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Mean field description of the ground state of many boson systems relevant to nuclei
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In the present paper we give the explicit expressions for the ground state of a many boson system
in different mean 6eld approximations, such as Hartree-Bose, Bogoliubov, the particle-hole random
phase approximation (RPA), and its coupling with the particle-particle RPA. The ground states
obtained satisfy the requirement that the annihilation operators of the "elementary excitations"
annihilates them. In all cases the ground state wave functions can be understood as a condensate
of pairs of bosons.

PACS number(s): 21.60.—n 21.10.—k

I. INTRODUCTION

The mean field description of fermion systems was
studied in detail at the beginning of the 1960s. At that
time it was shown that a mean field description can be
obtained using the Hartree-Fock (HF) or Hartree-Fock-
Bolgoliuvov (HFB) approximations, depending on the
relevance of the two-particle (two-hole) degrees of free-
dom. Moreover, the importance of the particle-hole and
particle-particle excitations and their relation to the sta-
bility of the HF or HFB vacuum was also studied [1,2].
It was found that the stability of the HF solution was
guaranteed once the roots of the random phase approxi-
mation (RPA) are real [2,3]. The RPA was thought of as
a "fluctuation" on the Fermi surface defined by the HF
approximation. It was also shown that when the corre-
lations introduced by the RPA were taken into account
the structure of the ground state was not changed in a
qualitative way. It is also well known that there are two
difFerent types of instabilities: one related to the particle-
hole RPA (PHRPA), which in nuclei is related to shape
fluctuations, and the other one corresponding to fluctu-
ations in the number of particles or, similarly, to the
two-particle (and two-hole) RPA (TPRPA). This second
instability is related to the existence or not of Cooper
pairs or to the existence of a nonvanishing solution for
the HFB equations.

The initial tool used to obtain the stability theorem
for particle-hole excitations was developed by Thouless
[2]. He proved that the variations of the HF vacuum,
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nonorthogonal to it, can be written in terms of one-body
operators. The relevant variations are given by states of
the form

~0 ) = exp ) Cs;a&a; ~0),

where a& (a, ) creates (annihilates) a particle above (be-
low) the Fermi sea, while ~0) corresponds to the HF vac-
uum. The coeKcients CA, ; must be determined by some
physical prescription. In the minimization of the ground
state energy, using the HF method, they are arbitrary
numbers, while in the calculation of the instability of the
RPA, they are related to the RPA eigenstates.

For bosons, the state of the art was in a sense rather
poor and the problem is quite different. The more no-
ticeable difFerence is the existence of Bose condensation
[4]. This phenomenon complicates the application of field
theoretical methods to Bose systems, a problem that was
solved for dilute systems in Refs. [5,6]. The studies done
at that time were mainly interested in the thermody-
namic limit. In that limit bosons are prone to collapse
for an attractive interaction. This fact makes necessary
the existence of short range repulsion for physical sys-
tems.

Due to the existence of Bose condensation it was as-
sumed that the ground state at zero temperature can be
described as a condensate of the lower-energy boson (I'o).
The bosonic excitations of the systems were obtained via
a Dyson-like equation that contained not only the usual
self-energy but also the anomalous one [5]. It was im-

plicitly assumed, as it is valid for fermionic systems, that
the structure of the ground state does not change "dras-
tically" when the correlations introduced by the difFerent

types of RPA's are taken into account. The study of this
aspect will be the main point that we will develop in the
present paper.
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A similar problem, but in nuclear physics, was studied
more recently; see for instance [7,8]. In this case the char-
acteristics of the Hartree-Bose (HB) method for a finite
(and not so large) number of bosons were considered in
some detail. All the steps used in fermion systexns can be
reproduced for boson systems, but the presence of Bose
condensation changes some of the relevant characteristics
of the problem, the more noticeable being the similarity
between the Bogoliubov transforxnation for bosons and
the excitations described by the PHRPA [8,9]. At the
time of the appearance of the BCS treatment for fermion
systems there was much interest in the application of
similar methods to bosons [10—12]. The results obtained
for boson systems have some different "signs" if they are
compared with the fermion ones: normalization condi-
tions, the relation between the energy of the excitations
and the gap, etc.

For boson systems the comparison between the char-
acteristics of a condensate of bosons and a condensate
of pairs of boson was studied variationally [13]. We will

show in our conclusions why this comparison was not
completely meaningful. Also in nuclear physics a model
was considered that has essentially the same competi-
tion: on one side a condensate of bosons, considering as
a "quasiboson" the pair of fermions that originates the
superconductive description, and on the other hand a
condensate of a-like structures that can be considered as
a pair of bosons [14—16] (or a pair of "deuteronlike struc-
tures" coupled to the quantum numbers of an n particle).

In the present paper we will give explicit expressions
for the ground state wave function of the system of struc-
tureless bosons, in different mean field approximations.
We will initially make a review of the usual Hartree-Bose
approximation and we will study its stability conditions
that will yield the particle-hole random phase approx-
imation (PHRPA). We will write down explicitly the
ground state of the PHRPA using an operator Rt [see
Eq. (2.31)] that commutes with all the annihilation op-
erators of the excitations of the PHRPA. The operator
Rt can be thought of as the creator of a "bosonic" Cooper
pair, and that coxnparison clarifies why it is possible to
write down the RPA ground state as a condensate of pairs
of bosons.

We then will show that the assumption that the ground
state of the type obtained in the PHRPA yields, natu-
rally, excitations that have a structure identical to the
one proposed by Bogoliubov [4,9]. The complex excita-
tions of this system can be obtained studying the cou-
pling of the "elementary excitations. "

There exists a profound difference between the behav-
ior of boson and fermion systems already at the level of
the mean field. In the fermionic case one may have or
not the anomalous self-energy [17], and if it vanishes (or
not), the HF (or HFB) approximation provides an appro-
priate starting point for the description of the systexn. In
the bosonic case both types of terms xnust be necessarily
taken into account [4,5]. This difference is also related
to the fact that for fermions the appearance of Cooper
pairs marks a phase transition that cannot be obtained
in a perturbative way, but only after a deep change in the
structure of the ground state. This phase transition can

be understood in terms of the Bose condensation of the
Cooper pairs. For bosons, once the HB approximation is
used, its ground state is a Bose condensate and the Huc-

tuations around this condensate will result in a ground
state wave function that can be written either as a con-
densate of pairs or as a coherent state formed by these
pairs (this is the main conclusion of the present paper).
In any case the depletion factor will inform us about how
much of the ground state is composed of bosons in the
lowest energy state and will be an appropriate order pa-
rameter [16].

In Sec. II we will review the HB approximation, its
stability conditions, and the Quctuations induced by the
PHRPA. In Sec. III we will present in a unified language
different mean field approximations: again the PHRPA, a
BCS-like treatment (Bogoliubov approximation), and the
particle-particle RPA (PPRPA) coupled to the PH RPA.
In the nuclear case the coupling between the PHRPA
and the PPRPA is relevant only in open shell nuclei, i.e.,
when the system is superconductive (see for instance Ref.
[18]). If the arguments used for fermions are valid in the
bosonic case, we will show that this coupling must always
be considered; i.e., the bosons are always on a superHuid
ground state.

In all the cases we write explicitly the ground state
wave function in such a way as to guarantee that the
annihilation operators for the excitations of the system,
acting on the ground state, give zero, showing that it
can be always expressed in terms of a coherent mixture
of pairs of bosons. In Sec. IV we will discuss the obtained
results.

II. FLUCTUATIONS AROUND THE
HARTREE-BOSE VACUUM

A. Hartree-Bose approximation

In this subsection we will follow closely the deriva-
tion of the HB approximation used in [8]. One starts
by considering a system forxned by N interacting bosons.
In the lowest order, which is just the HB approxima-
tion, this system can be described as arising from in-
dependent (dressed) bosons moving in an average self-
consistent field. Due to the boson structure of the de-
grees of freedom the ground state will be a condensate of
bosons corresponding to the lowest single-particle energy.
The vacuum wave function is

(2.1)

where I'0 is the creation operator of the dressed boson
in the lowest-energy single-particle state and ]0) is the
bare vacuum. The main purpose of the HB approxima-
tion is to express the operator I'0 in terms of the initial
undressed-boson operators.



1520 F. ALDABE, G. G. DUSSEL, AND H. M. SOFIA 50

To fix the ideas we will consider a two-body boson
Hamiltonian that is written as 1+) icosi

1V
2

(2.4)

(2.2)

where V,.'-yk is related to the symmetrized matrix ele-
YA

ment of the two-body interaction [8], and p&t creates a
boson with quantum numbers k.

One can use a theorem similar to the Thouless theorem
for bosons. The variations not orthogonal to the ground
state can be written as [2,3,7]

I@~) = &e ~@w), (2.s)

where

Here the coeKcients cp are arbitrary. The p's label the
remaining dressed bosons states that together with the 0
state form the complete HB basis.

This variational wave function can be written in an
alternative way as

where

N

~e„') =~ rt+);rt ~o),
p )

(2.3)
o = ) c rtr, .

p

(2.6)

In order to find the solution for the HB problem we
will study the expectation value of the Hamiltonian with
the variational wave function ~@Iv), i.e. ,

(@~IHI@N) —&'[(@Nl&l@~)+ (@Nle'&+ &8~@~)+ (@~~8'&8+ (e' +++0 ) ~@&) + "] . (2.7)

If ~@~) corresponds to a solution of the HB problem, any variation not orthogonal to it can only increase the expec-
tation value of the ground state energy. Therefore, the HB approximation is obtained by requiring the cancellation
of the linear terms in 0 in Eq. (2.7), and as usual, the stability conditions will come out from the requirement that
the second order terms must be positive definite.

To do explicitly the HB approximation we will define the I'~ operators in terms of the pt by performing a unitary
transformation

ro ——) go, p, , (2.8)

(2.9)

~g4P ) Ops VV' i (2.io)

ggj 7)pg ~ (2.ii)

We can write the Hamiltonian of Eq. (2.2) in the (O,pj basis

+00 + ~10 + +Ol + 011 + 820 + +02 + +21 + +12 + 822 ) (2.12)

where

Sym8„= ~;,~.i~„r,r. + —
& V,, „~.i~„~„~„r,r, rOr0,

ik ijkl
(2.i3)

(2.14)

(2.is)
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sym
002 020 g g, kl ~p ~qj~ok~olr„r, r,r

pq ij kl

(2.16)

I„=IIt, = —) ) v,'"„-,~„,&„~„'„~,',rtrtr„r, ,

pq~ ijkl
(2.17)

H» ——) ) v,.'"„-,&„,&„~„'„~„',r„r,r„r. .
pq~s ijkl

(2.18)

The indices p, q, r, and s refer to states different from 0. It can be seen that the only parts of the Hamiltonian

involved in the stationary condition [when the linear term of Eq. (2.7) vanishes] are Hio and Hoi. We notice that,
the coefficients cp being arbitrary numbers, the stationary condition is fulfilled if

) go h;~ = Epgo;,
J

(2.19)

where

h;, = t;, + -(e~~r, r, —l~e~) ) V,.'„"„ri,i,ri,', .
kl

(2.20)

and

Eo = ) &;,go;g,', + -(ex[ro'ro —1leN) ) V'', 99o'%k%lj
kl )

(2.21)

The one-body Hamiltonian h;j corresponds to an average distorted field generated self-consistently by the N bosons
of the system. We call Eq. (2.20) the Hartree-Bose Hamiltonian because of the similarity to the fermionic case. It must
be noticed that, in the bosonic case, there is only one state that is occupied and can be considered as belonging to Fermi
sea. The procedure to obtain the HB state involves only the coefficients go;, leaving the ri~;(p g 0) undetermined. We
can go further and construct a complete orthogonal basis of bosons &om the equation

) g' h,~
= E rI';,

2

@=0,p, (2.22)

where the eigenvalue solutions of Eq. (2.21), E, are the energies required to add one more dressed boson of the "type
z" to the (N —1) particle condensate. In general [8] the expectation value (e~~roro —l~e~) is replaced by N —1.
The energy Eo should not be confused with the ground state energy which is the expectation value of Hoo (note the
difFerence of a factor 2 in the two-body part, as well as an overall factor N):

z»(N) = (e~~a..~e~) = N ) t;,&„&,', + -(e~[r,'r', r.r, ~e„)) v,.',
U ijkl

(2.23)

If one makes an expansion of the energy in terms of N,
it is well known that the HB approximation corresponds
to consider the leading order terms in N. Therefore, one
has the freedom to change the matrix by N instead of
N —1, but we do not see any special reason to make this
replacement. We will preserve the dependence that ap-
pears more naturally, i.e., to replace (eN ~rororpro ~eiv)
by N(N —1). This completes the definition of the HB
procedure and, if one is interested in considering all the
O(N) terms, the RPA must be performed.

I

I'ot. Their energies Ep will be the energy required to add
one more boson to the ground state of (N —1) bosons.
This prescription has the disadvantage that H~q will not
be diagonal in this basis.

These energies will be wrong in order O(1jN) (com-
pared to the leading order, which is of order N2) as terms
of that order in the Hamiltonian have not been consid-
ered. In order to take into account all such terms we
must perform the RPA, which is equivalent to linearizing
the equation of motion of the excitation operators

B. Particle-hole random phase approximation

We will consider single-boson excitations that corre-
spond to the eigenvalues of the one-body Hamiltonian
h;j. In this way these excitations will be orthogonal to

at = ) (x;rtr, —v„-rtr,-),
N

(2.24)

(2.25)
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which act on the correlated ground state of the system
with % bosons. This procedure was discussed in detail
in Ref. [8] and will only be sketched here.

We assume that the Hamiltonian of Eq. (2.2) has been
diagonalized in the HB approximation. Since we only
study excitation energies of one-boson states, it is conve-
nient to de6ne the zero of the energy scale at the lowest-
energy state Eo. Therefore, we will take as single-boson
energies E'„= E~ —Eo. The linearization of the equations
of motion, given by the commutators

B~IRPA) = 0,

for all n. It is convenient to de6ne the operators

(2.31)

which is the suKcient condition to which Thouless ar-
rived. We can therefore conclude that if all the eigen-
values of the RPA are real, then the HB solution will

be stable. It is important to remark that we have only
considered the particle-hole RPA. We will now give an ex-
plicit expression for the PHRPA ground state. We want
to de6ne it by imposing the conditions

[H, Bt] = 0 Bt,
leads to the RPA equations

(2.20)
&t =rtr, —) z„,r,'r-, ,

q

(2.32)

( A B i (X 5 /X
A. I I, Y- I

—~-
I Y- I) 4 )

(2.27)
uq

(2.33)

where
where

A„= —(e„I[r,'r„, [H, rtr. ]]Ie„)
1

= E~br, e + (N —1) ) V ~"Pjrlp~vloj '9qx'9oI. ~ (2.28)
Z„=) Y„

./1
).,,

B,, = ——(4~I[r,'r„, [H, r,'r, ]]I4~)
1

= —(N —1) ) V,',"alga*'. .hi Uoi '7oi .
ij,A:l

In calculating the commutators neither H2~ nor H22
contribute.

As was already noted in Ref. [8] the structure of the
creation operators of the RPA bosons is equivalent, to
order O(1/K), to a Bogoliubov transformation defining
quasiparticles. We will later show that this similarity is

by no means fortuitous.

C. Stability conditions and the particle-hole RPA
vacuum

We will now study the stability condition for Bose sys-
tems in the HB approximation. The proof is essentially
the same as for fermion systems. We will start by con-
sidering the requirement that the second order term in
the coefficients c„ in Eq. (2.7) be positive definite. That
implies, as in the fermionic case, that in the Hermitian
eigenvalue problem

Due to their construction, g„and R t commute. More-
over, the operators gt are a linear combination of the op-
erators that create the PHRPA excitations. With these
auxiliary operators it is simple to arrive to an explicit
expression for the RPA vacuum. It can be written as

N

IRPA) = ARt '
IO) . (2.3fi)

The structure of this state is rather amusing; it cor-
responds to a condensate of pairs of bosons, and there-
fore its structure is similar to the one corresponding to
a number-conserving HBB wave function. We will now

study the possibility that this state is variational; i.e., we

will consider the energy of the RPA ground state and will

make variations with regard to the parameters Z.
The contribution coming from the RPA to the ground

state energy, in leading order in N (i.e., if one considers
that the commutator between B and Bt is equal to 1,
neglecting the higher order terms), can be written as [?]

B& &C~ &C~
(2.29)

the eigenvalues A should all be non-negative. If we mul-

tiply the RPA equation on the left by the row vector
(X,Y), we find

In the case of a system with odd number of bosons

N

IRPA) = ADt R™I0),

where

(2.as)

D,' = yr+ 2)Y„-r' —x;r-„x',
D,' = (m+2)rt —r.z.'

p/0

= 0 (Xt X —Yt Y ), (2.30) fulfilled the condition that B IRPA) = 0.
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~O, RPA ~HB ) fin ) (YP ) —~HB Tr[A] + )
CX p CX

1 1 t t (A B t fXt)
~o,RPA = ~HB -~[A] + —~ (&' Yt ) I B. A* I I Yf(B' A*) (Y )

(2.37)

The variation with respect to Z is equivalent to a vari-
ation with respect to Y„,taking into account the normal-
ization condition Eq. (2.25). This normalization condi-
tion relates the variation with respect to Y„ to variations
with respect to X yielding

sx~ (x»l
bY (Y~t) (2.38)

III. STRUCTURE OF THE ELEMENTARY
EXCITATION S

With this constraint, Eq. (2.37) is satisfied automat-
ically once the RPA is satisfied. This implies that the
wave function that we have obtained for the ground state
of the PHRPA of a bosonic system is the same that will
be obtained if one performs a number-conserving HBB
calculation (to higher order in N).

[H, Ct] = (u Ct, (3.2)

where the structure of the operators Ct must be speci-
fied. When performing this linearization, one has in the
commutator written on the left hand side, in general,
a difFerent structure than the one that was assumed on
the right hand side of the linearization condition. It is
custoInary to replace the supernumerary operators that
are on the left in the left member of Eq. (3.2) by their
corresponding mean values in the ground state such as
to reduce it to the proper structure. The assumptions
with respect to this point make the difFerence between
the difFerent mean field approximations.

In order to study the excitations of the system, it is
convenient to introduce the concept that the creators
of the elementary modes of excitation Ct are defined
through the linearization conditions

To simplify the treatment we will rewrite the Hamil-
tonian of Eqs. (2.12)—(2.18) in terms of the number
operators n„= I'tI'„and the two-particle creation oper-

ators Pt = I'tI't, where ~p) is the time-reversal state of
]p). The Hamiltonian can then be written as

H = ) (EP —~)n. + ):TP.nPn. + ).SP.&,'&. + lV
p s»q qW»

(3 1)

where in the summation the subindices p, q can also have
the value 0. The energies E„are the HB energies, solu-
tions of Eq. (2.22), and we have also introduced the
chemical potential p. Tzq and Szq are parts of the resid-
ual Hamiltonian Hqq [Eq. (2.15)], H2p, Hp2 [Eq. (2.16)],
and H22 [Eq. (2.18)]. In W are included all the terms
which are not explicitly included (for example, Hsq). In
particular, R' is not relevant for the ground state calcu-
lation and can be treated perturbatively if necessary.

A. Elementary excitations of the Bogoliubov
approximation

If one chooses for Ct the Bogoliubov prescription

(3.3)

[n„rt] = b, ,„rt

[p„rt] = b, „r„-. (3 5)

Therefore,

Eq. (3.2) corresponds to the Bogoliubov description of
the system.

To evaluate the commutator between the Hamiltonian
and the operator that creates the elementary excitation,
one needs the commutators

[H, I't] = E„—y, + ) T„(2n —1) rt + ) (S „Pt) I'„—. (3.6)

In the Bogoliubov approximation one replaces the operators nq and P by their corresponding mean values in the
ground state, i.e., by (np) and (Pt) = b,v, respectively. Therefore one has for the commutator between the elementary
excitation and the Hamiltonian

[H, C ] = [U g (p) + V rt2p(p)]I' + [U g2p(p) + Vgzz(p)]I' —= E (U„r„—V„r„-) (3.7)
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where

»j(&) = E~ ~+ ) (3 8)

then Eq. (3.2) corresponds to the particle-hole RPA. The
constant JV~ is determined from the normalization con-

dition [C,C&] = b p, which reads

and &'=(&,' —&„')(( ) —( )) (3.19)

~2o(p) = ).S.~&. .
vW»

(3.9)

Equation (3.7) allows us to write down explicitly U~,
V„, and the "quasiparticle" energy E„. The energies of
the excitations satisfy the condition

where (no) and (nz) are the expectation values in the
ground state of the number of bosons in the levels 0 and

p respectively. As we have one degree of freedom in the
determination of the constant we will use

E„' = g»(p)' —g2o(s)' . (3.10)
and

JV~ = (np) —(n~) (3.20)

The amplitudes U„and V„must satisfy also the nor-
malization condition (3.21)

and therefore their values are given by

»i(p) l~

2g E„

(3.11)

(3.12)

We will start by evaluating the commutator of the
Hamiltonian given by Eq. (3.1) with the operator defined
in Eq. (3.18).

If we call t„= rtor~ (we assume P g 0), then we can
write for the commutators

and

1 f »g(p)
I2q E„) (3.13)

[n„tt] = (-b, , + b, „)t,',

[t„t„']= b, ,„(n, —n„),

(3.22)

(3.23)

This completes the description of the excitations in the
Bogoliubov approximation.

To construct the vacuum explicitly one must remember
that it must satisfy

[t„zJ]= b, „r„'r,', (3.24)

Cp~Bog) = 0 .

If one chooses for ~Bog) a state of the form

[Bog) = AH s exp (7 ) /0),

(3.14)

(3.15)

[t„p,] = -2r, r, .

As p g 0 we can write

[II t,'] = &~ —&o+ ) .~~.(2".—b. ~)

(3.25)

where

7t =) &rtr„',
p

(3.16)
+) SpvP~up —) 2SpqutPq,

where we have de6ned

(3.26)

one obtains

.gt
C„~Bog) =N ), (

—v„+U„&)r ~0), (3.17)

„~ —I~I~ (3.27)

In the linearization procedure, it is usual to replace
operators by their expectation values on the vacuum. In
this case we will need to make the replacement

and therefore, with p~ = ~U, Eq. (3.15) corresponds to
P

the vacuum of the system in the Bogoliubov approxima-
tion.

B. Elementary excitations of the PHRPA

If one assumes that

and

utPq ——bp qt„(np), q—P 0,

Ptu„=2b~ pt„—(np),— q g p

Therefore, we have

[H, t„'] = A„(P)t„'+A2o(P)t,—,

where

(3.28)

(3.29)

(3.30)

(3.18) E, —Z, + ) T„(2u, —b, „) (3.31)
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as

A20(&) = »0p((n0) —(np)) . (3.32)

These expressions allow us to write explicitly Eq. (3.2)

[H, Ct] = [X„A11(P)+ Y„A20(P)] t

+ [X.A20(p) + Y.A»(p)] .—

C. Elementary excitations of the coupled
PPRPA and PHRPA

If one assumes that

c,'= (x,r,'r, —vrtr,-+x.r', rt —rr.r.r,-),1
p ~ P p 0 P 0 P rx 0 p rx P

(s.s9)

GAPA (Xpt —Yptp) (3.33)

Xp[A»(&) ~RPA] = YpA20(&) (s.s4)

and therefore one obtains for the RPA amplitudes the
conditions

then Eq. (3.2) corresponds to a RPA that couples the
particle-hole and the particle-particle modes. The con-
stant Af~ is determined from the normalization condition

[C,Cp~] = b p.
We will now study the structure of the ground state

of the excitations defined in Eq. (3.39). It follows &om
inspection that a state having the structure

and ~CRPA) = exp (pRt) ~0),

Y,[A„( ) + 0" „)= -X„A„(p). (S.S5)
where we have defined

(s.40)

These equations can be satisfied simultaneously if the
energy of the RPA excitation satisfies the condition

(~RPA ) —All (p) A20 (p) (s.s6)

Rt = rtl ', + ) ~„rtrt,
p

(3.41)

and

1 A11(P) )X, = — 1+
2 E ~RPA]

(3.37)

The amplitudes X~ and Yp must satisfy also the nor-
malization condition Eq. (3.21), and therefore their val-

ues are given by

satisfies the condition that all the annihilation operators
related to Eq. (3.39) acting over the state ~CRPA) give
zero once the commutations of those operators and 'Rt

are properly adjusted. These commutators can be writ-
ten as

[Cp„r R'] = X,[t„,R'] —Y„[t„',R'] + Z„[u„R']
= X„cput —Y„2ut + Z, (2t„+qpt„') (3.42)

1 f A11(p))
2 g ARPA)

(3.38) and

[[C„,Rt], Rt] = 4Z, &„ t,

and therefore we have that
Once X„and Yp are known, the vacuum can be written

down explicitly as it was done in Sec. II.

(s.43)

n

C„exp (pRt) ]0) = ) —,Rt"up— —Wp + p(Xprjp —2Yp) + 4p Zpgp ]0) .
n

(s.44)

The determination of the number of particles fixes com-
pletely the coeKcient p. For each value of p one must
deterxnine gp in such a way that the parentheses in
Eq. (3.44) cancel. It must be noted that when the
particle-particle part of the RPA operators are irrelevant
(i.e. , when Zp and W„are equal to zero) we obtain the
PHRPA wave function.

IV. CONCLUSIONS

In this paper we have studied several xnean field ap-
proximations based on the Hartree-Bose description of

many boson systems. We have studied the explicit struc-
ture that the corresponding ground states have in these
different approximations. We have ixnposed in all the
cases that it must be destroyed by the annihilation oper-
ators related with its excitations.

We have obtained a rather simple and general result:
In all the approximations the ground state can be written
in terxns of operators that create pairs of bosons. We only
discussed the even N case because if N is odd we saw in
Sec. II that one must introduce an operator that takes
into account the nonpaired boson and does not gener-
ate any collective phenomena. In number-conserving de-
scriptions one obtains for the ground state a condensate
of pairs of bosons, but when the approxixnation does not
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conserve the number of particles we obtained a coherent
state where the basic operator creates a pair of bosons.
The result that we have obtained seems to contradict
the results of Ref. [13], where the competition between
the single-boson condensation versus the condensation of
pairs of bosons was studied. There the bosons have mo-
mentum (p) as a good quantum number and the wave
function for the ground state of the single-boson conden-
sate was assumed to be of the type

where
[1) = exp (St) [0),

st = yrt+) x,rtr'„.

(4.1)

(4.2)

It is useful to compare the part of the wave function ]1)
that has N particles (]1,N)) with a condensate of N/2
pairs of bosons. One can write

N 2m—

(N —2m)!m!
m m

(4.3)

where 7 t = Q„A&I'tl' „On the other hand, the wave function of the condensate of a pair of bosons (CPB) is

]CPB) = 3/gpss'R ]0),

where we can write for 'Rt = pl OFO + 7 t, or writing it explicitly

(4.4)

N 2!
ICPB) = &~»). , N, (~1') *P~' = ).a-(~1".) *P&'

m 7n

(4 5)

As both wave functions must be normalized we can
assume that the ratio of the coefficients a /b for m = 0
has to be equal to 1. Taking into account this factor, the
coefBcients of the same terms in both wave functions have
the ratio

(a ! ( bo ) (N/2)!(N —2m)! f P)
( ao j (b J (N/2 —m)!N!

(4.6)

fa l t'bo '! ( cx

&K»)
(4 7)

and therefore for ~2p = o. both wave functions will be
equal to leading order (in N).

We thus conclude that the wave function ]1,N) can
also be interpreted as describing a condensate of pairs of
bosons, and therefore the assumption of Ref. [13] that the
wave function ]1) has to be considered as an alternative
to a condensate of pairs of bosons is not justified. The
system will be essentially a single-boson condensate if P
is of order ~N or equivalently if n is a number of order
1. When o, is much smaller than 1, then the system will
be described in terms of the operator 7 t. But in both

For large N ()) m) we can replace (&
'

), by N [1+
O(P) + .]. If one neglects the terms of order O(P) and

takes into account that P = ~no ——n~N, the ratio has
the value

cases one cannot ignore the presence of pairs of bosons in
the ground state. The type of phase transition that can
happen is illustrated for example in Fig. 2 of Ref. [16],
where a pairinglike Hamiltonian between the bosons was
diagonalized exactly and the order parameter that is re-
lated to the occupation of the 0 level was calculated for
diferent strengths of the interaction. The features of the
phase transition will be of course dependent on the char-
acteristics of the Hamiltonian.

In the nuclear case there may be a competition between
a condensate of pairs of like bosons (superffuid descrip-
tion both for protons and neutrons) and a condensate of
alphalike clusters (that can take into account the phase
transition that appears when one moves &om spherical to
deformed nuclei). For spherical nuclei it is necessary to
introduce two types of bosons I 0 and I'0 as the minimum-

energy bosons for protons and neutrons, respectively [16].
In these cases no plus no is almost equal to the total num-

ber of bosons K and the bosons are simulating, both for
protons and neutrons, superconductive systems.

The o.-like particle can be understood as pairs of
bosons with isoespin T = 0 (dueteronlike bosons), where
the pairs of bosons may have the same quantum num-

bers as alpha particles. The n-cluster condensates (no is
almost zero) may be related to deformed nuclei, as has
been discussed, for instance, in Refs. [16,19].
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