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Schrodinger optical-potential calculation of 500 Mev polarized proton scattering
from polarized C
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Spin observables for elastic p- C scattering at 500 and 547 MeV are calculated using a micro-

scopic, momentum-space optical potential in a relativistic Schrodinger equation. Included are the
full spin dependences, off-energy-shell kinematics and dynamics, several models for the nuclear struc-
ture, exact treatment of the Coulomb force, and spin singlet-triplet mixing. Agreements with data
are good for some observables but, in other observables, indicate the need for additional physics.

PACS number(s): 24.10.Ht, 24.70.+s, 25.10.+s, 25.40.Cm

I. INTRODUCTION

Recent experimental advances have combined polar-
ized nuclear targets with polarized proton beams to mea-
sure more and more of the 36 possible spin observables
describing the elastic scattering of two spin-1/2 particles
[1—4]. Most of these observables have never been mea-
sured before at intermediate energies, and it is of basic
interest to understand what aspects of nuclear spin dy-
namics may be revealed by them. This is a challenging
problem because, on the one hand, the connection be-
tween an observable and dynamics is often not direct [5],
and, on the other hand, a spin observable often arises
from delicate interferences within the scattering ampli-
tude. Accordingly, it is not surprising to 6nd a theory
that is 6ne for predicting differential cross sections and
analyzing powers has problems with the spin observables.

In the present work we report on a microscopic,
optical-potential calculation of polarized-proton scatter-
ing from a polarized C nucleus. We use a microscopic,
first-order potential in momentum space, including the
full spin structure of the proton-nucleon and proton-
carbon interactions, spin singlet-triplet mixing, and an
exact treatment of the Coulomb potential via an exten-
sion of the Vincent-Phatak matching procedure. We
solve a relativistic Lippmann-Schwinger equation and
make comparisons to available data near 500 MeV. While
we find good agreement between our predictions and ex-
periment for some observables, we also find poor agree-
ment, for no apparent reason, with others.

As part of the present work we have extended the
Stapp phase-shift analysis of nucleon-nucleon scattering
[6,7] to the more general case of nonidentical spin-1/2
particles in the angular momentum basis. The requisite
coupling of the spin singlet and triplet channels is equiv-
alent to including isospin-symmetry breaking effects in
the NN problem. Related extensions have been made
by Gersten et al [8] in the helicit. y basis with specializa-
tion to one-boson exchange potentials, and by Williams
et al. [9] in Born approximation.

In contrast to the full solutions of the p- C Lippmann-
Schwinger equation reported here, the calculations by
Seestrom-Morris et aL [1], Ray et al. [2], Hoffmann et
al. [3], and Hoffmann et al. [4] are based on a relativistic
distorted wave impulse approximation (DWIA). While
the basic physics in the impulse approximation and opti-
cal potential is similar, cancellation effects and the large
number of partial waves involved make the predictions
sensitive to the theoretical differences. On a more phe-
nomenological level, the DWIA studies 6rst adjust the
optical potential to obtain a best 6t to the p- C scatter-
ing data, and then use the corresponding distorted wave
to predict p- C scattering. Our calculations, in contrast,
are independent of p- C scattering data, contain differ-
ent multiple scattering processes, use different assump-
tions for off-'energy-shell kinematics and dynamics, and,
although relativistic, contain no negative-energy degrees
of freedom.

II. SPIN PHENOMENOLOGY

where we have suppressed the (k', k) dependence of a f. —

The superscripts "p" and "C" in Eq. (1) indicate the
projectile and target, respectively, while the subscripts
indicates a dot product of cr with one of the three inde-
pendent unit vectors:

n= kxk' „ k —k' - k+k'
[k x k'i' fk —k'/' /k + k'['m= (2)

The p- C spin 1/2 x 1/2 elastic scattering observables
all derive from a T matrix which has a spin-space struc-
ture much like that for the NN system. If we assume
rotation invariance, parity conservation, and time rever-

sal invariance, this structure is [6,10—12]

2T(k', k) = a+ b+ (a —b)o'~rr„+ (c+ d)a" o

+(c —d) crfo'( + e(a'" + cr~) + f(o" —o ), '

(1)
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where the vectors k and k' are the incident and scattered
proton momenta in the c.m. frame and define the scatter-
ing plane. The vector n is normal to the scattering plane,
the vector m. is in the scattering plane along the momen-
tum transfer q = k' —k direction (sideuiays to the beam

direction), and l is in the scattering plane (longitudinal
to the beam direction). For on-shell (k' = k) scattering,
the vectors l and m. are orthogonal.

In terms of conventional nuclear forces, the (a+b) term
in Eq. (1) arises from a "central" force, the e and f terms
from "spin-orbit" forces, and (a —b), (c+ d), and (c-
d) from "tensor" forces. In NN scattering the particles
are identical, and if the generalized exclusion principle
(including isospin) holds true, the f term vanishes. In
p-~sC scattering, no symmetry principle forbids f and
this results in the spin singlet and triplet states being
coupled.

There are 36 spin observables for the scattering of two

spin-1/2 particles which can be formed Rom the ampli-
tudes in Eq. (1) [10,11,13] The observables recently mea-

sured [1,3,4] are related to the amplitudes in Eq. (1)
by

(2')A

(3)Dnono

D(4)
loso

(5)Dsoso

(11)
Aoonn

—Re(a'e —b' f),

—(Ial'+ Ibl' —lcl' —Idl'+ lel'+ Ifl')

—Im(b'e+ a' f),

—Re(a'b+ c'd —e' f),

—(Ial' —Ibl' —lcl'+ ldl'+ lel' —IfI').

(s)

Here we use the traditional Wolfenstein notation as ana-
lyzing powers, polarizations, and depolarizations, as well

as the tensor notation X„",~, ~
with the subscripts p and

t denoting the direction of t0e initial-state projectile and
target polarizations, the primes denoting the correspond-
ing final-state quantities, and a subscript o signifies zero
or und. etected polarization. The superscript (n) refers
to the variable number that is tabulated in [13], a re-
dundancy we find useful when dealing with difficult-to-
pronounce and easy-to-confuse variables.

der(') 1

d~
=

2
(lal' + Ibl' + lcl' + ldl' + lel' + Ifl')

A~'~ = —Re(a'e + b' f),

(3)

III. OPTICAL POTENTIAL

Our theoretical input is a microscopic, first-order,
momentum-space optical potential [13,15,16]:

V(k', k) N ((t"+i,+ tPo"„)p",(q)

+ t""&o~cr„+t","o„+t,+so" o + t,""aoi o'i + Cyg(o +i++ o~ o+) p,
"

(q)}

+z ((t"",+ tP~g) p", (q)

t""s~~o„+tP' o+ t,+„o"o + t,"~aoi~oi+ t,+a'(a~'cri + oi o ). pt' (q))

V ~i,(k', k) + V s(k', k)n~o„+ V,~q(k', k)o~ o2.
+ V, g(k', k)ohio, + V, (k', k)(o"„+ cr„ ) + Vy(k', k)(o"„—o„)

(10)

where the subscripts on t indicate their origins in terms
of the elementary NN amplitudes. This potential mani-
festly contains the spin 1/2 x 1/2 dependence of nucleon-
nucleon scattering weighted by four, possibly difFerent,
form factors describing the distributions of spin (sp) and
matter (mt) for point protons and neutrons within the
nucleus. The finite size of the nucleon is included in the
pN t matrices, and thus must be removed from the form
factors. To improve upon this theory one could include
antisymmetrization of the projectile nucleon with the un-
struck nucleons in the nucleus, NN correlations within
the nucleus, intermediate nuclear excitations, Dirac-like
relativity, and meson or quark currents.

If the charge and magnetic form factors of the mirror
nuclei C and N were known, if isospin were a perfect
symmetry, and if we could remove the meson-exchange
currents &om the electromagnetic form factors, then we

N —2r2
p ,(r) = po 1 + — e " i (12)

could deduce the strong interaction form factors from
these electromagnetic ones. While such is the case for
the three-nucleon system, it is not yet possible for the
13-nucleon system. Instead we assume an independent
particle shell model description of C as a 1@i valence

neutron outside of a C core of closed 18i and lp 3 shells.

While it is known that the C core is not spherical, and
that core excitations play an important role in reactions
with 12C, we remain consistent with the ass»options of a
first-order optical potential that ignores virtually excited
intermediate states. For a harmonic-oscillator shape for
the nucleus [17], the corresponding form factors are
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Z —2»
Pt(q) = 1 — q'o', p.",(q) = o,

6 q

t'" = (I",po —ql t""(~Ã]) ll, p.),
k A —1

Po = ~+
(22)

(23)

q2~2 ~
—g A j4

1—
6 3Nf(q)

'

(N —2)q a e

f(q)

p.",(q) =

p t = 1—

f(q) = (I+ q /18. 2 fm ), a = 1.58 fm.

(14)

(15)

We take ur in Eq. (22) to be the "three-body energy, "

(24)

(25)

(k" + k~ —P"),

P k + 2+q ~ k, py=185MeV/c,
A

I )
'

po(1 —0 149 rz/.R )
p(r

1 + e(r —R)/a

(B,a, r, ,) = (2.172, 0.5690, 2.38) fm.

(17)

(18)

We calculate the p(q) by a numerical Fourier transform.
First we determine the partial wave expansion of p(q)
at a large value of the momentum transfer q = q

5.2 fm ' =' 2k

p(q) = ) pi(k, k )Pi(1 —q'/2k'),
I,=O

For C, the parameters (N, Z) = (7, 6), the 3 in Eq.
(14) arises from the spin-angle function describing the
1pi valence neutron, and the f(q) is the form factor for

2

the elementary nucleon [18]. Because ~2C and ~sC have
root-mean-square radii which difFer by only 0.02 fm [17],
we took the parameters of the charge distribution of C
[17] as the proton parameters for sC parameters, and,
there being no strong evidence to the contrary, we as-
sume the parameters for the neutron and proton matter
distributions are equal. In contrast, Hoffmann et al. [3]
and Ray et al. [2] vary the neutron size to obtain a better
Gt the elastic p-~ C data.

The same assumptions for the form factors are made
when we parametrize them with the Fermi or Wood-
Saxon shape,

which clearly includes some recoil and binding effects into
the 6rst-order potential. This procedure leads to a differ-
ent momentum and NN energy for each p-nucleus scat-
tering angle.

The off-shell variation of the NN t matrices in each
eigenchannel a = (JlS) is described with a separable
potential,

I

(r.')t (~) )K') =, (r )
t ((u) )ro), (26)

g Kp

where (tee~ t (ur)
~
ro) is the on-shell amplitude deter-

mined &om the phase-shift analyses of Amdt [20] (see
Ref. [16] for a demonstration of the NN phase-shift sen-
sitivity). We use the Graz NN potential [21] because its
ofF-shell behavior closely approximates that of the Paris
potential and provides consistent relativistic propagators
in the two- and many-body systems. Because these el-

ementary amplitudes are antisymmetrized, our optical
potential inherently includes the exchange of the projec-
tile and struck nucleon, but not with the other nucleons
in the nucleus.

While not obvious &om the form of the optical poten-
tial Eq. (10), the terms arising from the NN spin-orbit
amplitude t„when converted to the standard form of
Eq. (1), generate the V, and Vy terms in the carbon po-
tential:

V, (o~ + o„)+ Vy(o~ —o„) —=

pi(k, k ) = 4vr(2l+ 1) drr p(r)ji(k )ji(k ), (20)
0 N t~"o~ p" t + t","o„p", + Z t'",~o"„p t + &f"&„

where we use 96 integration points in Eq. (20). The nu-

merics were checked by reproducing over Gve decades the
form factor published by Frosch et aL [19]. For momen-
turn transfers larger than q „we use an analytic expres-
sion which falls oH' exponentially in q and which matches
the magnitude and slope of our numeric one at q

and this implies

V. = —' Nt. (pm~ + p."p) + Zt. (p"-t + p".p)

Vy = —[Nt~" (p", —p,
"

) + Ztg(p", —p," )j .

(27)

(28)

p(q) = p(q -)e ~' '-"l~ (q & q ).

Because there are no electron scattering measurements
for these large values of q, Eq. (21) provides a well-
behaved extrapolation with insigni6cant inQuence upon
our computed cross sections. The oR'-energy-shell
nucleon-nucleon T matrices (t) in the optical potential
Eq. (10) are transformed to the p- C c.m. with a Lorentz
covariant prescription, and an impulse approximation is
made which optimizes the factorization approximation
[15,16]:

Accordingly, Vy vanishes only if the distributions of neu-
tron spin and neutron matter are the same, as well as
the distributions of proton matter and spin (equalities
not realized for sC).

IV. COUPLED-CHANNELS
LIPPMANN-SCHWINGER EQUATION

Many-body efFects and relativity leads to a potential
V incorporating complicated nonlocalities. Rather than
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treat such a potential in coordinate space and solve an
integro-differential Schrodinger equation, we solve the
Lippmann-Schwinger equation in momentum space:

3
T(k k',) =V(k', k)+f V(k', p)T(p, k),E+ Ep

(So)

spin-angle functions and substitute into this equation. A
complication arises in our problem &om the ability of the
Vy(ol' —cr„) term in the optical potential Eq. (11) to mix
singlet and triplet states:

(o, 0~v~1, 1) = — V, (k', p).
2

where E(p) = E~(p) + Ec(p) is the projectile plus tar-
get energy and the + superscript indicates a positive ie
has been added to the on-shell energy. To obtain one-
dimensional integral equations, we expand T and V in

Accordingly, an extension of the phase-shift analysis used
for NN scattering [6,7] is needed is given in the Ap-
pendix. We show there that the integral equations in the
partial wave basis [14] have form:

Ti (»»)
ly ling

~i (»»)
lg l

V"'»' " '~ V"'"'I' ' V"»"'I' '
) l l& 'L ~~)

V&(888k) E+ E(p) Vi(888k)(kP
)

V2(8888)(kP
)lg l~ iP

Zi(»»)(p k)
Tf(8881)( k)

W

where we leave off the (k', k) dependence of the leftmost
T's and V's, and use l, s, and j to denote the orbital, spin,
and total angular momenta. We solve these equations on
a grid of 40 momentum values for 48 angular momentum

(f) values, which is large enough to avoid numerical noise.
The Vincent-Phatak technique for including the

Coulomb potential in momentum-space calculations was
formulated originally for uncoupled channels and low en-
ergies [22]. For the present calculation we have extended
it [23] to coupled angular-momentum channels and to
much larger numbers of partial waves and grid points.
The Coulomb potential which we add to the optical po-
tential is the Fourier transform of a potential arising from
the actual nuclear charge distribution cutofF at some ra-
(ilus R~Ikk'.

Z Z 8
Vc.".'1(I" i ) =,', [p(~) —cos(~&-t)] .

2m' q

In the present calculations we take R,„q ——8 fm, and

~.(&)& ~.(e)+ f; (f))~

ib(~)) ib(f)) + f; (f)) &

(34)

V. RESULTS

The p- C experimental observables are determined
by computing the a f amplit—udes and then substitut-
ing them into Eqs. (3)—(9). In trying to understand the

have verified that our predictions are insensitive to a
1 —2 fm variation around this value. In this way the
short-range nuclear force and the finite-range correc-
tions to the Coulomb force are included directly in the
Lippmann-Schwinger equation. The scattering from the
point-Coulomb potential is included by adding the am-
plitude for scattering Rom a point-Coulomb potential f't
to the a and b amplitudes:

05 -I llnag

I

-0.5

I

/

0.5 -I
I

b
/

FIG. 1. The p- C spin am-
plitudes a f of Eq. (1) —as a
function of scattering angle at
500 MeV. The amplitudes are
divided by the square root of
the differential cross sections
to match the +ray they con-
tribute to the spin observables
in (3)-(9).
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observables it is helpful to have a picture of the behav-
ior of these p- C amplitudes as a function of scattering
angle. We present such a picture in Fig. 1, where we
set the scale by dividing the amplitudes by the square
-root of the cross section. Note that these amplitudes are
for p- C, and accordingly have more oscillations and a
greater falloff with momentum transfer than the elemen-
tary NN a—e amplitudes from which they derive.

We see in Fig. 1 that a and 6 are approximately equal
in magnitude and in phase with each other, that e and f
are also approximately equal in magnitude and in phase
with each other, but that e and d are much smaller than
the other amplitudes and of opposite phase to each other.
Because the observables in Eqs. (3)—(9) are the sums of
products of these amplitudes, we generally expect an ob-
servable to be large if it contains the product of two large
amplitudes and to be small if it contains only c and d.
However, the converse is not true, cancellation between
large amplitudes can produce small values for an observ-
able.

In Fig. 2 we compare the predicted cross sections to
cross sections measured by Hoffmann et al. [3] at 500
MeV and by Seestrom-Morris et aL [1] at 547 MeV. We
see that the theory produces good agreement with the
forward peak of the 547 MeV data, is slightly too low for
the 500 MeV data, and slightly too high for the larger-

angle data. The locations of the minima and maxima in
the 500 MeV data appear to be predicted well, which is
important because the spin observables, being inversely
proportional to do. /dO, are sensitive to the locations of
these minima.

Although at first we believed the discrepancy in the
500 MeV forward differential cross sections showed the
need to include Coulomb or channel coupling effects more
correctly, the disagreement persists even with an exact
treatment of the Coulomb force in a full coupled-channels
formalism [23]. To see if the discrepancy is a size effect, in
the top part of Fig. 3 we present predictions for da /dO us-

ing slightly smaller rms sizes (0.07 fm) and the harmonic
oscillator form for the nuclear densities, Eqs. (12)—(16).
We conclude that no simple size or shape change provides
agreement with the forward peak of the 500 MeV data,
and that there may be a small inconsistency between the
5QQ and 547 MeV data sets.

We have already indicated that a new aspect of the
present study is its exact treatment of spin singlet-triplet
coupling and the ensuing generation of the f (cr"„—rJ+)
term of the scattering amplitude Eq. (1). In Fig. 3 we

show the importance of this f amplitude in the differ-
ential cross section (top) and analyzing power (bottom).
As expected &om Eq. (3), since the modulus squared
of all amplitudes add to form der/dO (with four of the
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FIG. 2. Predictions for the p- G differential cross sec-
tion at 500 MeV (top) and 547 MeV (bottom) compared,
respectively, with the data of Hoffmann et al. [3] and See-
strom-Morris et al. [1]. The nucleus is described with the
Wood-Saxon shape (17).

FIG. 3. The 500 MeV p-' C differential cross section

(top) and polarized target-polarized beam analyzing power

A (bottom) compared to the data of Hoffmann et aL [3].
The nucleus is described with the harmonic oscillator shape,
(12)—(16). The dashed curves are the predictions with no f
amplitude.
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while D, , commences with a strong constructive in-
terference. As we see in Fig. 5, the theory does a very
good job at predicting the sharp destructive interference
in D&, (which also contains a large contribution from
the f amplitude), but does not contain enough construc-
tive interference for agreement with the forward part of
D, , (although the location of the precipitous interfer-

ence minimum in D, , is predicted accurately). Clearly,
the relative phases of the amplitudes are important here.

VI. SUMMARY AND CONCLUSION

We have examined how well a first-order, theoretical
optical potential can describe the cross sections and spin
observables measured in elastic proton scattering &om

C near 500 MeV. The theory includes the full spin de-
pendences for two spin-1/2 particles, singlet-triplet mix-
ing, nonlocalities arising from off-energy-shell behavior
of the NN interaction, and Lorentz covariant, ofF-shell
kinematics. When the resulting optical potential is used
in a relativistic Schrodinger equation, multiple scattering
and exchange effects are included.

These are our first results including the exact singlet-
triplet mixing and the inclusion of the Coulomb force for
coupled channels. We find that attaining agreement with
the new data is quite a challenge. The theory is basically
parameterless (we did however explore the sensitivity to
nuclear size), and the spin observables are often the re-
sult of delicate interference between as many as six com-
plex amplitudes, with slight variation of the amplitudes
leading to significantly different predictions. To be ex-
pected, our agreement is not as good as that found in
models whose parameters are adjusted to the C data
as a prerequisite to predicting isC [1—4,26]. Nevertheless,

I

the level of agreement is comparable with that found by
Arellano et al. [24] in a similar study of proton scattering
from the simpler spin-0 light nuclei.

Clearly, improvements are needed and we believe the
theory is advanced to the stage where they are worth-
while. We have omitted effects known to be important
at lower energies such as nuclear correlations, virtual nu-
clear excitations, Pauli exclusion, and the density depen-
dence of the effective interaction. Probably most impor-
tant, our theory does not include effects known to be
important at intermediate energies, namely, the negative
energy degrees of freedom present in the Dirac equation
[2,25—27], and the full folding over Fermi motion [24].
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APPENDIX: SPIN DECOMPOSITION

We extend the spin 1/2 x 1/2 phase-shift analysis [6,7]
used for the NN problem in order to include the effect
of the Vf potential's mixing of singlet and triplet states.
We assume the conventional expansion of T and V in
spin-angle functions:

V(k k) = —' ) i'-'l
V,', ,''(k', k) y' (k') y"

jmz ll'sa'

Z (k k) — ),ii'-ii
Z,

~i' '~(k' k) y,', ,'(k ) yt» (k)
jm& l l' a s'

(A1)

(A2)

where l, s, and j are the orbital, spin, and total angular momenta for the target plus projectile:

j = I+ s, s = —(oi'+ o~), s = 0(s), 1(t).

The y's in Eqs. (Al) and (A2) are orthonormal spin-angle functions with the definition and properties [28]:

(k) = ) (lmism, ~jm) Y& '(8, $) ~sm, ),
msmf

Ym(g y) ( 1)m (2 + )(~ ~) pm( g) imp

Pm( ) (1 2)m/2 &( )
dg

(A4)

(A5)

(A6)

To evaluate the spin matrix elements, we adopt the Madison convention in which the z axis is taken as the beam
direction k (P, = 8; = 0), and the scattered momentum k' is placed in the zz plane (Ot = 0, Pf = 0). We then follow
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a two-step procedure in which we first evaluate [6] the potential Eq. (11) in the spin basis ~a, m, ), and then invert
the angular-moment»m decomposition of the spin-basis matrix elements. The potential in the spin basis is

V,i(k', k) = (020ivi1, 1) = V—i, (k', k) = V, i(k', k) = Vy(kl, k),
2

(A7)

V„(k', k)

v..(c, k)

Vii(k', k)

Vi() (k', k)

Vpi(k', k)

Vi i(k', k)

(o, oivio, o)

V +s(k', k) —V s(k', k) —V,+a(k', k) —V, a(k', k),

(1 olvl1 o)

V ~c(k', k) + V c(k', k) + ( V 1c(k', k) —V c(k', k)) cosy,

V i i ——V +s(k', k) + V,+a(k', k) sin —+ V, d(kl, k) cos
2

' ' 2'
—V-io

V, (k', k) — V,+a(k', k) sin 8 + V, a(kl, k) sin 8,
2

'
—Vo

V, (k', k) — V,+a(kl, k) sin8+ V, a(kl, k) sin8,
2

'

V ii —— V~ s(k—', k) + V,+a(kl, k) cos —+ V, a(kl, k) sin
2

' '
2

(AS)

(A9)

(A1o)

(A11)

(A12)

(A13)

Next we expand the spin matrix elements in angular-momentum states:

(a m',"~v(k', k)~a"m", ) = — ) (a'"m',"(a'm', )i (l'm&a'm',
~
jm)

j e'sl'ion, rn, t m, gvn&I

x(jmllmiam, )Y, "(8y, pf) V&, i '(k', k) Y& '(8;, (tl;) (am, ~a", m"), (A14)

where (k, 8;, P;) and (k, 8y, Py) are the spherical coordinates of the initial and final momenta. The Clebsch-Gordan
coefficients vanish unless I = I' + 1, l' and mi = m( + m, = mI + m'„and parity conservation requires ~t

—l'~ = 0, 2.
In the Madison convention the projectile has no angular momentum in its propagation direction and so m~ ——0, in
which case

&i"' (2' I)') = &i'(o o) =
)( (A15)

As an example we consider the V, i term Eq. (A7) which couples the singlet state to the triplet state. Because j is
a constant and 8' = 0 in the 6nal state, the total angular momentum j must equal l'. Parity conservation requires
I = I', and because m, and mi are 1 and 0, we must have m~ = 1, and m& = 1. The suin in Eq. (A14) then reduces
to a simple suni in the final orbital angular momentum /'. In this way we obtain the partial wave deconipositions:

(A16)

Vis(k', k) = ) Pr(x)(2l+ 1) Vji" (k', k)2
L=O

(A17)

Vcc(k', k) = ) P((c) ((I+2)V& (k', k) —111(1+1)(I+2)V„(k' k)
1=0

+ (2l + 1)V„(k',k) + (I —1)V„(k',k) —11'(I —1)l V„c (k', k)), (A1S)

Vcc(C k): ) Pt(x) ((I + 1)Vj~ (k k) + IVj (k k)
2 l=.

+/(I +1)(I+2)Vii~c(kk)+11(l 1)IVi(c(kk)) (A19)
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Vip(k', k) =

'v'-"'(k' k)tl —2

$'P, '(x) (—V, ', "(k'k),+V„+ (k', k)
l=1

'+ 'v""'(k' k)—l l+2 (A20)

l=1

Vl —i(tt) (ki k)
+ VI+1(tt) (ki k)ll ~ i+ y

ll+2
'V' '"'(k'

k)I (A21)

Vi i(k', k) = ) P, (z) V„+ (k', k) — V„+2 (k', k)
4ir ' 1+1 " ' Q(l+1)(l+2)

V (k' k) + -V (k' k) — V (k' k) (A22)

V„(")(k',k) = x I„(k',k). (A25)

Equations (A18)—(A22) contain Vt,
&

's intermixed for
I

Note that the sums are over the orbital angular mo-
mentum of the 6nal state, and that we have combined
matrix elements of different j values if they multiply
the same Legendre polynomial (the Lippmann-Schwinger
equations couple states with the same j only).

We invert Eqs. (A16)—(A22) for the partial wave po-

tentials Vt, t(' ' (k', k) by multipling the equation for each
I

V i by Il, and numerically evaluating the inte-
gral:

1

I (k', k) = d2: V (k', k) Pt (cos(I)t, g).
—1

(A23)

For Eq. (A16) and Eq. (A17) the inversion is sixnple

because only one Vl, l' ' is involved:

27r2V„' (k', k) = V„' (k', k) = I, (k', k), (A24)
gl(l + 1)

( Iii(k', k)
Ipp(k', k)
Iip(k', k)
Ipi(k', k)

(Ii i(k', k) )

I = BV,

B77L fA
l' l

(V'+"")(k,k) )
v, ",

")(k, k)

V (k', k)
V+ )(k', k)

(A26)

(A27)

where Bl,l makes up a matrix of coefficients multiply-
ing the V's in Eqs. (A18)—(A22). We solve the matrix
equation (A27) by matrix inversion,

V=B I. (A28)

Finally, we check the procedure by recombining the po-
tential according to Eqs. (A16)—(A22) and comparing to
the original.

The substitution of the partial wave expansions
into the three-dimensional Lippmann-Schwinger equa-
tion leads to the coupled integral equations:

differing j and l values, and so the projection results in
6ve coupled equations:

Tj(ee)
2.2

Tj(te)
22

V" pdp V "(k', p)V
' (k', p) T~ "(p, k

V1(ts) E+ @( )
Vg(ts) (ki ) Vj ( ) (kI ) T2( )

(
(A29)

Tj(tt)
2.2

T2(et)
22

V2(tt) ~ 2d Vj(tt) (ki )
Vl(ts) (ki )22 + p p j.j p j.j 'p

v'I"' + E+ —E(p) v,',I"'(k', p) v,',!-'(k',p)
T2(st)

( k)
(A30)

Tj(tt)j—1j—1
Tj(tt)

j+1j—1

Vj(tt)
(A31)

Tj(«)j+lj+1
~j(tt)j—1j+1

V, Ii(+, p dp V'. I,(+,(k, p) V,.+,
(

i(k', p),.+,,+, (p, ) (A32)
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TABLE I. Notations for spin 1/2 x 1/2 amplitudes.

yi (»')

Spin
Al
Stapp
&spin

j(sa)
22
0
0

z j(t&)
22

1+—0
0

Tj(«)j—1j—1
1
0

Tj(«)
j+1j—1

1
2
l —1

4

Tj(«)
j+1j+1

1
0

yj(«)j—1j+1
1

-2
l+1

6

Tj(«)
22

1
0

O'l l

7

Tj( t)
j2

0m 1
0

fag0(tt) TO(tt) TO(tt) TO(tt) 000 —1 —1 1 —1 —11

e = (Tao —To&)
2

f =i~2r„.
(A38)

(A39)

The on-energy-shell T matrix elements in the partial
wave basis are related to the bar phase shifts [8,7):

—2ipT,'I")(kp, kp)

—2ipT,'. (")
(kp, kp)

—2ipT +1 '+1(kp ko)~ («)

—2ipT,'~(", ),(kp, kp)

—2ipT~I ')
(kp, kp)

(A40)

(A41)

cos 2p~e & —1,

cos2p)e ' » —1)

cos 2eze &+ & —1

—isin2e e' ' ''+ '+'', (A43)

—isin2p) e' '+ "&

E„(ko)Et, (ko)

Ep(ko) + Es(ko)

(A44)
1

a = —(T„+Too —Tx-z) ~

2
1

b = —(Trg + T„+Ti i),
2
1

c = —(Tii —T„+Ti i),
2
1

d = —(Too+ Tz z
—Tix) /(2cos8ha)

2

(A33)

(A34)
where the parameter p~ is the mixing angle between the
)0, 0) singlet and )1, 1) triplet state and the parameter ef
is the mixing angle between the l and l + 2 triplet states.
In Table I we give the connection to the cr notation of
Stapp [7] and the N, o; notation used in our computer
code Lpotpl.

(A36)

= —(Tao + Toz) /(v 2 sin es h), (A37)

Equations (A29) and (A30) describe singlet-triplet
coupling arising from the Vy term in the optical potential
Eq. (11),which in turn produces an f term in the scat-
tering amplitude Eq. (1). Equations (A31) and (A32)
describe mixing within the triplet state arising from the
tensor-force terms V p, V,+p, V, p in the potential Eq.
(11). Because the total angular momentum j is a con-
served quantity, all coupled states have the same j su-
perscript.

Once the T&,&~'
') 's have been solved for, the matrix el-

ements in the spin basis (s'm, i)T)sm, ) are computed via
Eqs. (A16)—(A22) with the V's replaced by T's. The a f-
amplitudes are then
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