Figs. 3 and 4, the freeze-out times t~„ for

Ar+ Sn collisions are tr„160 fm/c and tr„= 120
fm/c, respectively, for the soft and stiff EOS at b=0 fm
and E/A = 65 MeV. Similar analyses lead to tr„--140
(tr„= 120) fm/c at E/A = 35 MeV, for the soft (stifF)
EOS at 6=0 fm.

It is interesting to note that, for these systems, the
freeze-out times are largely determined by the relaxation
time of the nuclear surface. Residues calculated with the
stiff equation of state, which has a larger restoring force
and a larger sound speed, contract to compact configu-
rations more rapidly than residues calculated with the
soft equation of state. The &eeze-out times also depend
weakly on the impact parameter at E/A = 35 MeV, but
more sensitively on the impact parameter at E/A = 65
MeU, particularly for the soft EOS. For example, the
freeze-out time for Ar+ Sn collisions decreases &om
tf —160 fm/c at b = 0 fm to t&„120fm/c at b = 6 fm
for the soft EOS and 0.„=41 mb. The corresponding
&eeze-out time for the stiff EOS decreases Rom tg, —120
fm/c at b = 0 fm to tr„--100 fm/c at b = 6 fm.

The final spatial configurations of the bound nuclear
matter at freeze-out also depend on the incident energy.
At E/A = 35 MeV, the freeze-out configurations shown
in Fig. 5 reveal a single well defined residue at &eeze-
out up to impact parameter 6 = 6 fm. The system, at
b = 6 fm (not shown), subsequently decays into two large
slow moving fragments at a later time. At E/A = 65
MeV, however, the &eeze-out configurations, shown in
Fig. 6, are more irregular and for 6 + 2—3 fm display two
or more bound residues at &eeze-out. %'hile the ther-
mal excitation energies in this paper were always evalu-

FIG. 5. The spatial distributions at freeze-out for
Ar+ Sn collisions at E/A = 35 MeV with the soft EOS

and oNN ——41 mb. The values for the impact parameters
are indicated in each panel. The beam moves in the vertical
direction. (The projectile moves from top to bottom. )

ated for the heaviest residue, these energies change little
when all bound fragments are included. The irregular
configurations in Figs. 5 and 6 indicate that our &eeze-
out criterion is achieved well before the collective motion
is damped to levels consistent with a thermal equilib-
rium between collective and intrinsic degrees of freedom.
The damping of collective motion would require long time
scales consistent with the damping widths of giant res-
onances. As experimental investigations are sensitive to
maximum residue temperatures which are achieved prior
to the damping of these giant oscillations, we do not wait
for the collective energy in these simulations to be fully
ther malized.

F

FIG. 6. Same as in Fig. 5 but for collisions at E/A = 65
MeV.
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2. Smieeion mete

Nucleons are considered as emitted when their lo-
cal densities are less than 0.07p0. Otherwise, they are
treated as bound in residues. In Figs. 7 and 8, we dis-

play the emission rate of nucleons as a function of time
for Ar+i2 Sn collisions at E/A = 35 MeV and 65 MeV,
respectively. The solid and open circles in the figure de-
pict calculations with the stifF and the soft equations of
state, respectively. The corresponding nucleon-nucleon
cross sections are indicated in the figures. For all calcu-
lations, one observes large preequilibrium emission rates
at t = 60 —80 fm/c. In contrast, the emission rates at
t + 120 fm/c for stifF EOS, and t + 140 fm/c for the
soft EOS, are significantly reduced and slowly varying,
suggesting a slow statistical emission &om the reaction
residue. These later emission rates are also modulated by
macroscopic vibrations which can also be seen clearly in
the qzz plot discussed below. The presence of the rnod-
ulations renders the establishment of precise &eeze-out
times &om the time dependence of the nucleon emission
rate somewhat difBcult. The solid and open arrows in
Figs. 7 and 8 indicate freeze-out times corresponding to
the maxima of the thermal excitation energy discussed
in the preceding section. In all cases, these &eeze-out
times occur shortly after the cessation of the preequilib-
rium nucleon emission, corresponding to the end of the
early preequilibrium stages of the reaction.

3. Momentum diet&bution

A third measure for defining the &eeze-out time may be
obtained from the quadrapole moment of the momentum
distribution [124]:
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(3.8)

This criterion is motivated b th b 1

brated system should ield
y e eief that an equili-

variable changes with t
ou yie zz ——0. To see how

~zz in the bot-i ime, we plot &

A
show the emission rates in t . e e an-

m. or comparison w

e s show results obtained with the sti6' eq
pane s s ow results for the

state. Th d h de as e lines describe ~
e soft equation of

are included hil
e ~zz when all nucleons

ldd Cl 1

ousl
s e ne previ-

y, Qzz is significantly reduced fro 't ' 't' l

re ecting the existence of macrosco ic

us e &eezeout defined in the resent a
refers to the time at which thee a w ic t e preequilibrium is over

e residue becomes nearl corn
equilibrated.

y completely relaxed and

C. ~. P esxdue temperature

E&h = 0 P p&E' T, E'y p& + p~E T, E'p' p~

(3.9)

Here , p„and p„are the matter de 't'

and tpro ons, respectivel . W
r ensi ies or neutrons

y. We further approximate
s (,c~(p)) by its low temperature limit and h

(3.9) becomes
e imi, an thus Eq.

(3.10)

with a, the level density param tme er, given y

m r'3~2~" d'«"'(r).
C

(3.ii)

In expressions (3.10) and 3.11

not trivially related to t eo e total excitation energies of the
computational nuclei, because the lle co ective energies of

ties of the r
e ress ues are significant and because the tt de e ma er ensi-

e residues are subnuclear. To obtain the re uired
relation between temperat

' '
wempera ure an excitation en@.r we

ensity and by equating [114] this value to the t
energy provided b th

is value to the thermal
'

e y e numerical simulations,

To allow a c ~ ~

atur
comparison with measur d dc e resi ue tern er-

~ ~

tures, the level densities of th 1
'' '

s o e nuc ei produced in the
p

simulations must be estimated. Tha e . ese level densities are
n2 ~3~2 &"'

sF(S) =
2m ( 2 )

(3.i2)

; Stiff EOS

I
I

]Q—
I

N
l

I

N
l 0

I r,r
hl

I I I I I

I I

I''';'
I

Soft; EOS~i
I

y
I

g
4

l

l

'i

f

l

I

I

I

1 1~1 1 1 1

1 I I 1

I

I

I

freeze —out

15

5

0

In our calculations, the level densit y paramete is evalu-

calculations at
om e ensity distribution produced b th BUU

t &eeze-out. Since our BUU d
e

duces a rather o
'

u in i s cer goo" nuclear surface includin its c
ture, and since other

a — 9, comparable to empirical values. Our re-
sults are discussed in th f lle in e o owing section.

IV. RESULTS

-Stiff EOS!
I

1 I 1 I

0 100

I

Soft EOS
I lI I 1 I

200 0 100 200
t (fm/c)

FIG. 10. Same as in Fias in ig. 9, but calculated for A + S
co isions at E/A = 65 MeV, b = 0 fm

r n

Parti d e a tice amiltoniany due to the demands of th 1 t '
H

approach, calculations with the
~ e

e present code require ver
signi cant amounts of corn uter tmpu er ime, particularly when

e num er of test particles is large. In the f lln e o owing
rs discuss the sensitivities of the ther-

mal excitation ener gy and residue temperature to the
number of test particles. Th
tive dependences of th

s. en, to explore the ua
'

q ita-
e ress ue tern eratures

pact param t h
es upon im-

with reduced nu
e er, we ave erfop ormed some calculations

ua
wi re uced number of test particles N = 8 .
q ntitative comparisons with

0. For
i experimental residue tem-



50 RESIDUE TEMPERATURES IN INTERMEDIATE ENERGY. . . 1667

peratures, however, the incident energy dependences of
residue temperatures were calculated with Nt„& ——300. In
all calculations, the uncertainties in the calculated ther-
mal excitation energies due to test particle statistics were
obtained by repeating each calculation many times and
examining the variations in the excitation energies which
result &om variations in the initial random number seeds
and in the initial positions and momenta of test particles
within the initial projectile and target nuclei.

A. Dependence on the number of test particles

Figure 11 shows the sensitivity of the predicted residue
excitation energies (top panels) and temperatures (bot-
tom panels) to Nt„t, the number of parallel ensembles,
over the range 50 & Nt„t & 300, for 4 Ar+ Sn collisions
at E/A = 35 (right panels) and 65 (left panels) MeV.
', Larger values of Nt„t are unfeasible with the present
code due to the large computation times required. ) Both
the thermal excitation energies and residue temperatures
increase with Nt„t, an effect which may be related to
improvements in the accuracy of the Pauli blocking with
increasing Nt, «. This sensitivity to Ntest becomes very
small for Nt„t & 200. Significantly larger values of the
thermal excitation energies and residue temperatures are
obtained for calculations with the stiff EOS, regardless
of the value of Nt„t. The sensitivity to ~NN decreases
with N«, t and appears to be nearly negligible at Nte8t
= 300, possibly re8ecting a decrease in the collision rate
due to an improved accuracy of the Pauli-type blocking
algorithm. For this reason, we concentrate, in the follow-
ing section, on the sensitivity of the calculations to the

EOS. We return later, in Sec. IV C, to the sensitivity to
&NN.

B. Impact parameter dependence

I'he left side of Fig. 12 shows the predicted ther-
mal excitation energy per nucleon at thermal &eeze-
out, for Nt„t ——80, as a function of the impact pa-
rameter for residues formed in 4oAr+ 4Sn collisions at
E/A = 35 MeV (top window) and E/A = 65 MeV
(bottom window), respectively. The uncertainties in the
calculated thermal excitation energies are the combina-
tion, in quadrature, of the systematic uncertainty in the
thermal excitation energy due to the uncertainty in the
&eeze-out time, and of the random uncertainty due to
test particle statistics. For both the stiff and the soft
equations of state, these thermal excitation energies were
calculated with 0~~ = f &&" dO =41 mb. The observed
dependence upon the equation of state partly reiects the
fact that preequilibrium emission is enhanced in calcula-
tions with the soft EOS for the following reasons. First,
the stiff EOS has a larger surface restoring force, and
systems simulated with the stiff EOS remain closer to
normal nuclear matter density and emit fewer preequi-
librium test particles. Second, the stiff EOS also has a
larger sound velocity, leading to an earlier thermal freeze-
out and consequently less time for cooling via preequi-
librium emission. At the higher incident energy where
the target nucleus is less efFective in capturing nucleons
from the projectile, the thermal excitation energies also
depend more strongly upon impact parameter than at
lower energy.

The right-hand side of Fig. 12 shows the corresponding
predictions for the temperatures as a function of impact
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1668 H. M. XU, W. G. LYNCH, AND P. DANIELEWICZ 50

parameter for Ar+ Sn collisions at E/A = 35 MeV
(top window) and E/A = 65 MeV (bottom window),
respectively. At E/A = 35 MeV, the predicted tempera-
ture depends weakly on impact parameter, but depends
sensitively on the nuclear equation of state. In contrast,
the temperature depends rather strongly upon both the
impact parameter and the equation of state at higher
energies, E/A = 65 MeV. At both incident energies, the
higher residue temperatures for calculations with the stiff
EOS is partly due to the higher matter density and con-
sequently higher nuclear level density of residues formed
in collisions using the stiff EOS, as well as due to the
higher residue thermal excitation energies.
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C. Incident energy dependence FIG. 14. The dependence of residual mass on the incident
energy for Ar+ Sn collisions at b = 1 fm.

In Fig. 13, we show the energy dependences of the total
excitation energy [111,112] (upper window) and thermal
excitation energy (lower window) for 4 Ar +~24Sn colli-
sions at 6 = 1 fm. (These calculations were performed
with Nt„t ——300.) The corresponding residue masses are
shown in Fig. 14. In general, calculations with the
stiff EOS produce more massive targetlike residues. The
masses of these residues decrease roughly linearly with
incident energy. For both the stiff EOS (open circles)
and the soft EOS (solid circles), the excitation energy
per nucleon increases with incident energy. However, this
increase with energy becomes more gradual at energies
E/A 65 MeV, indicating that the excitation energy
per nucleon may be approaching a saturation value. The

difference between excitation energies per nucleon for dif-
ferent equations of state is about 1 MeV at all energies.

A saturation has been reported in the total excitation
energies deduced &om measurements of the multiplicities
of neutrons and n particles [33,44]. Since preequilibrium
emission carries away more nucleons in our calculations
than assumed in the analyses of the neutron and o, par-
ticle multiplicities [33,44], we do not know whether our
calculated total excitation energies are truly comparable
to the ones extracted &om the experimental data, and
therefore, we re&ain &om making this comparison.

Figure 15 shows the energy dependence of the tem-
perature for the Ar+ Sn system at 6 =1 fm. The
dashed lines represent calculations using o.~~——41 mb
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collisions at b = 1 fm. The dashed lines represent calculations
using o ~~=41 mb and the stiff EOS. The solid lines represent
calculations using o.~~=41 mb and the soft EOS.
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FIG. 15. The dependence of residue temperature on the
incident energy for Ar+ Sn collisions at 6 = 1 fm. The
dashed lines represent calculations using o.~~——41 mb and the
stiff EOS, the solid lines represent calculations using cr~~=41
mb and the soft EOS, and the dash-dotted lines represent
calculations using o.~~——20 mb and the soft EOS. The other
symbols are experimental data discussed in the text.
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and the stiff EOS, the solid lines represent calculations
using o.~~——41 mb and the soft EOS, and the dash-dotted
lines represent calculations using o~~——20 mb and the
soft EOS. Both equations of state predict a gradual in-
crease in temperature as the incident energy is raised
from E/A = 30 MeV to 85 MeV. At higher incident ener-

gies, E/A & 50 MeV, however, the temperature increases
very gradually, giving the appearance that the tempera-
ture may be approaching a limiting value with incident
energy. The stiff EOS predicts consistently larger val-

ues of temperature at all incident energies; the calcu-
lated residue texnperatures are much more sensitive to
the variations in the EOS than to the variations in the
nucleon-nucleon cross section.

Limiting temperatures have also been deduced &om
the energy spectra of light particles and &om the rel-
ative populations of excited states of emitted complex
&agments. The data points in Fig. 15 are the experimen-
tal temperatures extracted &om energy spectra of light
charged particles in Refs. [43] (open diamond), [38) (open
cross), [41] (solid triangles), [34] (open square), and [46]
(open triangle); neutron energy spectra in Ref. [42] (star),
and the emission temperatures extracted from excited
states in Refs. [60] (solid circles and crosses), [51] (open
circle), [69] (solid diamond), and [65] (solid square). Cal-
culations with the soft EOS appear closer to the experi-
mental data. However, due to the strong impact param-
eter dependences of the calculated residue temperatures,
which is not addressed by many of the measurements,
we cannot make quantitative conclusions concerning the
stifFness of the EOS from the present comparisons. Fur-
ther alterations in the calculated temperatures may re-
sult from additional increases in the number of parallel
ensembles, or by allowing for a velocity dependence of
the mean field or a difFerent surface behavior.

other two variables may provide more stringent informa-

tion in more mass asymxnetric colliding systems where
collective motion may be less strongly excited.

Both the excitation energies and residue texnperatures,
obtained assuming Fermi gas level densities, are quite
sensitive to the equation of state and the impact param-
eter. Surprisingly, both showed little sensitivity to the in-
medium nucleon-nucleon cross section in collisions with
large numbers of test particles. The predicted residue
temperatures at b = 1 fm for the soft EOS are more
comparable with those obtained from experiments than
are those obtained for the stiff EOS. However, due to
strong impact parameter dependence in the calculations
(and presumably in the measured quantities), we cannot
xnake quantitative conclusions concerning the stiffness of
the EOS from the present comparisons. Moreover, the
present predictions could be altered by using larger num-

bers of test particles or by allowing a velocity dependence
or a different surface behavior for the nuclear mean field.
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APPENDIX: CORRECTION TO THE
COLLECTIVE EXCITATION ENERGY DUE TO

FINITE TEST PARTICLE STATISTICS

V. SUMMARY' AND CONCLUSIONS

In summary, we have calculated residue excitation en-

ergies and temperatures by solving the BUU equation
using a lattice Hamiltonian method proposed originally
by Lenk and Pandharipande. This method provides ac-
curate energy conservation in practice. Correcting for
the spurious collective motion due to finite test particle
statistics, we have calculated the maximum thermal ex-
citation energy of targetlike residues following the pre-
equilibrium cascade. To determine the &eeze-out time
at which this occurs, we have examined the time depen-
dence of the therxnal excitation energy. We have identi-
fied a maximum shortly after the conclusion of the pre-
equilibrium cascade as the maximum thermal excitation
energy of the targetlike residue. Two other variables, the
exnission rate of nucleons and the quadrapole moment
of momentum tensor are consistent with this definition
of the maximuxn thermal excitation energy, but do not
provide accurate independent information because of the
existence of long time scale collective vibrations. These

I

In our calculations, the collective excitation energy is
obtained via Eq. (3.2) which sums up contributions from
individual lattice cells wherein the collective current is
evaluated using Eq. (3.4). Consider one such lattice
cell with K test particles. Suppose this cell has a true
collective moxnentum of p, ~~ per nucleon in the contin-
uum limit (an infinite number of test particles). The
true collective excitation energy of K test particles can
be represented by

(A1)

Here m is the nucleon mass. In practice, this true col-
lective energy is not known. Instead, we calculate the
apparent collective energy E

ga i pi
(A2)

Rewriting p; = p; ' + p ii (where p; ' is a random mo-
mentum component due to Ferxni or thermal motion
which vanishes on average),

pi + pcoll

2Km 2Km
f & ) K ( K

+ pcoii+ ' ) pcoll
~ ) pi + ) pj

i=1 i=x &;=i
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) p, ' =K(p'), (A4)

where (p'~) is the average value of the random momen-
tum component due to Fermi or/and thermal motion.
Using this expression, Eq. (A3) becomes

In our simulations, the contributions &om the second
term can be ignored, since the vector sum will average to
zero when one sums over all possible ensembles or over
all lattice points. The third term, however, is non-zero
and has the approximate value [125]

In these expressions, we have assumed that the proton
and neutron have the same local Fermi energy.

For a lattice cell of size 1 fm, with local density of
po

——0.17 fm and N&„t ——80, one would obtain K
14, thus the correction to the collective energy would be
s, „=1.7 MeV/nucleon. This is clearly a non-negligible
correction. As we discussed in the main text, we have
calculated the collective energy for a nucleus in its ground
state. After correcting the local energy by a term given
by Eq. (A8), one indeed obtains a zero collective energy.

2. Local momentum analysis

Kp.'.i) + (» ")
2m

+
2m

o (p")
2m

(A5)

Another way of calculating (p'z) in Eq. (A7) is to try
to determine it from the momentum distribution for pi,
which is calculated as a function of time during the BUU
simulations. For this purpose, we use the identity

&.'.u @:.i) 1 (p")
K K K 2m

coll
&corr ~ (A6)

Thus the apparent collective energy is larger than the
I2

true collective energy by a value of z . Rewriting Eq.
(A5) in terms of the true collective excitation energy per
nucleon, one gets

).(p'- p, )' = ) .(p''- p, ')'. (A11)

) (p; —p ') = 2K(K —1)(p' )

Averaging over ensembles, the right-hand-side of this
equation becomes

with

(A7)

(A12)

This correction to the collective excitation energy is due
to the Gnite number of test particles. We note here that
p' is viewed in the kame of the true local velocity and
is not known. In the following two sections, we describe
two difFerent methods to estimate (p'~).

1. Thomas-Fermi approximation

Since p is evaluated in a frame moving with local cur-
rent, one may estimate e, „in the local Thomas-Fermi
approximation [125]. Using this assumption, Eq. (A7)
becomes

The second term on the right-hand side of Eq. (A12) is
of order 1/A tiines the first term and can be ignored in
the limit of large A. Thus,

(A13)

Similarly, the left hand side of Eq. (All) has the form

K

) (p*' p )' = 2(K —1) ){p')
i=1

1 (p") 13
K 2m K5

Here the local Fermi energy eF is given by

(A8)
—2 p, p (A14)

2~F
~F ——

2m
(A9)

Using the identity

with

/'3n'p )
)

pi 'pj = pi — p; )

A10
we can rewrite (A14) as

(A15)

pi —p~ =2K p; —K ' = 2& p;—(p, p, )
'

)K (A16)
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Here the term

Z;=, P;'I'
2m.

~
K

is the apparent collective energy. Equating Eqs. (AI3)
and (A16), one obtains

K
1 1

2m K(K —1) K

(A17)
which can be evaluated at each lattice point. This ex-
pression corrects for all spurious collective motion com-
ing from either Fermi motion or thermal motion or both.
This is the spurious collective energy correction used in
this work and referred to in the main text.
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