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Momentum-dependent nuclear mean fields and collective flow in heavy-ion collisions
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We use the Boltzmann-Uehling-Uhlenbeck model to simulate the dynamical evolution of heavy-ion
collisions and to compare the effects of two parametrizations of the momentum-dependent nuclear
mean 6eld that have identical properties in cold nuclear matter. We compare with recent data
on nuclear Sow, as characterized by transverse momentum distributions and How (F) variables for
symmetric and asymmetric systems. We 6nd that the precise functional dependence of the nuclear
mean 6eld on the particle momentum is important. With our approach, we also con6rm that the
difference between symmetric and asymmetric systems can be used to pin down the density and
momentum dependence of the nuclear self-consistent one-body potential, independently. All the
data can be reproduced very well with a momentum-dependent interaction with an equilibrium
nuclear matter compressibility K = 210 MeV.

PACS number(s): 25.70.—z, 21.65.+f

I. INTRODUCTION

Over the past decade, the extraction of the nuclear
equation of state (EOS) from experimental data has been
one of the main goals of intermediate energy heavy ion
collisions. The nuclear EOS plays a major role in the
physics of colliding nuclei at high energies and also has
a major infIuence in the theory of supernovae explosions
and neutron star properties [1]. Information on the EOS,
as characterized by its coeKcient of nuclear compress-
ibility, K, can also be deduced from detailed Hartree-
Fock plus random phase approximation analysis of giant
monopole resonances in finite nuclei [2].

In the &amework of heavy ion collision. physics in the
100 MeV/A 2 GeV/A energy regime and its rela-
tion to the nuclear EOS, the measurement and theo-
retical interpretation of collective fIow observables have
been vital [3]. Among the many models suggested to
describe theoretically heavy ion collisions at such ener-
gies, the Boltzmann-Uehling-Uhlenbeck (BUU) approach
model has proven to be very successful [4]. In BUU sim-
ulations, nucleons can suffer hard collisions and can also
move on curved trajectories, owing to interaction with
the self-consistent nuclear mean Geld. The properties of
the mean Geld are crucial to such calculations and can.
also be directly related to the nuclear equation of state.
Some efFort has been devoted to obtain realistic nuclear
mean Gelds that could be used in practice within such
numerical approaches. Most studies, including this one,
use &ee-space parametrizations of the two-body cross sec-
tions [4].

Early on in microscopic analyses, it appeared that the
data on nuclear fIow, as characterized by transverse mo-

Electronic address: jzhangOhep. physics. mcgill. ca
t Electronic address: dasguptaOhep. physics. mcgill. ca
~Electronic address: galehep. physics. mcgill. ca

mentum plots [5,6] and fiow angle distributions [7] de-
manded an equation of state with a high equilibrium nu-
clear matter (p = pp T = 0) compressibility coefficient
(K 380 MeV) [8]. However, it was later shown that
if a reasonable momentum dependence was introduced
in the nuclear mean field, a lower compressibility would
be favored in the interpretation of the experimental data
[9—11]. In fact, Pan and Danielewicz [12] have recently
shown that How data for asymmetric systems could dif-
ferentiate between a hard momentum-independent EOS
and a soft momentum-dependent EOS, favoring the lat-
ter. Finally, it is clear that the momentum dependence
of the nuclear mean Geld is an unavoidable feature for a
fundamental understanding of nuclear matter properties
[13]and for the successful interpretation of current heavy
ion data.

Additional properties of momentum-dependent mean
fields have also emerged in the BUU analysis of heavy
ion collisions. Different sets of momentum-dependent
parametrizations sharing a common compressibility co-
eKcient have been used. We will concentrate on two of
those. We label them GBD [9] and MDYI [14], in accor-
dance with the (quoted) articles in which they have been
introduced. This nomenclature has been used previously
[11]. Pan and Danielewicz [12] have used a GBD-type
parametrization. Another momentum-dependent poten-
tial used in one-body numerical simulations is associated
with the Gogny interaction [15]. The properties of the
GBD and MDYI potentials are somewhat similar in the
ground state, but they will have difFerent behaviors in ac-
tual dynamical situations [14,16]. We shall discuss this
aspect in the present paper.

Stimulated by the findings of Ref. [12], we have an-
alyzed the quantitative difFerences between GBD- and
MDYI-type approaches. We also give our own opinion
as to which parametrization should be used in calcula-
tions where nonequilibrium efFects can be important, as
in intermediate energy heavy ion collisions. We further
explore the impact of our conclusions on the determina-
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tion of the nuclear EOS, by comparing with current heavy
ion data. We perform BUU calculations for symmetric
and asymmetric projectile-target combinations, at vari-
ous colliding energies. We also comment on the quan-
titative importance of angular momentum conservation
at the microscopic level in the interpretation of nuclear
transverse momentum data. Our paper is organized in
the following way: in the next section we give a detailed
presentation of the nuclear mean fields used in our BUU
calculations. Section III analyzes the generation of trans-
verse momentum. We then compare with experimental
data, and we finally conclude.

II. NUCLEAR MOMENTUM-DEPENDENT
MEAN FIELDS

As mentioned above, difFerent forms of phenomenolog-
ical momentum-dependent potentials are found in BUU
applications. Gale, Bertsch, and Das Gupta employed a
parametrization of the potential energy density that can
be written as [9]

( ()) Ap() B p ()
po t7 + 1 po

t-"p(r)
d f (r, p)+ dp

Po 1 + P (P)
(2.1)

The corresponding mean field (GBD) is obtained by tak-
ing a functional derivative with respect to the single-
particle occupation function; U =

&& ~~. One then ob-
tains
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where p is the moxnentum of the particle, (p) is a local
momentum average, and f(r, p) is the phase space occu-
pation density. This quantity is normalized such that the
nuclear density p(r) = j dsp f(r, p). There are five pa-
rameters to be determined in UGBD(p(r), p). Previously
[9], two of them were chosen arbitrarily: the momen-
tum scale A = 400 MeV and a = 7/6. This exponent
has an especially large influence on the nuclear equation
of state compressibility coefBcient, K. We further re-
quired the following at the saturation density: (i) the
effective mass m*/m was set to 0.7 at the Fermi sur-
face, and (ii) the total energy per nucleon was adjusted
to reproduce the volume term of the semiempirical mass
formula, E/A = —16 MeV. We used po

——0.163 fm
and thus obtained K = 215 MeV.

Some subsequent work by Welke et al. [14] used an
improved parametrization
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which leads to the other form of the momentum-
dependent potential we shall consider:
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The five constants A, B,C, o, and A in UMDYI(p(r), p)
were set by dexnanding that, at saturation: E/A
—16 MeV, K = 215 MeV, the real part of the op-
tical potential U(po, p = 0) = —75 MeV and

2

U(po, ~z —— 300 MeV) = 0. It then follows that
U(po, p ~ oo) = 30.5 MeV and that the effective
mass m'/m = 0.67, at the Fermi surface. The agree-
ment of UMDYi with the real part of the optical potential
as extracted &om experiment is remarkable, at both low

and high energies [17]. To clarify the origins of these
parametrizations, we state here that a Yukawa interac-
tion would have a mean field whose exchange term would
be a momentum-dependent expression of the MDYI type
[14]. The GBD potential energy density can be obtained
from its MDYI counterpart by replacing p' in the denom-
inator of the integrand of Eq. (2.3) by its average, (p').
The momentum-dependent term of the MDYI mean field
is attractive and important at low momentum, but it
weakens and disappears at very high momentum. Even
though both of the above paraxnetrizations (GBD and
MDYI) can share the same compressibility K, the quan-
tities U(po, p -+ oo) and the effective mass m* can
be different. The value of U(po, p -+ oo) has impor-
tant consequences for the modeling of nuclear collisions
at high energies, as we shall see.

In this work, for the sake of consistency and for the pur-
pose of a quantitative comparison with Ref. [12],we reset
the five constants in our GBD and our MDYI potentials.
For both parametrizations we require that 0 = 12/11,
E/A = —16 MeV, po ——0.15 fm, U(po, p m oo)
30.5 MeV, and m'/m = 0.67. We then obtain K = 210
MeV, for both potentials. We call these the new MDYI
(NMDYI) and new GBD (NGBD), respectively, to distin-
guish these new parameter sets from the previous ones.
We further note that both NGBD and NMDYI give a
similar excellent fit of the high energy optical potential
(defined at saturation density), a desirable and important
feature.

If one neglects the momentum-dependent term, which
means C = 0, the mean field is a function of the nuclear
density p alone. This simple Skyrme parametrization has
the form (making the r dependence implicit)
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TABLE I. We write here the parameters and characteristics of the single-particle potentials we have introduced in the main
text.

Model

Soft
Hard
GBD

MDYI
NGBD

NMDYI
HM

A
(hieV)
—351.3
—120.5
—144.9
—110.44
—227.5
—322
—9.0

B
(MeV)

300
69.2
203.3
140.9
347.7
352.5
39.5

7/6

7/6
1.24

12/11
12/11
2.27

C
(MeV)

0
0

—75
—64.95
—103.9
—62.75
—62.75

(MeV)

400
415.7
495.4
417
417

m*/m

1
1

0.7
0.67
0.67
0.67
0.67

U(po PF)
(MeV)
—51.3
—51.3
—53.3
—52.9
—51.4
—51.4
—51.4

U(po, 0)
(MeV)
—51.3
—51.3
—76.3
—75

—73.5
—72.4
—72.4

U(po, oo)
(MeV)
—51.3
—51.3
—1.34
30.5
30.5
30.5
30.5

K
(MeV)

200
373
215
215
210
210
373

We may thus further define two additional parameter
sets. The first is a hard poteatial (K = 373 MeV) and the
second a soft potential (K = 200 MeV). The parameters
for the GBD, MDYI, NGBD, NMDYI, and momentum-
independent hard and soft potentials are summarized in
Table I, together with a hard MDYI potential (HM),
which has X = 373 MeV. Note that for all those po-
tentials P(po, T = 0) = 0 and E/A(po, T = 0) = —16
MeV.

Figure 1 shows the difference between the NGBD and
NMDYI single-particle potentials. Both those potentials
produce the same bulk nuclear matter properties at equi-
librium. We plot the potentials as a function of wave
vector k, for densities ranging &om 0.1 to 0.5 fm, in
units of 0.1 fm . Both potentials have a somewhat sim-
ilar momentum dependence, but for higher densities the
NGBD is more attractive at values of k & kF and no-
tably more repulsive at k & kF. This behavior has been
noted previously [14]. We thus insist on the following
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important fact: even though the two interactions have
an identical high-momentum behavior for p = po, the
similarity in their asymptotic values is not guaranteed
for densities other than equilibrium nuclear matter den-
sity. The inQuence on the collective observables will be
discussed in the following sectioas. As an additioaal com-
parison, we also show the momentum dependence of the
GBD and NGBD parametrizations in Fig. 2. The two
parametrizations yield almost identical compressibilities
(cf. Table I), but the high momentum NGBD is much
more repulsive, mainly owing to its asymptotic optical
potential: U(p, p -+ oo). Also comparing to Wiringa's
microscopic calculations [18] one realizes that NMDYI is
very close in behavior to that of the UV14 + UVII in-
teraction, over a wide range of momenta and densities.
On the other hand, the high momentum part of NGBD
reaches values closer to that of the UV14 + TNI poten-
tial. In addition to fitting nuclear matter properties, the
potentials described by Wiringa can reproduce nucleon-
nucleon scattering and few-body data.
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FIG. 1. A comparison of the momentum-dependent
NMDYI and NGBD potentials, adjusted to produce identical
bulk properties in cold nuclear matter. The abscissa shows
the wave number. Starting from the bottom, the different
curves are for densities of 0.1, 0.2, 0.3, 0.4, and 0.5 fm

—100

K (fm ')

FIG. 2. Same caption as in Fig. 1, but with the GBD and
NGBD potentials.



1620 JIANMING ZHANG, SUBAL DAS GUPTA, AND CHARLES GALE SO

III. TKANSVERSE MOMENTUM

One important technique proposed to quantify the flow

of nuclear matter is the transverse momentum analy-
sis [5]. This method has also been used to clarify the
transverse momentum generating features of difFerent
nuclear mean Gelds in the BUU approach to nucleus—
nucleus dynamics. In the framework of such studies it
has been shown that under certain circumstances, a soft
momentum-dependent potential can produce about the
same transverse momentum as that of a hard momentum-
independent interaction [9,10]. An effort to understand
this was made in Ref. [11]. In order to further high-
light the behavior in a dynamical situation of the hard,
GBD, NGBD, and NMDYI potentials, we plot in Fig. 3
the time evolution of the average transverse momentum
for a symmetric Nb + Nb collision at projectile kinetic
energy E = 400 MeV/nucleon at an impact parame-
ter b = 2.1 fm. A sizable difference in the saturated
transverse momentum is observed. The hard momentum-
independent potential follows the behavior of the soft
momentum-dependent one quite closely, at this impact
parameter. The asymptotic values of their average trans-
verse momentum are only 4 MeV apart. We comment on
the behavior of the momentum-dependent interactions
below. Note in passing that throughout this paper we

have consistently set c = 1. Consequently, momentum is

expressed in units of GeV or MeV, and time in units of
fm.

By setting the collision term in the BUU equation to
zero, one can study the Vlasov behavior of the hard,
GBD, NGBD, and NMDYI potentials. From Fig. 4
one realizes that the momentum-dependent single par-
ticle potentials alone can generate large transverse mo-

menta, whereas the hard potential can only yield very
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FIG. 3. Average in-plane transverse momentum per nu-

cleon vs time for BUU calculations of Nb + Nb collisions at
400 MeV/nucleon, at an impact parameter b = 2.1 fm. The
results are for the hard, GBD, NGBD, and NMDYI poten-
tials.
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FIG. 4. Average in-plane transverse momentum per nu-

cleon versus time for Vlasov calculations of Nb + Nb at 400
MeV/nucleon, at an impact parameter b = 2.1 fm. The re-

sults are for the hard, GBD, NGBD, and NMDYI potentials.

small transverse momenta. These results are similar to
those of Ref. [11]. Comparing Figs. 3 and 4, we can fur-

ther deduce another important fact: the role of hard two-

body collisions, as represented by the BUU collision inte-

gral, is quite difFerent depending on whether the nuclear
mean field is momentum-dependent or not. Compar-
ing the hard and NMDYI potentials, the fraction of the
net average transverse momentum generated by adding
the collision term to the Vlasov equation is = 100% and
—42%%up, respectively. However, it is important to point
out that the transverse momentum is generated by the
nuclear mean Geld and the hard two-body collisions in

a highly nonlinear fashion. Figure 4 also tells us that,
even though the GBD and NGBD potentials have the
same functional dependence on momentum and almost
identical compressibilities, they produce net transverse
momenta that are very difFerent from each other. As dis-

cussed in Sec. II, this result can be understood simply
in terms of the difFerent asymptotic values of the respec-
tive one-body potentials. Continuing our interpretation
of the results in Fig. 4, we Gnd the following interesting
fact: the NGBD and NMDYI potentials produce average
transverse momenta in the Vlasov mode that difFer by
= 10 MeV. Both these parametrizations share the same

U(po, oo) and K. As mentioned previously, fitting the
static nuclear matter properties and optical potential is
not enough to predict unambiguously the consequences
of the different interactions in nonequilibrium situations.
It is also likely that realistic cases will also carry the
added complication that generally, (p) g 0 in the GBD
formulation of the one-body potential.

Figure 5 shows the average in-plane transverse mo-

mentum, calculated in the BUU model, as a function of
center-of-mass rapidity. From this figure, it is also clear
that NGBD is more repulsive than NMDYI [14]. We will
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FIG. 5. Average in-plane transverse momentum distribu-
tions versus centre of mass rapidity for Nb + Nb for b = 2.1
fm and beam energy 400 MeV/nucleon. The results are for
the NGBD and NMDYI interactions.

The measurements of rapidity distribution for "pseudo-
protons" around yo are plotted in Fig. 6(a) for Ar +
Pb at 400 MeV/nucleon at an impact parameter b = 4.5
fm. The impact parameter is estimated using well-known
geometrical arguments [22]. The data shows a linear ra-
pidity dependence of (P ), in the interval [0, 1]. The flow

parameter F is obtained by Gtting the data to a straight
line in the appropriate interval, as shown in Fig. 6. The
BUU calculations were performed with 120 parallel sim-

ulations to minimize numerical fiuctuations, and with
&ee space nucleon-nucleon scattering cross sections. We
note in passing that since the two-body collisions con-
tribute more to the transverse Bow with a momentum-
independent potential than with a momentum-dependent
potential as discussed previously, this observable is not
expected to be greatly sensitive to reasonable variations
in the in-medium cross sections. To illustrate this point,
compare also Fig. 3 with Fig. 4.

Our simulation results also show that the transverse
momentum (P ) depends linearly on the rapidity around

(P )=0 with both NGBD and NMDYI potentials. Figure
6 clearly shows this. The 6t to the experimental data is
quite good with both interactions. To increase data sen-

sitivity to the model parameters, the extracted values of
the How parameter, F, are plotted as a function of the

discuss later which interaction we favor, from a theoret-
ical point of view.

IV. COMPARISON WITH DATA

d(P /m)
dy

(4.1)

In this section, we compare BUU calculations with ex-
perimental data. We will first concentrate on values of
the How parameter F and transverse momentum distribu-
tions, as measured in asymmetric heavy ion reactions by
the DIQGENE Collaboration [19] and by the Riverside-
GSI-LBL Streamer Chamber Group [20]. The fiow pa-
rameter F is defined as

~ 4 ~ ~ ~ I s s ~
I
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Here (P ) is the average value of the transverse momen-
tum projection on the reaction plane and yo is the rapid-
ity at the intercept: (P ) ~»

——0. Since the experimental
efficiency cuts inBuence the observables, corresponding
restrictions have to be applied to the theoretical calcula-
tions in order to compare with measured values.

Following Ref. [12], we first turn to measurements by
the DIOGENE Collaboration. There, the laboratory po-
lar angle of the particles is limited by

E

A

V

0.2

0.1

—00

—0.1

~ NMDY

DATA

20 & 8 & 132 . (4.2)

The transverse momentum P~ of the particles have to
satis

0
CI

—0..2 s ~ ~ I s ~ ~ I s

—0.35—0.15 0.05 0.25 Qs45 0.65 0.85 1.05
Y

P~/m & 0.36 + 0.72y, if y ( 0,

P~/m ) 0.36 —0.8y, if y & 0 .

(4.3)

(4.4)

FIG. 6. Average in-plane transverse momentum (divided
by the proton mass) as a function of rapidity in the Ar +
Pb reactions at 400 MeV per projectile nucleon at an impact
parameter 6 = 4.5 fm. The solid and dashed lines represent
linear fits through data [19] and calculation, respectively.
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impact parameters b in Fig. 7, together with the rele-
vant data. We see that the overall agreement is quite re-
markable with the NMDYI potential whereas the NGBD
potential gives larger values than the experimental mea-
surements. The momentum-independent potential fails
completely to reproduce the data. Our calculation re-
sults are consistent with the results of Ref. [12], where
the data is fitted by a low compressibility GBD-type po-
tential. We also confirm the important finding that the
asymmetric system can nicely separate out interactions
of a similar compressibility but with a different momen-
tum dependence. The results associated with the hard
and soft interactions of the MDYI type do not differ much
in this plot.

Now we turn to rapidity distributions as measured by
the Streamer Chamber. The results of the analysis are
presented in terms of the mean in-plane transverse mo-
mentum as a function of normalized rapidity in Ar +
Pb central collisions at 400 and 800 MeV/nucleon, re-
spectively. All protons, whether &ee or bound in clus-
ters, have been included. Figure 8 shows the calcula-
tion results of rapidity distributions with the NMDYI
and NGBD potentials at 400 MeV/A in comparison with
the data. The behavior differs slightly from the common
S shape [6] due to the asymmetry in collision geometry.
It also differs from the linear DIOGENE data, since the
two detectors have widely different acceptances. In the
calculation, the maximum impact parameter was evalu-
ated within a geometrical clean-cut model. The value of
b „used was 5.8 fm. Our calculations with the NMDX I
potential reproduce the data very well. A considerably
larger transverse momentum transfer was generated by
the NGBD potential simulations. In Fig. 9 we compare
the results obtained with the two potentials with data
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Il II

A
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—55

—90

—125
—0.6 —0,3 0.0 0.3 0.6 0.9 1.2

Y/Y,

obtained with the same projectile-target combination, at
800 MeV/A. We reach similar conclusions as in the 400-
MeV/A case.

Figure 10 presents the excitation function of the aver-
age in-plane transverse momentum in Ar + Pb collisions.
The average transverse momentum per nucleon is eval-
uated from protons with r~pidities in the c.m. system
greater than 0.1, 0.15, 0.2, and 0.3 for beam energies 400,
800, 1200, and 1800 MeV/A, respectively. The average

FIG. 8. Average in-plane transverse momentum as a func-
tion of normalized rapidity in central Ar + Pb collisions at 400
MeV per projectile nucleon. The data of Ref. [20] are com-
pared with BUU calculations with the NMDYI and NGBD
potentials. Errors bars in the theory re6ect statistical errors
only and are given for one set of calculations.
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FIG. 7. Impact parameter dependence of the Bow param-
eter I" for Ar+Pb reactions. The results of BUU calcula-
tions with diferent single particle potentials, hard, NGBD,
NMDYI, and HM, are compared with the data of Ref. [19].
Error bars in the theory reBect statistical errors and are only
given for one set of calculations.
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FIG. 9. Same caption as in Fig. 8 but with incident kinetic
energy 800 MeV/A.
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FIG. 10. We plot the excitation function of the average
transverse momentum per nucleon in the reaction plane for
the forward center-of-mass hemisphere as a function of beam
energy for Ar+Pb reactions. The data of Ref. [20] are com-
pared with the BUU calculations with the hard, HM, NGBD,
and NMDYI potentials. Errors bars in the theory refiect sta-
tistical errors only and are given for one set of calculations.

BUU transverse momentum with the NGBD and hard
MDYI(HM) potentials are much larger than the data.
The only good fit is provided by the NMDYI potential.
There, the agreement is striking at all energies. Again,
a hard momentum-independent potential is completely
ruled out by this data.

Summarizing this section so far, we reproduce both
the DIOGENE and the Streamer Chamber measure-
ments quite well in terms of BUU microscopic simula-
tions with the MDYI-type momentum-dependent poten-
tial, with a compressibility K = 210 MeV. A GBD-type
momentum-dependent potential with the same K value
is not so successful and a momentum-independent inter-
action fails completely. Our findings support those of
Ref. [12]: the flow parameter data for asymmetric sys-
tems is quite efflcient in separating interactions that are
momentum dependent from those that are momentum in-
dependent, even though their compressibility coefficient
are the same.

We now turn to a set of preliminary data on symmetric
systems [21], as measured by the EOS TPC Collabora-
tion. Such data are of high quality, virtually free of ex-
perimental biases. The EOS Time Projection Chamber,
with its simple and seamless acceptance, good particle
identification and high statistics, was designed to over-
come the limitations of the previous generation of 4m de-
tectors. The Plastic Ball detector, even though having
provided a seminal contribution to the Geld, had a com-
plex acceptance that was not so easily simulated. The
Streamer Chamber was somewhat limited by its particle
identification capabilities. In the EOS TPC measure-
ments we shall consider, all nuclear fragments species up

0.8

o NMDYI

~ DATA

os — ~ HM

0.4
~——v—

0.2

0.0
250 500 750

E„. (MeV)

1000 1250

FIG. 11. We plot the excitation function of the Bow param-
eter I', where I' is de6ned in the main text. The solid squares
refer to Au + Au data as measured by the EOS TPC Collab-
oration [21], the circles are calculations done within the BUU
approach, with a soft and stifF compressibility coefBcient. The
numerical uncertainties in the calculations are of the order of
10'Fo, as previously.

to 4He are included. The multiplicity trigger was set
in order to select an interval centered about the value
where the low has its maximum. This multiplicity in-
terval corresponds to baryon multiplicities 0.6M
M & 0.9M ". M is a value near the upper limit of
the multiplicity spectrum where the height of the distri-
bution has fallen to half its plateau value. In our BUU
calculations, we have adjusted our impact parameter lim-
its to reproduce the multiplicity cuts, in a geometrical
clean-cut model. The integration was then carried out by
sampling several impact parameter values between those
two limits. The data are in-plane transverse momentum
measurements as a function of rapidity. The Bow pa-
rameter I' could then be evaluated. Figure 11 shows the
TPC data, together with our calculated results. Mea-
surements were made for Au + Au at beam energies 250,
400, 600, 800, and 1200 MeV jA. We display results of
calculations with a soft and a stiff momentum-dependent
potential. Calculations done with the NMDYI interac-
tion reproduce the data exactly.

Au + Au is a reasonably large system and it might
be that there exists effects that could safely be neglected
for smaller nuclei at lower energies that are important
here. It was brought up recently that an improvement in
the angular momentum conservation in the microscopic
models could perhaps lead to a reevaluation of the role
played by the nuclear mean field in generating transverse
momentum in heavy ion collisions [23]. The quantitative
importance of conservation laws in microscopic models of
heavy ion collisions has been investigated before [24,25].
In the case at hand, the only difference might come &om
the fact that we are dealing here with very heavy sys-
tems at high energies. Thus the respective role played
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constraints raise the flow by only 8%. The net effect on
the transverse momentum can readily be appreciated in
those two figures. Basically, the effect on BUU calcula-
tions is considerably smaller than in cascade approaches.
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FIG. 12. We plot the transverse momentum generated in
Au + Au collisions at 1 Gev/A against normalized rapidity
in the center of mass. We investigate the consequences of (a)
imposing a reaction plane (RP) on each two-body collision in
the BUU model and (b) reaction plane (RP) and exact angu-
lar momentum conservation (AMC) in a cascade approach.

by two-body scattering and mean field effects might be
modified. We have considered two numerical algorithms.
In the first approach, whenever two-body scattering oc-
curred at the microscopic level we made sure that the di-
rection of the reaction plane was unchanged in the center
of mass of the colliding nucleons. The other algorithm
made sure that angular momentum was conserved ex-

actly Figure 12(.a) displays the effects of reaction plane
conservation on the results of BUU calculations, for Au +
Au collisions at 1 GeV/A. The impact parameter range
and kinematical cuts were adjusted to match those of
the TPC. Figure 12(b) shows the consequences of reac-
tion plane and exact angular momentum conservation on
cascade simulations of the same nuclear reaction. The
exact algorithms used are described in Ref. [24]. The
imposition of exact angular momentum conservation in-
creases the flow parameter by roughly 23% in cascade
simulations. We can also see that the dominant effect in
angular momentum conservation comes &om keeping the
direction of the reaction plane constant in individual two-

body collisions. In the BUU calculations, reaction plane

V. SUMMARY

We have used the Boltzmann-Uehling-Uhlenbeck equa-
tion to describe the dynamics of nucleus-nucleus colli-
sions. Concentrating on the momentum-dependent fea-
tures of the one-body self-consistent nuclear mean field,
we have seen that the precise functional dependence on
momentum of the interaction was important. Taking
two potentials with the exact same characteristics at
saturation density and zero temperature (NGBD and
NMDYI), we have shown that their behavior in situa-
tions removed from equilibrium could be quite different.
Prom a purely theoretical point of view we believe that
approaches based on MDYI-type interactions are on a
firmer basis. In GBD-type approaches, the quantity (p)
was put in by hand to enforce the Galilean invariance of
the potential. MDYI has Galilean invariance &om the
start and furthermore, the fact that it can be identified
with the Fourier transform of a Yukawa potential is pleas-
ing. Both interactions have the virtue of being relatively
sixnple to handle (MDYI is however trickier to implement
numerically). Again, in equilibrium or close to equilib-
rium situations it should make little difference which is
used. As far as the results outlined in this paragraph
go, our investigations follow in the steps of some of our
previous works [11].

Furthermore, keeping in mind the quantitatively differ-
ent results obtained with NGBD and NMDYI, we have
confirmed the idea put forward by Pan and Danielewicz
[12]. By performing calculations to address data on sym-
metric and asymmetric systems at high energies, one can
indeed assess the importance of the density-dependent
and momentum-dependent terms in the nuclear equa-
tion of state, separately. In pursuing this point, we have
for the first time compared DIOGENE and EOS TPC
data with BUU results. We find that all the data we

have considered in this paper can be reproduced with
a momentum-dependent interaction with an equilibrium

nuclear compressiblity coefficient of K = 210 MeV. Also,
we have verified again the importance of angular momen-
tum conservation on the generation of transverse mo-
mentum in high energy heavy ion collisions. Relaxing
the conservation law leads to a slight variation in the
Bow parameter in BUU collisions. This change should
be considered in high precision fits of the experimental
data as it should undoubtedly lead to lower values of y
[26]. This does not however alter the general conclusions
reached in this work.

Finally, it is worth pointing out that after more than
a decade of careful experimental investigations and the-
oretical progress, a consistent picture of the behavior
of nuclear matter at high temperatures and densities is
emerging. Perhaps the crudest way of characterizing the
nuclear equation of state is by its equilibrium compress-
ibility coefficient and this value is now stabilizing to some
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number around 210 MeV. The fact that low and high en-
ergy heavy ion experiments seem to require compatible
values of K is satisfying. The fact that high-quality, bias-
&ee, exclusive experimental data is now available and will
continue to be generated in the immediate future will set
even more stringent tests for the models. Some challeng-
ing problems remain to be successfully tackled in theory.
For example, the area of composite production is an ac-
tive area of research [27]. In the context of nuclear Bow,
this is a pressing issue as it is now clear that composites

bear the greatest sensitivity to collective behavior in high
energy heavy ion collisions.
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