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Escape and spreading properties of charge-exchange resonances in 2osBi

G. Colo and N. Van Giai
Division de Physique Theorique, Institut de Physique Nucleaire, 91/06 Orsay Cedex, Prance

P.F. Bortignon
Dipartimento di Fisica, Universita degli Studi,

and Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20188 Milano, Italy

R.A. Broglia
Dipartimento di Fisica, Universita degli Studi,

and Istituto Nazionale di Eisica Nucleare, Sezione di Milano, Via Celoria 16, 20188 Milano, Italy,
and Niels Bohr Institute, University of Copenhagen, gIOO Copenhagen, Denmark

(Received 22 April 1994)

The properties of charge-exchange excitations of Pb with AL = 0, i.e., the isobaric analog
and Gamow-Teller resonances, are studied within a self-consistent model making use of an effective
force of the Skyrme type. The well-known isobaric analog case is used to assess the reliability of
the model. The calculated properties of the Gamow-Teller resonance are compared with recent
experimental measurements with the aim of better understanding the microscopic structure of this
mode.
PACS number(s): 21.60.Jz, 24.30.Cz, 25.55.Kr

I. INTRODUCTION

Giant resonances can be described as coherent super-
positions of particle-hole excitations and their particle
decays into given hole channels provide insight about the
corresponding particle-hole amplitudes. Thus, the study
of decay properties is a unique way to test model pre-
dictions for the resonance wave function. Experimen-
tal studies have recently been made of the particle de-

cay properties of giant resonances by means of exclusive
measurements where inelastically scattered projectiles, or
light products of transfer reactions, are detected in coin-
cidence with nucleons emitted by giant resonances of the
target system. The corresponding results provide severe
tests for the theoretical models.

The Gamow-Teller resonance (GTR) is the manifesta-
tion of the spin-isospin nuclear zero sound. This mode
was predicted theoretically as the mechanism for explain-
ing the missing strength in the decay of P-radioactive
nuclei [1]. Its subsequent observation in (p, n) reactions
has opened an important chapter of the historical devel-

opment of experimental study of giant resonances when
the availability of higher energy projectiles in the early
1980s led to the realization of reaction conditions under
which spin-isospin modes can optimally be excited [2]. A
first experiment aimed to study the proton decay of the
GTR was performed in Groningen, and reported in Ref.
[3]. The results of this measurement raised a number of
questions, as they seemed to imply a vanishing spreading
width for the GTR, which seems quite unlikely.

Renewed interest in the study of the properties of the
GTR is indeed testified by two recent measurements,
with different characteristics, at Osaka and MSU. The
proton decay of the resonance in Bi has been investi-
gated, and in the Osaka experiment [4], the results appear

in modest agreement with previous theoretical estimates
given in Refs. [5,6], whereas preliminary indications from
the MSU experiment seem to give a somewhat different
result [7]. This has motivated the present work, in which
we apply to the charge-exchange modes a model of gi-
ant resonances which includes in a self-consistent way
the coupling mechanisms leading to the damping of these
modes. This model has been already used to study the
properties of the isoscalar giant monopole resonance in
20sPb [S)

We have erst concentrated, as a test case, on the iso-
baric analog resonance (IAR) in the nucleus 2osBi where
the data provides a clear picture of the resonance prop-
erties. The IAR would be degenerate with its isobaric
multiplet partner, the ground state of 208Pb, if the nu-

clear Hamiltonian were completely charge-independent.
The energy difference, due mainly to Coulomb effects,
has been studied over a long period of time and it is
accurately known. The width of the IAR is known to
be very small. This is because it has the same isospin
as the parent state while surrounding states have the
isospin of the ground state of Bi, which differs by
one unit. Consequently, they couple only weakly with
the IAR. Thus, excitation energy and width of this reso-
nance provide a stringent test for any theoretical model
of charge-exchange collective states.

We shall show how this test has been passed by our
model in Sec. IV, while the predictions associated with
the GTR are presented in Sec. V. Conclusions are drawn
in Sec. VI. Before this, we discuss in Sec. II the general
features of the model already applied to other collective
modes [8] while more specific considerations relevant to
charge-exchange modes are made in Sec. III. Detailed ex-
pressions for the Hamiltonian matrix and decay branch-
ing ratios are given in Appendixes A and B.
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II. GENERAL FORMALISM

H = Hp+ V~g, (2.1)

where Hp is the HF Hamiltonian and V~x, is the particle-
hole (p-h) interaction determined as the functional

]

The random phase approximation (RPA) provides, as
a rule, an accurate description of the centroid of giant
resonances and the &action of the energy weighted sum
rule (EWSR) exhausted by the mode. However, it is nec-

essary to go beyond this approximation scheme in order
to explain the damping properties of the collective mo-

tion. Indeed, giant resonances are known experimentally
to have an energy width and therefore, a 6nite lifetime.

A general theory of the resonance width can be found,
e.g. , in Refs. [9, 10], and a list of references of much of
the theoretical work carried out during the last decade
can be found in [ll]. In many of these calculations pa-
rameters were adjusted at various steps of the compu-
tational procedure in order to Gt experimental data. In
what follows we present a model in which a phenomeno-

logical effective interaction of the Skyrme type is used as
the starting point but after this no further tuning of the

parameters is introduced up to 6nal results.
We start by solving the Hartree-Fock (HF) set of equa-

tions for a given nucleus (A, Z) using a Skyrme two-body
interaction [12]. A set of occupied single-particle lev-

els is then obtained, as well as a self-consistent mean

Geld, which is then diagonalized on a basis made up
with harmonic oscillator wave functions. This diago-
nalization procedure can also be replaced by solving the
HF mean field with a box boundary condition. It pro-
vides a discrete set of occupied and unoccupied levels,

many of which are at positive energy. The quasibound
levels belong to this set. After choosing a convenient

cutoff—details about numerical procedures are given in

Sec. III—a finite set of occupied and unoccupied levels

labeled by ]i) is determined. In the following, we denote
the corresponding energies and wave functions by e, and

rp; [the radial part of the wave function will be expressed
as u;(r)].

Let us call Qi the subspace of nuclear configurations
made up with the HF ground state and all the possible
one particle-one hole (1p-1h) excitations built within the
set ~i). We shall denote by the same symbol subspaces
and projectors onto them. Now, the nuclear Hamiltonian
can be written as

derivative of the self-consistent mean field with respect
to the density. The usual Taxxxxn-Dancoff approximation
(TDA) or RPA in a discrete particle-hole space amount
to solve TDA or RPA equations using the Hamiltonian
QiHQi.

As said above, giant resonances are known to have a
decay width, and we can distinguish two main mecha-
nisms which give rise to it. The energy of the vibrational
nuclear motion can be transferred out of the system by an
escaping nucleon, or can be distributed among internal
degrees of &eedom giving rise to more complicated con-
6gurations than the initial con6guration. The contribu-
tions to the width coming &om these two damping effects
are usually called, respectively, escape (I't) and spread-
ing (I'~) width. We must also mention another source of
broadening of the line width, namely the Landau spread-
ing which already appears at the level of discrete RPA or
TDA calculations.

In order to account for escape and spreading effects,
we build two other subspaces P and Q2. The space P is
made up with particle-hole configurations where the par-
ticle is in an unbound state, orthogonal to all states ~i).
To determine these unbound states, we use the following
procedure. At positive energy e we solve, for each par-
tial wave c —= (l, j), the radial scattering equation for Hp,
projected on the orthogonal complement of set ~i). We
can thus ensure that the resulting outgoing wave func-

tions u~+, , have no overlap with any of the states ~i),
i.e. , P and Qi are orthogonal subspaces (for details, see

[13—15]). The states ul, , have no resonant behavior since
quasibound states are among the states ~i).

The space Q2 is built with a set of "doorway states, "
the first step in the coupling of the ordered resonance mo-
tion with the compound nuclear states, in which energy
is distributed among all degrees of &eedom in a statisti-
cal way. We denote these "doorway states" by ~N). As
a 6rst approximation we can think of them as formed by
2p-2h configurations, but we discuss later a more physi-
cal choice of them in terms of states made up with one of
the 1p-1h excitations coupled to a collective vibration.

We decompose the nuclear Green's function G as a
sum of terxns like QiGQi+ QiGP+ . Using the tech-
nique described in [10] one can show that by virtue of
the equations of motion in the different subspaces and
the properties of projectors, the Green's function QiGQi
obeys an equation where the effective Hamiltonian, after
truncation of higher order couplings, is

1 1
+(~) = Q1HQ1 + W (~) + W (~) = QiHQi + Q»P . P~Qx + QiHQ2 . Q2HQ1)

(2.2)

where u is the excitation energy. This energy-dependent,
complex Hamitonian allows to work inside the space Qi.
It has complex eigenvalues whose imaginary parts orig-
inate &om coupling to unbound and to more compli-
cated configurations and give rise to escape and spreading
widths.

The escape term Wt{~) can be more easily evaluated
if one replaces the complete Hamiltonian H by the one-
body part Hp. The neglect of matrix elexnents of Qx V„x„P

should be, in the present case, rather safe since discrete
and continuum wave functions are essentially restricted
to different radial intervals while V~p, interaction has zero
range. In this approximation, the escape term can be

Also a p-ray can escape when selection rules allow it. In
what follows we neglect this decay channel as it gives a minor
contribution to the total width of the mode.
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written [13] as

W" ((u) = (u —Hp —K, (2 3)

~. (phiViN)(NiVip'h')

N

(2.4)

where we have omitted the subscript ph of the interac-

tion, and uN is the energy of the state ~N), in mean field

approximation. Further clarifications about the evalua-

tion of (2.4) are given in Sec. III.
It is found convenient, in order to solve the effective

Hamiltonian (2.2), to work on the basis of the RPA or
TDA states obtained by diagonalizing its first term. Us-

ing this basis, we provide explicit formulas for the matrix
elements of the escape and spreading terms in Appendix
A. In this matrix form, the eigenvalue equation for the
efFective Hamiltonian (2.2) is

&'D+ Ai(~) A2((u) l &F& &l

~, ( ) -V+ ~, ( ))~,Fl-l)~

where 'V is a diagonal matrix with the RPA eigenvalues,
and the A, matrices which are energy dependent contain
the escape and spreading contributions, as explained in

Appendix A. We have omitted the energy dependence
of eigenvalues and eigenvectors in (2.5), for sake of sim-

These configurations display a rather high level-density in

medium-heavy nuclei, of the order of 10 —10 levels per MeV
in the region of giant resonances if we think in terms of 2p-2h
configurations [17], so that to calculate their inutual interac-
tion would be a formidable task.

where K is the inverse inside subspace Qi of the Green's
function containing only the mean Geld Hamiltonian.
This Green's function can be easily computed and in-

verted as it has only one-body matrix elements whereas
taking into account the two-body interaction would have

resulted in a much harder task. Detailed expressions are
given in Appendix A. The accuracy of the procedure has

been checked in [16], where the results obtained for the
isoscalar monopole strength distribution in 40Ca, by us-

ing the approximate W~ of (2.3), were compared with
those of exact continuum-RPA calculations and excel-
lent agreement between the two calculations was found

(see Fig. 1 of [16]). Yoshida and Adachi made a similar

comparison in [14] and they concluded also that a good
agreement can be obtained, provided a sufBciently large
basis is employed (see Figs. 1—3 of [14]).

The matrix elements on a basis of Qi can also be de-

termined in a straightforward way for the spreading term
W" (ur). We make the ansatz that the configurations ~N)
of Q2 are not interacting . This is reasonable since cou-

pling among doorway states will correct the coupling be-
tween 1p-1h states and doorway states in higher order of
the residual interaction. If we take a basis of p-h con-

figurations, i.e., a set ~ph) (particle levels are labeled by

p, p'. . . , and hole levels by h, h'. . .), then the generic ma-

trix element turns out to be

plicity in the notation, and we have collectively denoted,
respectively, with F and F the amplitudes corresponding
to positive and negative RPA eigenstates. The solutions
of (2.5) are denoted by ~v), whereas the RPA basis vec-
tors are labeled by ~n), according to

~v) = ) F&"&~n). (2.6)

It is worthwhile at this point to notice that an approach
based on TDA instead of RPA leads to an equation in
which only the upper-left quarter of the matrix that ap-
pears in (2.5) is present. The matrix in (2.5) is com-
plex symmetric as can be seen from its explicit form in
Appendix A (see also [13]). The transformation which
makes it diagonal, that is the matrix of its eigenvectors,
is complex orthogonal, i.e.,

F F —FF —1. (2.7)

(2.9)

A useful quantity characterizing a mode excited by a
given operator 0 is the response function,

R(ur) = (0~0 . 0~0). (2.8)
M —R(ld) + 'Le

The corresponding strength function is related to (2.8)
by the well-known relation

1
S((u) = ——ImR(~).

In terms of solutions of (2.5) the strength function is

S( ) = ——Im) (0~0~v) „, (2.10)
7r ~ —n +z~

2

where the squared matrix element of 0 appears, instead
of its squared modulus, due to the properties of the eigen-
vectors ~v), which form a biorthogonal basis. We stress
at this point that, although not explicitly written, the
eigenvalues labeled by v as well as the wave functions
needed to compute the matrix elements of 0 depend on
cu, as the effective Hamiltonian does. So, better than the
eigenvalue distribution, which can change when diago-
nalizing the effective Hamiltonian at different energies,
the strength function really carries information about the
couplings taken into account, and can be directly com-

pared with experimental results. Note also that, when all
the above scheme is carried out without Q2 space, one
should recover continuum-RPA results. It is this kind of
consistency check that we alluded to in mentioning Figs.
1—3 of [14] and Fig. 1 of [16].

Another quantity which can be extracted &om the
model and which is actually measured in the particle de-

cay experiments is the branching ratio B, corresponding
to a particular decay channel. An escaping nucleon with
energy s leaves a residual (A —1) system in a hole state
such that, by energy conservation e p, ——e —u, where u
is the initial excitation energy. The cross section u, for
this decay was calculated in [13] [see Eq. (3.40)], and a
discussion is also given in [18] where a plane wave Born
approximation (PWBA) is used to describe the reaction
mechanism. In Appendix B we summarize this procedure
and show how the same PWBA can lead from Eq. (3.38)
of [13]to a more computable expression for the excitation
cross section o.,„,. Using the results of Appendix 8, the
branching ratio comes out as
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~.(~)
Bc(LI)) =

)Oexc
(2.11)

where S„„ is given in (B6) and

dOA. p, k p„*, k, (2.12)

with

III. CALCULATION OF CHARGE-EXCHANGE
RESONANCES

The model we have just presented was used in its TDA
version and without the inclusion of the spreading term
W~ to calculate the IAR and GTR in 2PsBi [5]. Details
about the HF and TDA procedures as well as the cou-
pling with continuum configurations can be found in [5].
On the other hand, the inclusion of the spreading term is
an improvement of the model. Moreover, this term was
never included in previous calculations of the IAR in the
form of coupling with collective vibrations, as it is done
here. While coupling to collective vibrations has been
used for the GTR (cf. [19,20]), the IAR case has only
been treated by using for ~N) the 2p-2h configurations to
build W~ ([15,17]). In the present work, we want to use
the same model to construct the TV~ term for IAR and
GTR, and therefore isospin conservation rules must be
carefully treated as discussed at the end of this section.

We have consistently used the two interactions SIII
and SGII throughout the whole procedure. The HF mean
Geld for Pb is diagonalized on a basis of 15 shells of the
set of harmonic oscillator eigenfunctions with h~p=6. 2
MeV (see also [21]). For the construction of subspace Qi,
the set ~i) contains all occupied levels and An unoccupied
proton levels for each value of (l, j). An is 6 in the IAR
case, and 7 in the GTR case, as in [5]. The difFerence with
this previous work is the inclusion in the present case of
the Coulomb exchange term in the Slater approximation
inside the HF mean field.

We have then performed a TDA calculation within
Qi, as the large neutron excess of Pb should hin-
der ground-state correlations eKects for proton particle-
neutron hole configurations. This gives the basis of states
~n) on which Eq. (2.5) is solved. We have built the con-
figurations of subspace Q2 by coupling a proton particle
and a neutron hole in the discrete states of the set ~i)
with collective vibrations of the Pb core. These door-
way states, introduced above and labeled by ~N) play

(2.13)

In Eq. (2.13), y, is the wave function describing the resid-

ual (A —1) nucleus in channel c, and u... (k) is the es-
caping particle wave function belonging to P space. The
strength functions and the branching ratios are the main
quantities we are going to show as results of the present
model and which can be directly con&onted with exper-
iment. Before coming to this, we add some important
remarks relevant to calculations of charge-exchange res-
onances.

.V~N)(N~V

N
& —&iv

(3.1)

as in Eq. (2.4) (these are essential ingredients to build the
matrix elements on TDA basis). W„"&„,&, of (2.4) is a sum
of terms whose diagrammatic representation is shown in
Fig. 1. To evaluate these diagrams an expression for the
interaction vertices is needed. This is provided by the
particle-vibration coupling model, by introducing a one-

P
h'

P P
h'

FIG. 1. Diagrammatic representation of the four terms
whose sum gives the matrix element Wiz, z, of (2.4). The

p ip
analytic expressions are shown in Appendix A, Eq. (A12).

I

an essential role in the damping of giant resonances. As
pointed out in [9], the reason is that the choice of 2p-2h
as doorway states amounts to neglect a number of corre-
lations induced by the residual interaction V„p, . Many of
these correlations are included if the low-lying collective
vibrations are explicitly taken into account as doorway
states.

The collective vibrations of the nucleus 2PsPb have
been calculated in self-consistent RPA, with the same
SIII or SGII interaction used throughout the whole work,
in a way completely analogous to [22], where the coupling
with collective vibrations was used to study the energies
and spectroscopic factors of single-particle states. We
refer then for details to [22], summarizing here the main
points. We have built the complete spectra of isoscalar
modes of J equal to 2+, 3, and 4+. In the con6gu-
rations of Qq, however, only states with more than 1%%

of the total EWSR, and with energy less than 20 MeV,
were included. The low-lying 5 state was also included,
but its contribution was found negligible. The collec-
tive states included in the calculations with SIII have
been shown in [22], and those corresponding to SGII are
shown in Table I and compared with [23]. The limits
in the accuracy with which this Skyrme-RPA calculation
can reproduce the experimental findings are comparable
to the case of similar calculations performed in the past
decades. At this point we can build the matrix elements
of the operator
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TABLE I. Vibrational states of Pb, resulting from a coordinate-space RPA calculation em-

ploying the SGII force, with energy below 20 MeV, and exhausted percentage of EWSR larger
than 1%. They are used to build the "doorway states, " that is, the configurations which are more
complicated than the 1p-1h configurations and therefore play a role in the damping process of giant
resonances. The experimental values in this table are taken from [23].

Energy
[MeV]

4.78
5.13

11.16
2.64
13.6

14
16.53
17.55
18.17
20.68
4.82
5.71

12.05
12.44
13.17
14.66
15.14
3.58

Theory
B(EA)

[spu]

3.28
4.36

15.03
37.68
0.62
0.37
0.41
0.30
0.40

10.13
2.52

11.21
9.61
4.52
2.43
1.43
0.80

16.37

Percentage
of EWSR

7
10

75
25
1.6

1
1.3

1
1.4
40
1.1
5.8

10.5
5.1
2.9
1.9
1.1
2.6

Energy
[MeV]

4.085
4.923
5.036
5.128

10.6
2.614

20.9
4.323
5.690

12.

3.198

Experiment
B(EA)

[spu]
(or percentage of EWSR)

6.2

('%%uoEWSR=70)

34.2

('%%uoEWSR=36)

23

('%%uoEWSR=10)

17.4

body field which can be written in the form

aj9 LnM

In this equation, we have introduced the radial transi-
tion density g( )(r) of the In) states of the spectrum of
phonons with angular momentum I. This is defined in
terms of the RPA states as

(3.3)

where gt(r) and @(r) are the creation and annihilation
operators of a nucleon at point r, respectively. The form
factor v(r) appearing in (3.2) is related to the p-h inter-
action derived from the Skyrme force by V~h, (rz, r2) =
v(r~)b(r~ —r2), as in [22]. Once all these starting points
are given, the evaluation of the diagrams of Fig. 1 is
straightforward and their detailed expressions are given
in Appendix A.

Up to here, the procedure is the one already applied for
the giant monopole resonance in [8]. Since we deal here
with charge-exchange modes, it must be noted that the
operator (3.1) can mix states with different isospins. The
coupling (3.2) is manifestly a scalar in the total fermion-
boson isospin space. But the intermediate states IN) do
not have pure isospin, as they contain a proton particle
and a neutron hole (see the diagrams of Fig. 1, where
the phonons are isoscalar and therefore do not cause any
change in the fermion isospin in the intermediate states,

P, IN) = c, IN;Tp+i, Tp —1), —1 &i & 1. (3.5)

The coeKcients c; are simply Clebsch-Gordan coeKcients
(we use the coupling ([1,—1)ITp, Tp))~z; q),

c y
= + (2Tp —1) (2Tp + 1)

cp ———(Tp + 1)

c+y —+ (Tp + 1) (2Tp + 1) (3.6)

Similarly, the basis states of the Qq space can be decom-
posed into isospin components in the same way as Eq.
(3.4), and one must select the component relevant to the
case at hand. Therefore, in the IAR case the correct
spreading operator having the right isospin structure is

with respect to the initial state). This leads naturally
to a coupling of the IAR, which has isospin quantum
numbers IT, T, ) = ITp, Tp —1) where Tp ——N —Z/2, with
states which in general have a mixture of different T com-
ponents. The nuclear part of the Hamiltonian actually
forbids this coupling, and we impose that it is strictly
forbidden (this amounts to neglecting Coulomb effects in
the residual interaction). This can be done by project-
ing out the Tp component of the intermediate state IN).
More precisely, we can write in isospin space

IN) = c—yIN; Tp —1, Tp —1) + cpIN; Tp, Tp —1)
+c+gIN; Tp + 1, Tp —1), (3.4)

and we define three projectors P q, Po, and P+q such
that
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VPp
i
N ) (N i

Pp V

N

(3.7)

Actually, the matrix elements of this operator are siznply
proportional to those of (3.1), the multiplicative constant
being ~cp~ = (Tp+1) . In the GTR case, we use the op-

erator WT z defined in a fully analogous way, and thus

proportional to (3.1) by means of the constant ~c

This procedure allows us to respect isospin symmetry.
A similar procedure was not necessary in the IAR calcu-
lations of [15] and [17],where the intermediate states ~N)
were chosen as 2p-2h con6gurations. The interaction V
was the nuclear two-body interaction, and the approxi-
mation used corresponds to the well-known second RPA
(SRPA). This automatically preserves the isospin struc-
ture, due to the respect of conservation laws in SRPA
[24], and to the character of the interaction. On the
other hand, an approach similar to ours has been used in

[19,20] for the GTR without any isospin factor, i.e. , with

the spreading operator (3.1); as the correct one, W&
differs by a factor ~c q~ close to 1 in the case of 2 sPb,
the numerical results are not markedly affected by this
neglecting of isospin syznmetry.

IV. ISOBARlC ANALOG RESONANCE RESULTS

We

120—
tg

I

18
I

184
Energy [MeV]

FIG. 2. Strength distribution of IAR in Bi calculated
with the interaction SIII. The full line refers to the complete
calculation, whereas the dashed line gives the result with only
the continuum coupling.

The calculated strength distributions in the IAR region
are shown in Figs. 2 (interaction SIII) and 3 (interaction
SGII). Table II includes the main quantities which can
be extracted from these strength distributions, that is
centroid energy, width, and percentage of strength of the
resonance. From the TDA calculation, a discrete state
emerges which, in SIII and SGII case, respectively, lies
at 18.59 or 18.54 MeV, and carries 86% or 87% of the to-
tal strength (N Z) of the op—erator T = g, z t (i). In
fact, isospin is explicitly projected out only in the spread-
ing term, whereas the TDA calculation is perforzned in
a space with all isospin components included. Neverthe-

240—
I

~e
X

18O-
uo

5)

175
I

1L5

Energy [MeV]

FIG. 3. Strength distribution of IAR in Bi calculated
vrith the interaction SGII and displayed as in Fig. 2.

less, the strength relative to T operator selects as most
collective state a single one, which was checked to be
almost pure in isospin by looking at its T2 expectation
value. In Figs. 2 and 3 the dashed line corresponds to a
calculation with W~ only, and the full line to the com-
plete calculation. We reznark 6rst that, in contrast with
other modes where a certain amount of &agmentation is
present, in this case this strength function is essentially
due to a single state. The effect of W~ + W~ is to shift
slightly the peak energy and to produce a total width.
With SIII, the peak is at 18.49 MeV and has a width
of 152 keV whereas the corresponding values are 18.64
MeV and 99 keV with SGII. In both cases the state ex-
hausts 97'%%up of T strength. If one performs calculations
with Wt or W~ only, one can obtain separately I't and
I'~. We 6nd that the suzn I't + I'~ is equal, within a few
percent, to the total width in the complete calculation.
It can be seen that this width is rather sensitive to the
interaction used, since the width calculated with SIII is
50%% larger than that of SGII.

The coznplex collective state, expanded on the TDA
basis, shows a squared overlap of 0.90 (respectively 0.91)
with the collective TDA state if one calculates with
SIII (respectively SGII). We must also mention that the
spreading term W~ has been calculated with an aver-
aging parameter ib, added to the denominator of (3.7),
for reason of convenience. This means that one makes
a Lorentzian averaging of the distribution of interme-
diate states ~N), with 4 corresponding to half of the
Lorentzian width. The quantity 4 has been chosen to be
100 keV, but results are stable with respect to its vari-
ation, as doubling 4 implies an increase by only about
20 keV in the total width. Experimental values for IAR
excitation energy and total width are, respectively, 18.8
MeV and 232 keV [25]. This state exhausts more or less
the whole T strength.

Branching ratios corresponding to proton emission
leaving the residual nucleus in a valence neutron hole
state of Pb are shown in Tables III and IV. In these
tables, the column labeled "only W~" refers to a calcu-
lation with only the escape included, and the results cor-
respond to those of [5]. The other three columns under
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TABLE II. Averaged quantities extracted from the strength distributions of IAR and GTR. In
the case of IAR only one peak appears, as expected, and we display the energy, the full width and
the percentage of strength under the peak. In the case of GTR we take into account the whole
energy region (E&,E&) in which bumps of the strength function are visible. The values of E& and
E&, as well as the definitions of the mean energy and width, are given in the text (Sec. V).

Isobaric analog resonance
Theory

Mean energy
Width

Percentage of strength

SIII

18.49 MeV
152 keV

97%

SGII

18.64 MeV
99 keV

97%

Experiment [25]

18.8 MeV
232 keV

100%

Gamow- Teller resonance
Theory

SIII SGII Experiment [4]

Mean energy
Width

Percentage of strength

21.11 MeV
3 MeV

61%

22.43 MeV
3.1 MeV

68%

19.2 MeV
3.7 MeV

60—70% [27]

"R't + TV~" include the results of the complete calcula-
tion. Column (a) corresponds to the case where the final
states are pure Hartree-Fock ones. These final states can
be renormalized by means of energy and spectroscopic
factors, either calculated with the same Skyrme force,
and we have these values in the SIII case in [22] so we
can show the corresponding results for the branching ra-
tios in column (b), or taken &om empirical estimates [26],
and the branching ratios obtained in this way are shown
in column (c). These calculated results are compared
with the experimental values quoted in Ref. [4]. The
agreement of the total sum of branching ratios with the
experimental value in the SIII case and in column (b) is
quite remarkable, as this is the most consistent fashion
to perform a theoretical calculation. Minor discrepancies
are found by looking in the same column at individual
channels. On the other hand, calculated decay branch-
ing ratios depend sensitively on the Skyrme force em-
ployed, even when predicted peak energies and strengths
are practically the same. By examining the IAR wave
function obtained &om our calculation, we have noticed
that the p-h amplitudes corresponding to a change in the

principal quantum number n are not negligible and this
indicates that a simple picture of the IAR as given by a
T ]0) wave function is slightly too schematic, at least in
the nucleus we have considered.

V. GAMOW- TELLER RESONANCE RESULTS

We follow a similar pattern in presenting the results
for the GTR in Bi. Figures 4 and 5 show the strength
functions calculated, respectively, with SIII and SGII in-
teractions and Table II includes centroids, widths, and
percentages of strength of these distributions. With SIII,
at least two main states contribute: besides the main
bump at about 21.50 MeV, a smaller one appears at
lower energy. In the case of SGII, there are two smaller
bumps in addition to the main one at about 23 MeV.
One can understand this broadened line shape by look-
ing at the underlying complex states coming out of the
diagonalization of the effective Hamiltonian (2.2). There
are several important complex states spread over the en-

ergy interval 18—25 MeV. This is in contrast with the
IAR case and it can be understood by relating to the

TABLE III. Branching ratios for the proton decay of IAR in Bi to neutron valence hole states
of Pb, obtained by using the SIII force. In column (a) the final state is a pure HF configuration,
whereas in other columns its energy and wave function are corrected either by means of a consistent
SIII calculation (b) or by using empirical values (c).

Decay
channel

Only W~
Theory

W~+ W~

(a) (b) (c)
Experiment

[4)

P1/2
P3/2
'L13/2

fs)2
fv)~
h9/g

p a.

0.472
0.396
0.015
0.117

&10 '
&10 '

1.0

0.346
0.287
0.011
0.086

& 10
& 10

0.730

0.253
0.238
0.008
0.065

& 10
&10 '

0.564

0.237
0.196
0.010
0.061

&10 '
&10 '

0.504

0.22+0.02
0.34+0.04

included in p3/2
0.015+0.007

0.575+0.07
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TABLE IV. Same as Table III, in the case of the SGII force.

Decay
channel

Only W~
Theory

(a)
W~+ W~ Experiment

[4]

px/2

p3/2
&X3/Z

f5'~
fv/~

h9/~

P B.

0.448
0.514
0.016
0.016
0.006

&10 '
1.0

0.171
0.198
0.007
0.008
0.002

&10 '
0.386

0.137
0.157
0.006
0.006
0.004

&10 '
0.310

0.22+0.02
0.34+0.04

includ. in p3/q
0.015+0.007

0.575+0.07

larger density of To —1 states compared to that of To
states, in this energy region of the Bi spectrum. The
effect of W~ coupling is much stronger for GTR and
consequently it admixes TDA states more than for IAR.
The percentage of the total strength of the GTR opera-
tor P =

2 g„o+z P,. ~ o„(i)v (i) [the so-called Ikeda

sum rule, equal to 3(N —Z)], is about 61%%uc in the en-

ergy region 18—24 MeV for SIII, and about 68% in the
interval 19.5—24.5 MeV, for SGII. This contrasts with the
calculation with continuum only, where about the same
&action of strength is exhausted by the main narrower
peak. In the complete calculation the remaining strength
is found outside the forementioned interval (E&,E&) and
is rather &agmented. Experimentally, the strength con-
centrated in the GTR peak is about 50'%%uo of the total but
this percentage rises up to about 60—70'%%uo if the whole en-

ergy region with some strength around the main bump is
considered [27]. All the present theoretical results were
calculated with an averaging parameter 4 equal to 250
keV. Again, the stability of the results has been checked
by varying A.

Besides the peak energy, we can extract Rom the

strength distribution a mean energy, given by

f~ du) ~S((u)
(~) =

f@ der S((u)
(5.1)

f~
' d(u (u) —((u))2S(ur)

f~' d(u S((u)
(5.2)

and this turns out to be 21.11 MeV (SIII) or 22.43 MeV
(SGII). Both values of (ur) are somewhat larger than
the experimental excitation energy of GTR which is 15.6
MeV in Bi, corresponding to 19.2 MeV with respect to
the Pb ground state . As for the width, the FWHM
is not well de6ned in this case due to the double or triple
peak. If we extract a value for the variance 0 &om the
strength distribution, by de6ning

1X 3
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~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~

40-

A

3P-

20-

~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~

~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~I ~

~ ~~ ~
~ ~
~ ~
~ ~
~ ~

1X 3

40-

bg
3P-

10-

0
18 19 21 22

Energy [MeV]

24 25

10-
FIG. 5. Strength distribution of GTR in Bi calculated

with the interaction SGII and displayed as in Fig. 4.

0
1$ 19

I
' ' ' ' ' ' I

21 22

Energy fMeV]

23

FIG. 4. Strength distribution of GTR in Bi calculated
with the interaction SIII. The two lines have the same mean-
ing as in the case of IAR.

In order to reach this value, we have to add to the 15.6
MeV the mass difference between the two Bi and Pb isotopes,
as well as the mass difference between neutron and proton
which is missing when the GTR is built on the basis of p-h
excitations.
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TABLE V. Branching ratios for the proton decay of GTR in Bi, obtained by using the SIII
force. In column (a) the final state is a HF configuration. In column (b) we present the results of a
calculation where the energy of the 6nal neutron hole state is corrected in such a way the escaping
particle has the same energy as in the experiment [4], and spectroscopic factors [26] are used.

Decay
channel

Only W~
Theory

(a) (b)
Experiment

[4]

px/z

P3/2
&13/2

fsy2
fvi2
hg/g

P B,

0.265
0.432
0.009
0.278
0.011
0.005

1.0

0.037
0.055
0.001
0.051
0.009
0.001
0.154

0.022
0.033
0.001
0.030
0.005
0.001
0.092

0.013+0.002
0.023+0.003
0.002+0.002

included in p3/Q
0.003+0.002

0.041+0.009

B,(GTR) =
0exc

(5 3)

Tables V and VI are displayed similarly to Tables III and
IV except for the coluxnn (b) of the theoretical findings
which we discuss below. First, one can notice that the
discrepancy with experiment is reduced when going &om
self-consistent continuum RPA (column "only W"") to
the complete model. The results of SGII are in reason-
able agreement with the data. We must also mention
that preliminary indications &om the MSU experiment

TABLE VI. Same as Table V, in the case of SGII force.

Decay Only W~
channel

Theory
W~+ W~

(a) (b)
Experiment

[41

px/a

P3/2
&I.3/a
fsi2
f7'~
hg/g

p a,

0.223
0.418
0.014
0.319
0.016
0.010

1.0

0.033
0.035
0.003
0.013
0.010
0.001
0.095

0.018
0.019
0.001
0.007
0.003

(10 '
0.048

0.013+0.002
0.023+0.003
0.002+0.002

included in p3/2
0.003+0.002

0.041+0.009

we obtain a full width in Gaussian approximation
(I' =2.40) of about 3 MeV for both interactions (slightly
larger for SGII), to be compared with an experimental
value of 3.8 MeV [4]. Of course, a model in which only
the simplest class of "doorway states" is considered and
not their full hierarchy, cannot but underestimate the
width. The same model seems to predict correctly the
giant monopole width [8] which is mainly due to Landau
damping.

The overestimation of the peak energy, and the miss-
ing part of the damping effect, is probably the cause of
a result for the branching ratios which correspond to a
higher yield than the experimental one, as shown in Ta-
bles V and VI. Here, as the strength is spread over sev-
eral MeV, we cannot calculate the branching ratios at
a definite energy, as it was done for IAR, and we rather
make an average over the energy interval (E», E)) of the
numerator and denominator of (2.11):

[7] leave open the possibility that experimental branching
ratios might be larger than found in [4]. On the other
hand, the sensitivity of predictions with respect to the
choice of the interaction is still present. We also show
in column (b) of Tables V and VI what the proton yield
would be, if the excitation energy corresponded to the
experimental one (19.2 MeV). The branching ratios of
column (b) have indeed been obtained by calculating the
escape amplitudes (2.13) with the experimental outgoing
proton energies e. The empirical spectroscopic factors
[26] already used in the case of IAR are also included.
This renormalization obviously decreases the branching
ratios and they are in good agreement with experiment
in the case of SGII force. The Gnal difference between
theory and experiment, in the case of SIII force, is of the
same order, or even sxnaller than the one found in the
case of the giant monopole resonance [8], and simply in-
dicates once more the limit one could expect in this kind
of detailed study, due to the present uncertainty in the
nuclear dynamics at low energy.

We can finally compare our results obtained without
the spreading terms with those of Muraviev and Urin
[6] which are calculated in a continuuxn-RPA approach,
where phenomenological inputs for the mean Geld and
residual interaction are used. The large differences be-
tween the two sets of results cannot; be explained by
invoking the approximation made in the present work
in treating the single-particle continuum, as already dis-
cussed after Eq. (2.3). It should be attributed to the sen-
sitivity of branching ratios to the details of the inputs. As
we have seen here differences in results coming &om the
same model but using two different Skyrme interactions,
it is not too surprising that results Rom phenomenologi-
cal RPA calculations, based on a Woods-Saxon potential
and a residual interaction of the Landau-Migdal type can
also differ. A similar situation also exists in the giant
monopole resonance case [28].

VI. CONCLUSIONS

Within linear response theory, a microscopic model of
collective excitations based on RPA states coupled to
doorway states composed of 1p-1h configurations plus a
collective vibration, and to 1p-1h continuum states has
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been applied to the study of the properties of two ixnpor-
tant charge-exchange modes, the IAR and GTR in Bi.
The two types of coupling are intended to describe the
essential physical xnechanisxns leading to the spreading
of the collective mode and its decay by nucleon emission.
The model contains no free paraxneter but depends on
the choice of the effective nucleon-nucleon interaction.

The physical quantities which can be calculated are
the strength distributions and the cross sections of nu-
cleon decay into various channels. From these quantities
centroid energies, widths, and particle decay branching
ratios are obtained. The calculated results show some
sensitivity to the choice of the effective interaction.

In the IAR case, both SIII and SGII interactions pre-
dict the correct peak energy, and SIII gives a good
description of the data for the decay branching ratios
whereas SGII tends to underestimate the branching ra-
tios as well as the total width.

For the GTR, interactions SIII and SGII overestimate
the mean energy, respectively, by 2 and 3 MeV, while
they both predict a total width of about 3 MeV, i.e.,
75% of the experimental value. Looking at branching ra-
tios, it appears that SGII coxnes very close to experiment
if one corrects for the overestimate of the GTR energy.
The discrepancy with experimental values (in the case
of SIII) is of the same order or even smaller than that
already found in the case of the isoscalar monopole res-
onance using the same model. This level of agreement
with experiment indicates the present limits of existing
Skyrme effective interactions.
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APPENDIX A: MATRIX ELEMENTS OF THE
EFFECTIVE HAMILTONIAN

We show in this Appendix how to evaluate matrix ele-
ments of the escape and spreading terms W~ and W~ of
the effective Hamiltonian (2.2), on a RPA or TDA basis.
We consider explicitly the RPA case, as the reduction
to TDA comes out quite transparently. First we suppose
that the effective Hamiltonian contains only the RPA and
the escape term, and we derive the explicit form of Eq.
(2.5) in this case. Then, we show how the spreading term
can be taken into account.

We denote a generic element of the RPA basis by ~n),
its energy being cu . Another state with energy —u is
present in the basis (see chapter 14 of [29]),and we denote
it by [n). The creation operators of these states are, re-
spectively, Ot and Ot. The creators Ot of the states ~v),
resulting &om the diagonalization of the effective Hamil-
tonian (2.2), can be expressed as a linear combination of
the RPA creators, since these are a complete set in Qq,

Qt —) F(v)Ot F(v)ot (A1)

z, ot =
~

n„~ "[o—t,
) (A2)

where we have fixed at a definite value the energy at
which the effective Hamiltonian must be evaluated, and
omitted to indicate explicitly this energy dependence.
Using the property

QgIIQg, Ot = (u„ot, (A3)

(a minus sign appears in the right-hand side if we consider
Ot), we obtain

) F~")(~„ot + [W",Ot]) —F~")( ur„Ot +—[W~, Ot])
&p

= n -i—" ) F~")ot F~")ot-. (A4)
„&o

If we take the expectation values of (A4), first between
(0[o and [0), then between (0~0 and ~0), we build a
set of 2n& equations (n& is the number of positive RPA
eigenvalues) whose matrix form is the one of (2.5).

In (2.5) each submatrix has dimension n&. The sub-
matrix 'V is diagonal and contains the contribution of the
term QqIIQq of (2.2),

(A5)

The contributions to the submatrices A; coming from the
escape term are given by

(A, )-'„=(0[ o, [wt, ot] [0),

(&,)-'„=-(ol o, [w~, o„l lo)

(A, )-'„=(0~ o, [w~, ot] [0),

(A4)-'„= -(01 o [w ot] 10). (A6)

To work out explicitly these xnatrix elements we approxi-
mate W" with expression (2.3) (see the discussion in Sec.
II about this point).

The operator K which appears in (2.3) satisfies (as
said in Sec. II but see also [13]) the following equation,

1
Ql ~ Ql Ql

4) —Ho + ZE
(A7)

The propagator
~ ~ +, ), can be expanded in its par-

tial wave components labeled by (l, j), and each com-
ponent g&~ (rz, r2) is written by means of the regular and
irregular solutions [f~z (r) and g~~ (r)] of the corresponding
radial Schrodinger equation with energy u,

2m*
f~ (r&~)gtq (r ).&W, (AS)

where m' is the nucleon effective mass, r& (r&) are the

gtq(rz, r2) =—

where the amplitudes I" and F are in general complex
nuxnbers.

The eigenvalue equation for the effective Hamiltonian
1s
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larger (the smaller) between rq and r2, and W is the
Wronskian of f~7. and g~7 [30]. In this form the propagator
is more easily inverted to obtain K. This is a p-h operator
diagonal in the hole and for a given hole 6 we label as

I

Kh the corresponding particle operator.
The matrix elements of the escape term are then writ-

ten in terms of the ones of Kh and of the RPA amplitudes
X h and Yh as(n) (n)

ph ph

(&~)'".= —) .(" "—)(x.'h 'x,'h' + Y.' 'Y,'"') — ). (p'I &hl p) ~hh (x,'' x.'h'+ Y.'h'Y.'"')
ph ph, p'h'

(&2) -. = ) [(&p «)~—pp ~hh + 9 I&hl&)~hh l(x' h'Y,'h'+ Y,'h'x„'h')
ph, p'h'

(&s) -. = (&~)'".
(&4) -. = (&~)'"..

(A9)

We now turn to the calculation of the spreading term.
It is known (see, e.g. , the first chapter of [11]) that di-
agonalizing an effective Hamiltonian including this term
besides the RPA one, and with a set of 2p-2h configura-
tions in the Q2 space, amounts to solve

&a+w~(~) B l t'xl fx)
B' --A* —W~'(-~)) (Y) (Y) '

(A.10)

where A and B are the RPA matrices and W~ has the
I

I

matrix elements defined by (2.4). Equation (A10) is the
eigenvalue problem in the SRPA scheme mentioned in the
text. A similar pattern holds even if a different choice of
Q2 is made, like in the present case, and therefore, in or-
der to obtain the spreading matrix elements which must
be inserted in (2.5) one has to transform the spreading
part of Eq. (A10) which is written on the p-h basis of Qq,
and write it on the RPA basis.

The result is the spreading contribution to (2.5), which
reads

(&~)-'- = ). Wph, p'h'( ) ph p'h'+ php'h'(-~)Yph 'YpIh'~
ph7p'h'

( 2)-'-= ). ,'h, ph( ) ph' 'h'+
ph, ph( )ph-',''»

ph, p'h'

(As)~„= ) ph p~h~(~)Yph X hI + W h p~h~( ~)xph Y—
ph, p'h'

4)~~ — ) ph, p~h~( ) ph ~h~+ ph, p~h~( ) ph p~hI

ph, p'h'

(A11)

The matrix elements Wph p h can be evaluated as discussed in Sec. II. We give here their final expressions,
P '7P

4

W h ghP: ) W (k)~

l&&pllYL ll&p )I'
W~(1) = bh h b,, 7,

1

(d —(ld + Ep I —E'h) + 'LA
7 7P

x drgupl ry up» ry v ry g ry dr3up r3 up» r3 v r3 g r3,

W" (2) = bp p h,.„,.„,
1

(u —(ur„—eh + sp) + ib j2h
7' 7

x dr2uh r2 uh r2 v r2 Lo r~ dr4uh r4 uh r4 v r4 g r4,

The eigenvalue problem has the same form but not all the statements about SRPA contained e.g. , in [24] are, strictly speaking,
still valid.
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( I)1+2 +9m +L+J
Iv'(3) =). . " "I, &jpll&illjp &&ji III'Lllji&

x dr] up T& up& T& 'U T& P~ T& dr4uh T4 uh' T4 v T4 g~ T4 )

(—1)1+j i+jp, i+I+I
~'(4) =) . '" '"

L, &Jpll&~lilp &&J~ ll&~II~~&

x dr2u„r2 up T2 v Tg g T2 dr3uh T3 uh' r3 & 3 g 3

where the symbol j denotes (2j + 1)i~ .

(A12)

APPENDIX B: DECAY BRANCHING RATIOS

In [13] the cross sections o, and 0,„, (see Sec. II) are defined as

(2~)s . . t .I'y
(u)='2 ) TpT pP' l~ ~ i

I
l~ ~'+

)

0,„,((u) = —— Im) T'p(F'F )„„ l

(u —0„—i "
l

T„p,
1(2~)' . . . , ( .r i '

where all the quantities are defined in the text, apart
&om k which is here the wave vector corresponding to
the initial state of the projectile and the elements of the
T matrix, in which one state is the initial state of target
(labeled by 0). These matrix elements are (see also [13])

T-o = O' 'C'-IVIC'o&,'+'& (B2)

where the initial and final wave functions of the projec-
tile and ejectile are indicated by y and those of the target
nucleus by 4. Here, V is an effective projectile-target in-
teraction. We consider for our present purposes its w .~
(o cr7 v) channel for the case of IAR (GTR) excita-
tion. Either of these operators is labeled by 0, so the
interaction is V~(ri . r~, r„) 0 where rp is the projec-
tile spatial coordinate. We are in the present work not
interested in the reaction mechanism, provided it can ex-
cite the target in a state with definite quantum numbers.
Therefore, we can make simplifications about this mech-
anism and we use standard PWBA methods to evaluate
the element (B2). Plane wave functions are substituted
to the initial and final wave functions of the projectile
and ejectile, and an effective factor K takes care of the
reduction of the reaction probability due to distortion
which would come &om a realistic estimate made by us-
ing an optical potential. In a straightforward way (B2)
becomes

where q is the momentum transferred by the projectile
and V(qg is the Fourier transform of the interaction Vp.
The exponential function can be decomposed as usual,

e' '" = ~4vr ) i"/2A+ 1 jp(qr)Yqp(i),
A=O

T„p const &vlOl0&.

If we use this expression it is easy to show that the
branching ratio, i.e., the ratio between the two cross sec-

tions defined in (Bl), is given by (2.11) where

s„„,—= &~lolo) (~'lolo) (B6)

using Bessel functions and spherical harmonics. If we re-
strict to the A value under consideration (0 as both IAR
and GTR have no change of angular momentum with
respect to the ground state in the space part of their
wave function) and truncate the expansion of the Bessel
function at the lowest order (low momentum transfer ap-
proximation), we obtain from (B4) a constant which can
be included in the definition of V. Finally we are left
with the approximate expression

T„p —K V~(q)&v]e s".0]0), (B3) and the other quantities are defined in Sec. II.
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