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The role of final state interactions in y scaling in quasielastic electronuclear reactions is investigated
in a physically realistic model, which incorporates the final state interactions via the optical model
Green's function. Relativistic and nonrelativistic complex optical potentials are utilized in finite
nucleus, fully-off-shell, momentum space calculations to represent the final state interactions in an
approach which has been shown to provide realistic descriptions of the separate response functions in
the inclusive reaction. Analyses of the effects of Dirac dynamical degrees of freedom and final state
interactions upon the separate longitudinal and transverse scaling functions are presented along with
a discussion of the high momentum transfer dependence.

PACS number(s): 25.30.—c, 25.30.Fj, 24.10.Ht, 24.10.Jv

I. INTRODUCTION

The study of y scaling in electronuclear physics has be-
come a popular topic among both experimentalists and
theorists [1]. y scaling analyses provide a compact and
straightforward platform for analyzing experimental re-
sults, where the possibility of extracting the nuclear mo-
mentum distribution has been investigated [2]. In the
cases with unexpected y scaling behavior, excellent op-
portunities for studying and searching for physical con-
tributions arise due to overlooked or unusual degrees of
&eedom.

Recent comments have been made about the contribu-
tions of final state interactions [FSI] in y scaling [3—6].
From studies of the separated inclusive response func-
tions in quasielastic (e, e ) reactions, it has been shown
that FSI provide large effects in a range of momentum
transfers [7, 8]. Using model eikonal, local, and nuclear
matter calculations, FSI have also been shown to play a
possibly significant role in y scaling [5, 6]. In this paper
a model, which introduces a complex, nonlocal, off-shell
optical potential to study the FSI in a relativistic 6nite
nucleus calculation, is used. It is hoped that the use of
such a model, which gives a realistic and accurate descrip-
tion of the separated quasielastic response functions, will
provide a clearer understanding of the role and behavior
of FSI in the y scaling regime.

Suggestions that the y scaling properties of nuclei are
such that it may be possible to retrieve the nuclear mo-
mentum distributions and effects due to correlations &om
the experimental structure functions [1]. This concept,
of course, relies on one s ability to reduce any ambiguities
which may arise in the data as a result of effects exter-
nal to the y scaling hypothesis. Hence, the motivation
of this paper is to use a physically realistic model to try
and unravel theoretically the role of FSI in y scaling.

When the experimental results are interpreted in terms
of the differential cross section, it is found that y scal-
ing is generally obeyed. Recently, analyses have been
performed in terms of the separated response functions,

where it was found that the previous well-behaved y scal-
ing interpretation becomes less clear. For the longitudi-
nal response RL„one can look at both regions, y ( 0 and

y ) 0. Since RL, is coupled more directly to the charge
and hence the density, one would naively expect RL, to
scale better than the transverse response R2. This was
found to be untrue. RT scales reasonably well, while RL,
does not.

A theoretical discussion of the plane wave approxi-
mation [PWA] and FSI calculations for the quasielastic
(e, e') reaction and the separated y scaling functions is
given in Sec. II. The results for the calculation of the
scaling functions are presented in Sec. III. Section IV
contains an analysis of the FSI contributions as a func-
tion of ~q~ followed by a surrunary and conclusion.

II. THEORETICAL DISCUSSION

The y scaling variable itself is not unambiguous. There
have been a number of investigations and surveys of the
various constructions of y [9]. In this paper we have
chosen to use the variable introduced in Ref. [10] and
discussed in detail in Ref. [3]. This variable derives from
the conservation of relativistic energy and includes some
of the effects due to the average binding energy of the
target nucleons.

w = y mm + (~q~ -t y)~ + /M&2 + y~ —M~ & E„

M~ ~
——M~ —m+8, .

Here E, is taken to be the average binding energy and
M~ is the mass of the target nucleus. The four momen-
tum transferred by the scattering electron is given by
q = (u, q). Equivalently, the y variable can be expressed
as [10]
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—
~ q~~ A + (~ + Mz) )( A' —qq'*M~~

v=
W2

w' = (~ + M„)' —Iql'

m2+M2 + W2

become independent of lql.
In this paper the separated scaling functions are de-

fined as [12]

RL, (q, (u)'(q'") ="zw, (p)+'xw, ( )
'

We have chosen not to discuss the different functional
choices for y, and instead to investigate the behavior
of a particular model description of the nuclear reaction
mechanism in the y scaling regime.

In recent experimental measurements of He and He,
a y scaling analysis was performed in terms of the sep-
arated response functions [11]. Scattering from sHe and
4He traditionally is addressed with a few-body physical
model. Since larger nuclei involve stronger nuclear f1elds
and larger binding energies, experimental measurements
using larger nuclear targets would encounter stronger FSI
and off-shell effects. In the initial studies of the separated
response functions of the quasielastic (e, e ) reactions, it
was found that although simple Fermi gas calculations
were able to reproduce reasonably well the doubly dif-
ferential cross sections, it was not possible to predict si-
multaneously both response functions. This led to much
effort to try to resolve this discrepancy, in which more
sophisticated models and calculations were performed.
A similar story may unfold in studies of the separated
scaling functions, where one expects that for large val-
ues of the momentum transfer lql, these functions should

where

RT (q, u))
(q'") ="zw, (&)+'xw (n)'

1 04)

lkl (9cos 81,

gm2+ (lql + y)'

The proton and neutron longitudinal and transverse con-
tributions are def1ned as WL, = W and WT = W +
W . Choosing particular forms for the current opera-
tors, one finds the following expressions:

The numbers Z and N correspond to the proton and
neutron numbers, respectively, while cos 8~ is the angle
between k and q. The structure functions WL, and WT
are calculated relativistically in the Born approximation
as the elastic scattering of electrons from a &ee nucleon:

w" = Tr " X"~(q)~ J (q)).2Ep 2Ep

WTcc

2 2

-2q' (+~(~') + +2(~')) + 2 (E~+ E~ ) F~(~')' —V'
l4E„Ep 2m )

1
1q „„—m+ ——

p' p
Z( ')' 2E E

2 2Q

p 2
—2+(e )+(e )c ~+

l l
(~ —q )

-2 '+ —+ " " +( — ) (E+E) -qq' ~2 (Ep + E„)' lr

(6)

Wccl
T

1 2 ( (F2((I )) ) 2 2 q 2 ~'(E.+E')' t-(+~(~')+ 2(~')) ~ + F~(&) &
I I

Ev+E'

(8)

where the variables u and q use the nucleon on-shell ener-
gj.es jn the following fashion: ~ = Ep~ —Ep& q = ~ —q .
The superscripts will be described in more detail later,
where ccl refers to the de Forest [13] choice of the cur-
rent operator and cc2 refers to the standard Dirac current
operator.

Final state interactions are calculated using the
Green's function doorway approach to (e, e') quasielastic
scattering [7]. For a more complete discussion, please see
Ref. [8]. The longitudinal and transverse response func-
tions within the one-photon-exchange approximation are
given by

RL, (q, u)) = W (q, ~),
RT (q, u) ) = W' (q, (u) + W (q, ~),

where
r

w" = ):Q.(il J"(~)'If)&(E*+~ —&x)(flJ"(~)li).

Here li) represents the initial nuclear many-body state,
while the sum over

l f) corresponds to all final states of
the full hadronic many-body assembly. J"(q) is the elec-
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tromagnetic nuclear current operator and the P,. denotes
an average over the initial states.

One would like to perform an explicit sum over the
complete set of complex inelastic reaction channels in the
final state, but in practice such a many-body calculation
is prohibitively difficult. By focusing on the scattering
spectrum, a one-body approximation to the current op-
erator can be used to simplify the problem which will still
include much of the physical reactive content necessary
to provide a reasonable and consistent description.

Suppressing the discrete state contribution, Eq. (10)
can be rewritten in terms of the forward virtual Compton
amplitude:

W""(q, (u) = ——Im T""(q, u) ),

where

(12)

Gopt —GQ + GQ Uopt Gopt ~

G pt then corresponds to using an optical model poten-
tial to represent the final state interactions between the
ejected nucleon and the residual nucleus. Gp is the free
propagator for a nucleon within the nuclear medium.

To reduce the calculation to the PWA, U pt is set to
zero or equivalently,

G= Gp, (14)

Here G is the full many-body propagator for the A-

nucleon system. If J" is assumed to be a one-body op-
erator, it can be shown [8] that G reduces to the optical
model Green's function, which maintains a proper and
consistent unitary description of the reactive content of
this inclusive reaction. If one assumes that each knockout
channel is represented by the same optical model poten-
tial, then the following substitution can be made:

2

J,",2 = Fi(q )p" + z o.""q„,

2

J,"„=G (q )p" — iC"
m

q=E (q )p" + z o.""q„,
2m

where G = Fq+ E2 is the familiar Sachs magnetic form
factor and K = k + k'. The bars over K and q indi-
cate that k and k' are fixed to the on-shell values, e.g. ,
ko—:krak + m2, where the sign is dependent upon the

(6) character of the Dirac spinor. The definitions of J„2
and J„q correspond to the cc2 and ccl operators defined
in Ref. [13]. Current conservation is imposed using the
standard practice of replacing q J by qoJ /~q~, but in
general the current is not conserved by these two oper-
ators. These two forms of the nucleon current operator
are equivalent in the on-shell limit and hence correspond
to the same &ee nucleon electromagnetic currents. The
difference is within the nuclear medium, where off-shell
effects become important. The most general form of the
current operator contains 12 independent terms, in which
only two independent terms survive in the on-shell limit.
To be able to construct the complete operator and the
accompanying form factors would require a reliable off-
shell nucleon structure model, for example a /CD based
model. The differences between the ccl and cc2 oper-
ators can only be fully understood microscopically with
such a model. It can be stated that calculated differences
associated with the differences between the ccl and cc2
operators are derived from the underlying nucleon struc-
ture. For a thorough discussion and analysis of these two
current operators and their underlying off-shell implica-
tions, please see Refs. [14—16].

Nonrelativistic calculations of FSI are constructed by
removing all negative energy state contributions, which
result from the Dirac dynamics in the relativistic calcu-
lation. This includes those negative energy contributions
that arise &om the construction of U ~z and in the calcu-
lation of G,~z. This is the manner in which the nonrel-
ativistic calculation is calculated here, where relativistic
kinematics are maintained.

which leads to Eq. (10), where only final plane wave
states for the ejected nucleon are considered.

In the PWA and FSI calculations a single particle de-
scription is used. Bound state wave functions are taken
from a Dirac-Hartree calculation [17] and are represented
in Dirac four-spinor form. The current operators are
treated in relativistic form and no nonrelativistic reduc-
tion is performed. The optical model Green's function
is calculated as the solution of the Lippmann-Schwinger
equation in momentum space to give the fully off-shell
nucleon-nucleus T matrix.

The y scaling analysis presented in this paper will be
performed for both (a) the relativistic plane wave ap-
proximation and (b) with the Green's function doorway
approach to include the FSI. The two forms of the &ee
electromagnetic current operator used are

III. PWA AND FSI y SCALING RESULTS

In these and all subsequent calculations the full rela-
tivistic forms of the ccl and cc2 current operators are
used, where the &ee nucleon-nucleon form factors are
taken from Ref. [18]. The bound state wave functions for
the PWA and FSI calculations are from a Dirac-Hartree
calculation [17]. In Eq. (15) one can see that the ccl
and cc2 forms of J" are identical when p = 0, there-
fore in the calculation of RL„ the eel and cc2 versions
give the same result. It can be shown that the longitu-
dinal expressions derived for the ccl and the cc2 cases
in Ref. [13] are equivalent. For the transverse case the
ccl and cc2 expressions are not the same and will have
different off-'shell behavior, hence the transverse results
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will be presented for both cases. In all of the figures, the
curves labeled ccl (cc2) use the ccl (cc2) current oper-
ators in both the calculation of the transverse response
function and in the calculation of the transverse nucleon
structure function given in Eqs. (7) and (8) and used in
the denominator of Eq. (4). In this paper all of the cal-
culations are performed in momentum space and are for
40Ca

In Figs. 1—3 the PWA scaling functions are shown as a
function of y for various values of the momentum trans-
fer, !q!. In Figs. 2 and 3 the transverse scaling functions
are displayed using the ccl and cc2 current operators, re-
spectively. In the PWA calculations there is little depen-
dence upon the different off-shell behavior of ccl versus
cc2, where the use of these two current operators gives
very similar results. The transverse scaling function ap-
pears to scale reasonably well at the peak maximum and
in the y ( 0 tail region. The peak position shifts for

!q! ( 900 MeV, but seems fixed at y
--0 for larger !q!.

In contrast in Fig. I, Fr, (q, y) does not scale very cleanly.
At the peak as!q! becomes larger, the peak height gradu-
ally increases and actually shifts slightly to lower y. The
shift in the peak position may depend upon the partic-
ular choice of the y variable, but then a shift was not
observed in the transverse calculation. The y scaling fea-
tures are more clearly evident in Figs. 4—6, where slices
of the scaling function at constant y are shown as a func-
tion of I/!q!. As!q! approaches zero, the scaling func-
tion should become constant. The upper panels show
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FIG. 2. The transverse scaling function FT" (q, y) is cal-
culated with the PWA calculation and shown with a linear
scale (upper panel) and logarithmic scale (lower panel) for
several values of the momentum transfer, q, as a function of
the variable y. Here the cc1 current operator, as de6ned in

Eq. (15), is used in both the calculation of the response func-
tions and the nucleon structure function.
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FIG. 1. The longitudinal scaling function FI, (q, y) is cal-
culated with the PWA calculation and shown with a linear
scale (upper panel) and logarithmic scale (lower panel) for
several values of the momentum transfer q as a function of
the variable y.
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FIG. 3. The same as Fig. 2, except the cc2 current oper-
ator is used in these calculations.
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FIG. 4. Slices with constant y of the longitudinal scal-
ing function are shown for the PWA calculation as a func-
tion of ~q~ in fm. The upper panel shows slices for y =
—200, —100,0, 100 MeV and the peak maximum, while the
lower panel shows the slice at y = —400 MeV on an expanded
scale because this slice is much smaller.
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FIG. 5. The same as Fig. 4, except for the transverse scal-
ing function calculated with the cc1 current operator.

the slices at y = —200, —100,0, 100 MeV and at the peak
maximum as a function of [q~, while the lower panel
shows the slice at y = —400 MeV on a more expanded
scale. For the transverse cases the scaling functions come
relatively close to scaling. The slices at the peak maxi-
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FIG. 6. The same as Fig. 4, except for the transverse scal-
ing function calculated with the cc2 current operator.

mum are nearly constant. The y = 0 slice scales almost
as well as the peak maximum, where the deviation re-
Hects the choice of the y variable. For improvements,
corrections to y such as including effects due to the exci-
tation energy of the residual nucleus may be required as
well as other contributions [3]. The slice at y = 100 MeV
does not scale as well, but the y ) 0 region of IiT (q, y)
are affected greatly by the 6 resonance, which is not
included in this calculation. The y = —200 MeV and

y = —400 MeV slices appear to be approaching a scaling
limit for ~q~ (0.1 fm. In Fig. 4 the longitudinal scal-

ing function does not appear to be approaching a scalmg
limit. As ~q~ decreases, Er, (q, y) increases until about

~q~ 0.1 —0.15 fm, where the scaling function changes
behavior and begins to decrease. It seems clear that for
the longitudinal case the PWA calculation does not ap-
proach a scaling limit.

Final state interactions are included using the Green's
function doorway approach described above and in
Ref. [8]. As in the PWA calculation, the ccl and cc2
forms of the electromagnetic nucleon current operator
are used and Dirac bound state wave functions are taken
&om Ref. [17]. Three different complex optical potentials
are utilized to calculate the FSI. The global phenomeno-
logical Dirac optical potentials [BCL] of Ref. [19] and a
Dirac impulse approximation [DIA] [20] are used. These
two Dirac optical potentials incorporate contributions
due to interactions with negative-energy states. Since
negative-energy states are far off-shell, they may cause
large differences to appear between the ccl and cc2 oper-
ators [14]. A nonrelativistic impulse approximation [IA]
is also used, which is basically a purely positive-energy
version of the DIA [21]. The N Npotential, which -is

incorporated into the IA and DIA calculations, is taken
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from Ref. [22] and extends up to 1000 MeV kinetic en-
ergies. The FSI results are calculated for momentum
transfers between 410 and 1400 MeVjc. The optical po-
tentials should be valid for nucleon kinetic energies up
to 1000 MeV, which is larger than the ejectile kinetic
energies at the quasielastic peaks considered. All of the
calculations are performed in momentum space.

As was shown in Ref. [8], at large ]rI] the FSI continue
to have a significant efFect upon the calculations of the re-
sponse functions. For momentum transfers between 410
and 1400 MeV/c the peak heights for the calculated lon-
gitudinal response function with FSI are about 0.7 times
the peak heights in the corresponding PWA result, where
this suppression is surprisingly consistent over the range
of momentum transfers considered. There is also a slight
shift in the position of the peak maximum to lower val-
ues of cu, as well as an overall change in the shape of the
curve. It is clear that in the analysis of RL, and also Rz,
the efFects of the FSI continue to be significant at large

The BCL, DIA, and IA optical potentials are used to
calculate the FSI in Figs. 7, 8, and 9, respectively, where
the scaling functions, Fr„Fpi, and Fp2 are shown. In
Fig. 9, the IA case is a nonrelativistic, positive-energy
calculation, but uses the Dirac form of the ccl and cc2
current operators.

The BCL optical potential is fitted phenomenologically
to data up to initial proton kinetic energies of 1000 MeV,
which is greater than the ejectile kinetic energies at the
quasielastic peaks for all cases shown in Fig. 7. The FSI,
represented by the BCL optical potential, have a large
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effect upon the scaling function, where there is a large
suppression as compared to the PWA results. It is appar-
ent that the scaling behavior is inferior to the results in
the PWA calculations, especially for the transverse cases.
The functions FI, (y) and Fp i(y) do not scale very well,

while Fp2(y), which uses the standard Dirac form for J",
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FIG. 8. The same as Fig. 7, except the Dirac impulse
approximation [DIA] optical potential [20] is used to calculate
the FSI contributions.
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FIG. 7. The scaling functions, Er, (q, y), I"T" (q, y), and
FT" (q, y) are shown in the upper, middle, and lower pan-
els, respectively, resulting from calculations that include FSI
using the relativistic BCL Dirac phenomenological optical po-
tential [19]. The results are shown for several values of the
momentum transfer, q, as a function of the y variable.
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FIG. 9. The same as Fig. 7, except the nonrelativistic
impulse approximation [IA] optical potential [21] is used to
calculate the FSI contributions.
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appears to approach a scaling limit for ~q~ ) 700 MeV/c.
The calculated separated response functions using the

DIA optical potential for large values of u (& 500 MeV)
generally agree with the BCL results, but there exist
some Buctuations. In elastic proton scattering, the ob-
servables are not sensitive to the interior of the nucleus
and hence the interior scattering wave function plays only
a passive role. In inclusive quasielastic (e, e ) reactions
inelastic channels contribute greatly, therefore the FSI
model used here should be sensitive to the interior re-
gion of the ejectile wave function. This should also be
reBected in differences between the cc1 and cc2 versions
of J", which give different off-shell contributions.

In Fig. 8 although there is a gross scaling behavior,
this scaling behavior is worse than that seen in the PWA
case and even the FSI results shown in Fig. 7. The longi-
tudinal looks like it xnay scale for ~q~ & 1000 MeV/c.
The transverse results for both the cc1 and cc2 cal-
culations appear to approach a scaling limit at ~q~

1000 MeV/c, but then deviate sharply from scaling at
~q~

= 1400 MeV/c. It may be that the FSI calculation is
beginning to fail to be realistic at ~q~

= 1400 MeV/c.
In the derivation of y scaling, relativistic dynamic de-

grees of freedom, specifically contributions &om negative
energy states, are not considered. The results shown in
Fig. 9 do not include any negative-energy state contribu-
tions, and hence should be expected to give a reasonable
scaling behavior. As ~q~ approaches 1000 MeV, the FSI
results in Fig. 9 do appear to reach a reasonable scaling
limit, much better than the results observed in Figs. 7
and 8. Again, the calculations at ~q~

= 1400 MeV/c de-
viate from this scaling behavior, but nonrelativistic IA
calculations are constructed &om the same N Ninter--
action as the DIA calculations and therefore may also
break down at ~q~

= 1400 MeV/c. At this momentum
transfer the quasielastic peak, and therefore the approx-
imate ejectile kinetic energy, is about 800 MeV. One can
see though that the inclusion of FSI, both relativistically
and nonrelativistically, makes a y scaling analysis less
clear.

IV. ANALYSIS OF FSI

E~ —m~ —
(q( & Y & I/E~ —m~ + (q(,

E~, —m~ —(q( & Y'& I/E~, —m~+ (q(.

The full many-body propagator is treated in the following
fashion:

&(p p') =&- (p p') = G'. (P)6'(p —p')

+t o(p)To t(p p')&o(p').

The 6 function above can be expressed as

6 (p —p') = 6(Y —Y')6(P —Q')6(E„—E„).
P

Combining Eqs. (16)—(18), the virtual Compton ampli-
tude can be written in the following form:

T""= A(q) + B(q).
1 1

The first term corresponds to the PWA calcula-
tion, where if one ignores the q dependence in A(q),
the response functions should approximately scale as

~q~ RL, T (y). The second term, which includes the FSI,
varies as ~q~

2 and should become smaller as ~q~ becomes
large. In Refs. [2, 6] it was argued that by analyzing the
scaling functions as a function of ~q~, as ~q~ is increased
the result should approach a scaling limit, where the FSI
contributions become negligible.

In Fig. 10 the PWA and the three FSI calculations of
the maximum of the peaks of the scaling functions are
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When FSI are included in the analyses of y scaling
it is clear that there are additional complications. There
have been efforts to try and account for the effects of FSI,
specifically by trying to understand the FSI contribution
as a function of the three-momentum transfer, ~q~. By
including a change of variables Eq. (12) can be expressed
in momentum space as
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FIG. 10. The peak maxima for the scaling functions,
Fz, (qIy)I FT' (q, y), and FT' (q, y) are shown in the upper,
middle, and lower panels, respectively. The results for the
PWA and three FSI calculations are shorn as a function of
fq[

' in fm.
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shown for FI, (q, y), FT", (q, y), and FP (q, y) as a func-

tion of ]q] . As mentioned earlier, one can clearly see
here how the PWA transverse results approach a constant
limit at small values of ~q~, while the longitudinal re-
sults increase as ~q~ reaches 0.1 fm and then decrease
as ~q~ is reduced further.

As argued in Refs. [2, 6], the FSI contributions should
behave approximately as ~q~ and therefore the FSI ef-
fects in the scaling function should vanish for very large
values of ~q~. It should be first noted that even at the
largest values of ~q~ considered here, the FSI contribu-
tions cause a large suppression of the separated scaling
functions and hence the response functions for both the
longitudinal and transverse cases, therefore a reduction
in the eH'ects of FSI is not observed at any momentum
transfer.

In analyzing the scaling behavior, the nonrelativistic
IA calculation of the FSI contributions, represented by
the open circles in Fig. 10, appear to be reaching a scal-
ing limit at ~q~ = 1000 MeV. The points calculated at
~q~

= 1400 MeV violate this scaling tendency, but at this
large momentum this violation may be due to limits in
the accuracy of this particular FSI calculation. This scal-
ing behavior is observed for Fr, (q, y) as well as the two
transverse cases.

The relativistic DIA calculation, given by the open di-
amonds in Fig. 10, does not appear to scale as well as the
PWA or the nonrelativistic IA curves. The cc2 transverse
result looks like it may scale, except for the 1400 MeV
point, but the cc1 result does not scale here. The open
squares correspond to the use of the BCL Dirac optical
potential, which should give the most physical represen-
tation of the FSI. It appears that this calculation does not
scale at the peak for any of the three scaling functions.
It may be that one must extend the calculation to larger
values of ~q~ before the scaling limit is obtained, but since

y scaling is a nonrelativistic construct, one should not
really expect a theory which incorporates relativistic dy-
namical effects to rigidly obey y scaling.

Equation (19) suggests that the scaling functions
should behave linearly for very small values of ~q~ . The
PWA results in Figs. 5, 6, and 10 are linear. The IA and
DIA FSI results do not appear linear, but may become
linear at larger ~q~. Interestingly, the BCL FSI results
are very close to being linear for all three scaling func-
tions and over the whole range of momentum transfer
considered. One should expect though that the FSI re-
sults should be linear and approach the PWA result for
~q~

= 0. This is clearly not the case for the results
shown in Fig. 10 for the peak maxima. For values of y ( 0
the linear behavior is not clear. For y = —100 MeV there
is no evidence of any linear approach to the PWA result;
at y = —200 MeV the FSI results appear to be converg-
ing to the PWA value at ~q~

= 0, but this may be a
result of the tails of the scaling functions all becoming
very small.

A similar sort of violation can be seen in the concept
of the Coulomb sum rule [23—25], which is also a nonrel-
ativistic construction. When one includes relativistic dy-
namics into the PWA calculation, instead of the Coulomb

1.0

D
CJ

LL

0.8

U

= PWIA
0 FSI with LF1
-o FSI with LFO

FSI with BCL

0.8
1000.0 2000.0 3000.0

momentum transfer, q [MeVic)
4000.0

FIG. 11. The ratios, FL, (q, y)/FT" (q, y) and FL, (q, y)/
FT" (q, y), of the peak maxima are shown in the upper and
lower panels, respectively, as a function of the momentum
transfer, q =

~q~ in MeV/c. Results are given for the PWA
and the three FSI calculations.

V. SUMMARY AND CONCLUSION

The separated scaling functions derived &om y scaling
are calculated in both a plane wave approximation cal-
culation and with a model which uses the optical model
Green's function approach to include final state inter-
actions. Two relativistic Dirac optical potentials and a
nonrelativistic optical potential are used to construct the
final state interactions. The nonrelativistic IA calcula-
tion of FSI does seem to give a reasonable degree of scal-

sum rule limit of one or Z, one 6nds the relativistic limit
of 2 or Z/2.

From y scaling it is expected that the longitudinal
and transverse scaling functions should be approximately
equal, which is derived &om the idea that the scaling
functions are related to the nucleon momentum distribu-
tion inside the nucleus. The ratios, FL, (y)/FT (y), for the
peak maxima are shown in Fig. 11 for both the cc1 and
cc2 calculations. For ~q~ larger than 1000 MeV, the PWA
and IA calculations give ratios that are greater than 1.05.
The relativistic FSI calculations are less than 1 for the
ccl case and become greater than 1 as ~q~ increases when
the cc2 current operator is used. Although y scaling is
derived in a nonrelativistic plane wave limit to give the
nucleon momentum distribution, the PWA results given
in Fig. 11 indicate that some of the y scaling assumptions
and approximations may not be completely valid.
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ing, when compared to the PWA calculation, although
the effect of the FSI remains strong. When relativistic
Dirac dynamical degrees of freedom, specifically contri-
butions from negative energy states, are included into the
calculation of FSI, there is no confident level of y scaling
evident.

For large momentum transfers it has been suggested
that the role of FSI may be reduced, and that by investi-
gating the scaling functions as a function of ]q] it may
be possible to remove the effects of FSI altogether [2]. It
is found in the model calculation performed in this pa-
per that this is not true, that the effects of FSI remain
strong at all of the momentum transfers considered, in
agreement with the conclusions of Ref. [6). This is es-
pecially true for the relativistic case, where the model
calculations which include relativistic FSI do not exhibit
scaling.
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