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"Hidden" world of virtually excited clusters in atomic nuclei and its possible
observation in quasielastic knockout of clusters by 1 Gev protons
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A new kind of cluster quasielastic knockout experiment is proposed based on the generalized
distorted wave impulse approximation calculation which uses Glauber-Sitenko multiple scattering
theory and takes into account deexcitation of virtual excited clusters in the nucleus. Elements of
general formalism are presented, including the discussion of the difference between "fast" and "slow"
cluster processes. The reaction C(p, pn) Be is considered in detail. It shows a strong dependence
of the "effective momentum distribution" of knocked-out cluster on both the scattering angle of fast
proton and orientation angles of recoil momentum g with respect to the direction of the incident
beam and to the scattering plane of a fast proton (i.e. , 0» and y» anisotropies). Experiments of this
kind are desirable also for electron-induced cluster knockout. Finally, the possibility of observing

0» and rp» anisotropies in H(e, e'p)N' and H(e, e'm+)n reactions at a few GeV energies due to the
quark deexcitation effects is discussed.

PACS number(s): 21.60.Gx, 24.10.Eq, 25.40.Ep, 25.40.Hs

I. INTRODUCTION

The modern era of understanding what is nucleon
clustering in atomic nuclei began probably with Wilder-
muth's paper [1] (see also Ref. [2]), where it was noted
that the oscillator shell-model wave function of, say, the
Be nucleus can be presented as the antisymmetrized

wave function of a cluster model (with a common value of
the oscillator parameter Ru for both internal Jacobi co-
ordinates of clusters and nn-relative motion ones). This
"cluster representation" of the shell-model wave func-
tions has outlined a very close interconnection between
two models, i.e., a big "cluster capacity" of the shell
model. The resonating group method [2] intimately con-
nected with this approach (the construction of its wave
function is similar to that of the above cluster represen-
tation) gave a good description of cluster-cluster scat-
tering and reactions. However, the shortcoming of the
above concept was that different cluster representations
for the same nucleus (e.g. , sBe+ sBe and i2C+ n for 0
nucleus) were equally valid for bound systems. More-
over, the straightforward cluster representation exists for
some particular cases of nuclear wave functions only. So,
there was at that time no quantitative measure of clus-
tering. Such measure was given in [3,4] and in [5], where
a completely different approach in comparison to [1,2]
was formulated. Specifically, the many-particle fractional
parentage technique of the shell model and methods of
transformation of one-nucleon coordinates to Jacobi co-
ordinates were used to form a ground-state cluster of b

nucleons as the subsystem in the nucleus A and to de-
fine the wave function of relative motion (A —b) —b

The formulas were written down for cluster spectroscopic
factors S; &(A) which just measure the aforementioned
probability to find the cluster in the nucleus [3—5] [say,

So 0(i 0) 0.3 for the virtual decay of isO nucleus to
Cs, +n]. Some specific sum rule was found [6]—the to-

tal "effective number" of a particles in, e.g. , the 0 shell-
model nucleus N (isO) equals 13.7 (it is in qualitative
agreement with inclusive high-energy knockout experi-
ment results for the i2C nucleus [7] [where N ( C) 7]
if the final state absorption is taken into account [5]).
In the 1970s this shell-model formalism was extended
and refined [8—ll] and the values of S; &(A) were tab-
ulated [12,13]. All these theoretical predictions were
successfully confined by a large amount of experimental
data on cluster stripping and pickup reactions [14,15].
The exclusive process of cluster quasielastic knockout
by protons [16] was also very informative here [17,18];
however, the energies of bombarding protons in experi-
ments [17,18] were rather low, 100—200 MeV only. So,
all the mentioned reactions [14,15,17,18] have had more
or less surface character. Three independent aspects of
the above verification can be noted: the shape of cluster
momentum distributions, the ratio of components with
difFerent orbital momenta (if it is allowed by selection
rules), and the absolute values of spectroscopic factors
S, &(A). The theory was confirmed in all three points
by using the extended distorted wave Born approxima-
tion (DWBA) and distorted wave impulse approximation
(DWIA) calculations.

From the conceptual point of view it is important to
note that, in the shell-model formalism under discussion,
the nucleon numbers in cluster b in the outgoing channel
are fixed (see below) and the identity of nucleons is taken
into account by a factor of A!/(A —h)!b! in the expres-
sion for S, &(A) [the spectroscopic factor is the synthetic
quantity, depending on properties of both initial and fi-

nal states); the identity factor is just the origin of high
value of N (isO)]. We will clarify below that the final-
state antisymmetrization (a subject of intense discussion
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in connection with the a decay of heavy nuclei, etc. [19])
must not be essential, i.e., the cluster transfer or knock-
out process must be fast ("instantaneous" cluster is mea-
sured). So, the kinetic energy of a knocked-out cluster b

must be high enough, Eg )& her.

Almost all these theoretical developments were con-
nected with the taciturn assumption that only the
ground-state virtual cluster is essential. This assump-
tion seems reasonable if the process is just of a surface
character [17].

The internally excited virtual clusters were discussed
by Rotter et al. [20] who have considered, e.g. , the reac-
tion ~2C(~0B,s Li)~sO'(2 ) with the spin transfer S = 1,
i.e. , with the transfer of an excited unbound 4He' nucleus
having the orbital Young scheme [f] = [31], L = 1
T = 0, and S = 1 (the Young scheme selection rules [21,6]
permit here the transfer of any possible Young scheme

[f]=[4],[31],[22]). Of course, two-step t ptrans-fer can
occur for the above reaction, too [15]. So, the generaI
approach to the multinucleon transfer reaction theory
was formulated in the first two papers [20] where all the
possible excited states of a virtual cluster are taken into
account; however, the problem of consistent inclusion of
corresponding poles into the dynamic theory of the above
process is still not solved.

Approximately at the same time the idea was origi-
nated by our group to formulate the microscopic the-
ory of cluster quasielastic knockout by fast protons, the
elegant analytical theory of multiple scattering of fast
hadrons on nuclei given by Glauber [22] and Sitenko [23]
appeared to be very suitable here. We came to under-
stand that this microscopic theory of cluster knockout
(see Refs. [24—26] and also [27] for the plane-wave ver-
sion of it) has one striking property: the big contribu-
tion of nondiagonal (inelastic) amplitudes of fast hadron
scattering on the virtual cluster in the nucleus (O~O~p)
connecting various internally excited states ~y) of vir-
tual cluster with its final ground state ~0) (see below).
Calculation of spectroscopic factors of virtually excited
clusters [11,26] (carried out in connection with the above
property of scattering amplitudes) has shown unexpect-
edly that the sum of these factors exceeds remarkably
the ground state ones. For instance, for the above ex-
ample of the 60 nucleus we have the sum of spectro-
scopic factors of virtually excited o, clusters in the chan-
nels ~sOs, -+ ~ Cs, +a'N~. ,D( 0) ~ 21.5 [7,26] [com-
pare it to the value S00(~sO) 0.3 given above; this is
in fact the "effective number" of C+, nuclei in the 0
nucleus]. So, the problem of virtually excited clusters
(subsystems) actually appears to be a general problem
of nuclear physics.

The inQuence of virtually excited clusters has resulted
in nonfactorized complicated formulas for cross sections
of cluster quasielastic knockout reactions, in the 6rst pre-
dicted anisotropies of cluster momentum distributions on
orientation angles 0& and rpz of spectator (A —b) recoil
momentum g with respect to the initial beam direction
p0/p0 [25,26] and to the scattering plane (p0, p0) [28,26]
correspondingly, etc.

It is fortunate that, if in accordance with Glauber-
Sitenko theory, the proton energy is chosen to be high

enough, Es —1 GeV, then the cluster knockout process
is of volume character more than at lower energies [29].
It creates the chance to reveal the essential infiuence of
the rich world of the internally excited clusters (which are
usually "hidden" under the nuclear surface due to their
large binding energies in the nucleus) if the verification
of these opportunities will be done by means of the "re-
alistic" distorted-wave impulse approximation (DWIA)
calculation. We shall see here that this verification, in-

deed, gives a positive answer. So it becomes possible to
outline the character of desirable experimental investiga-
tion, bearing in mind that, say, the energy resolution of
modern (p, 2p) experiments at 1 GeV bombarding energy
AE 2—3 MeV [30] is just good enough to separate indi-
vidual levels of the Be nucleus in the knockout reaction
'2C(p, pa) sBe.

Our paper is organized as follows. In the second sec-
tion we present the microscopic DWIA formalism gener-
alized to include the nondiagonal amplitudes of internal
cluster rearrangement. Some estimates of the final-state
antisymmetrization effect [19] are given here, too. The
third section demonstrates the numerical results for the
most popular reaction C(p, pa)sBe. All the original
features of cluster knockout amplitudes obtained previ-
ously within the plane-wave approximation remain quite
visible (albeit sometimes of a smaller magnitude) in these
calculations. Finally, the concluding section contains a
qualitative view of possible applications of our present
ideas to diHerent areas of nuclear physics, which can
be exemplified by medium and high energy reactions
~sO(p, dd) ~2C, A(e, e'b)A —b and 2H(e, e'p)N' (this last
reaction with the excited baryon N' as a spectator is
oriented to investigate the quark degrees of freedom).

II. ELEMENTS OF FORMALISM

Using Glauber-Sitenko multiple scattering operator 0,

0 = 1 — [1 —(u(p —p' )],

~(p) = d p exp(&p ' p) f (p)
2%$p0

where f(p) is the nucleon-nucleon scattering amplitude
and (p'. , z'. ) means cylindrical coordinate of target nu-

cleon j; we intend to illuminate the general idea by the
simplest case of plane wave approximation for maximal
scattering multiplicity [25,26].

The multiplicity can be fixed experimentally by the
kinematics of Bee b-fold p-b scattering inserted into the
coincidence geometry of p+6 registration in our quasielas-
tic knockout reaction. Omitting in the schematic illus-
tration the angular momentum algebra we can write the
target nucleus wave function as

(Aa) = ) (Aa~A —b, P; p; by) )A —b, P)4„(K)(by). (3)
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Here the cluster &actional parentage technique of the
translationally invariant shell model is used [11,26] (so
the numbers of nucleons constituting cluster b are fixed);
R = R~ b

—Rb means relative motion coordinate. Then
the scattering amplitude

JOM;y(p, q) = d pexp(ip p) d7-$&QQ,
27r

with

Q;—:
~
An), Qy

=
~

A —b, P) pb (r)exp(i+ Rb) exp( —iq R~ b)

can be written as (bfold-scattering only)

M*y(p, q) = '(—1)') (»IA —~, P;V'tw) I

(Al "(
27I' ( |) ) ( 27I'Xpp )

b

x d pexp zp - p d pjexp —zpj p —p'. pj
j=1.

x ~by)O„(R)exp( —iQ Rb)exp(iq R& b)yb(r)d R& bd rq .d rb

Integrating over p we obtain the factor 2vr 6'(p —g .
z pz). Then we transform the exponential factors by introducing

Jacobi coordinates r, = R, —Rq, where R, (Rq) is the c.m. coordinate of the group of s (t) nucleons (s+ t ( b) and
the corresponding momenta

8 e+t

Qi = Pdt ) .Pb+ ). Pj
%=1 j=8+1

the reduced mass is given in nucleon masses. Keeping in mind a smooth character of p dependence of scattering
amplitude f(p) and taking into account that ~Q;~ (( b]p~ we can carry out easily the integration over coordinate R
and over the intermediate momenta. It results in the expression

( 1 2

Miy(p, g) = . ~ ) (Aald —»)d;y, ;by) I

&
I 4„(q) )' (

—
)

X d q d b qexp i jrj bp pb r d rq .darb

2=1

—,' f (
—

) (
—')') .(&~1& —»)d w4)'t' A )

'~' (2~ l '-'
p()

-
p

- b

b-

x4~(g) f dzi dzs glbp)p((r)l~, —~, —...—o.

After the integration over momenta Q; we obtain the very compact formula

1/2 b 1—
I'~h»~) =

I I I

—.
I

—; d (
—

) (—')') .("~l"—& (d ~ &~)o,(~)&,""

where

C& —C)v I p
— &pb ppp(00z)pb ~ I p(00z)dz) . . dzbb(b) b(b)

One-dimensional overlap on each Jacobi coordinate here means a large contribution to the reaction amplitude of
deexcitation of internal cluster states with NpLp g 0 but M() ——0 and the radical change of the physics of cluster
quasielastic knockout. The traditional factorization of the differential cross section into the &ee scattering cross
section and recoil momentum distribution [16] becomes lost due to the above nondiagonal scattering terms and
resulting interference of different momentum wave-function amplitudes. However, it is convenient to retain formally
this factorization to follow the traditional convention in the interpretation of experimental data. So, we introduce the
"effective momentum distribution" (EMD) of the recoil spectator nucleus as the generalized form factor and represent
the differential cross section by
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d o m„1,(do s'i

dO dOsdE h2 (2J+ 1)
*

(, dna) &„' (9)

(P;f (q) (
= (T) MT; TpMT; )TMT )

, (A)
2J+1 ' ' ( b) 4m.

Jx
x ) [(2J~ + 1)(2j+ 1)(2L+ 1)(2S+ 1)] ) 8 Sp j ) ( 1—)

+ P)(cosO»)
gjl L S J

x ) (AaNLST)A —b, P; N) L~SqT~
nAn'A'

xAA, bNpLpSpTp .'(Z))(AaNLST~A —b, P; Nj L) SyT) ,'n A, bNpLpSpTp .'(l'))

x L L, & ~ (q)~ (q)CN LoCN'L'/ (Cp
s(b) b(s) s(b) 2 (10)

This expression results from Eqs. (6)—(8) and includes all the angular momentum algebra.
One new original property of EMD is its dependence on polar angle e» which can be very strong under some specific

kinematical conditions (see below). The y» anisotropy is absent here due to the limitation Mp = 0.
Turning now from b-fold scattering to smaller proton scattering angles, i.e. , to multiplicities less than b and to their

interference, we find some new eff'ect. Namely, the limitation Mo ——0 disappears. For instance, when triton is knocked
out, the double scattering overlap integrals look like [28,26]

CN I M (p) = exp c— ———
~

b
~

—+ ps [ (p& p(ry, r2)tpg, N r, M (ry, r2)d t')d t'23(2) .P P2 P)'t P (Py i y 3 3

[compare with Eq. (8)]. As a result, p» anisotropy of EMD appears side by side with the remaining e»
anisotropy [28,26]. So, EMD depends on the fast proton scattering angle [26,28] (at lower energies Ez 100—200 MeV
this dependence is practically absent [29,18]). In the Glauber-Sitenko theory the dependence of scattering amplitudes
on spin-isospin quantum numbers is usually neglected [22,23]; scattering operators are symmetric with respect to
the spatial permutations and as a result our deexcitation amplitudes are diagonal on the quantum numbers Sp, Tp,
[f]p. For instance, the o.'-particle excited states taken into account are the following: Np = 1; Np = 2, (Ap)p = (20),
Lp = 0, 2; Np = 3, (Ap)p = (30), Lp = 1,3; Np = 4, (A((f)p = (40), Lp = 0, 2, 4. The situation can be very difFerent for
electron-induced cluster knockout (see below).

The plane-wave formulas will be given below, but here we present the generalized DWIA expression for the cross
section [26], which is the basis of our quantitative calculations. It contains the interference terms between different
scattering multiplicities, p dependence of form factors, 0» and (p» anisotropies, etc.

This formula looks like

6f CT

dO„dOgdEp

m fA) fL, S& J
l (T~~~ T«plT~)') r. S. j (FPC) (FPC)'

L S J )
oooo[4] Sooo[4] 3 I

+NRLQMo[f ](&) pgr~MI[f, '](&) ( ~) +~&&&1("j&)+n'A'I'l', ("»)( l + 1)

(2L + 1)(2A + 1)(2A' + 1)(2l + l)(2l' + 1)
(2Lp + 1)

A '

x((,oo o~l o)(lol', o)l'o)(('(o(, o~l, o) &
(' (( &'

&

& &, & I
x ) (LMLpMp[(LpMp) (lqmqlmlLM) Y& (k) r, (p)-

Mrnm j

(12)

with the summation over all intermediate angular momenta. Here, FPC (fractional parentage coefficient expressed
in terms of cluster Jacobi coordinates, i.e., within the identity factor of the cluster spectroscopic amplitude) means
(Ao(NLST J[A —b, pN), LyS~T) Jy, ALA, bNpLpSp(LJ); JT), k = (m~-&lm&)p+ q

f' xx. (O p) = f8 x(R)fr(OR)ji,
~

OR
l
R &,R (13)'

q m~

and the radial wave function R„s(B) of virtual cluster b c.m. motion in the initial nucleus is defined from the
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corresponding Woods-Saxon potential [18,2'9] (see below). Furthermore, the knocked-out cluster distorted wave is
expanded over partial waves as

)(k, R) = ) (—1) f('(k, R)Y( (nR)Y(,~(n();
l,m

(14)

it must be calculated by means of the optical potential [18,29,31] (see below). This partial wave expansion method [26]
was verified in Refs. [31,32] confirming its good convergence and stability. In reality, 25—30 partial waves are necessary
to produce the stable numerical results. The distortions of proton waves are neglected as long as the corresponding
corrections to proton plane wave results modeled by using Glauber-Sitenko rescattering amplitudes of fast proton are
small numerically, 5—10'Fo [33]. Due to this circumstance all the plane-wave expressions for overlap integrals [8], [9],
etc. remain valid, and they are incorporated into the virtual cluster deexcitation amplitude

8N o M ~& ~(p) = (2oo) J d ro o( oo o(bNoloM, o, SoTo~

s s (s) (8)

x ) (—1)'+
~

.
~ ) d p, f(p;)exp(ip; p ) exp( —ip . Rs)

(2vripp)

f (~)

xh p —) p; ib 000 ST) (15)

which is also the same as for the plane-wave approxima-
tion. Here, s & b is the scattering multiplicity; (s) is
some definite subset of s numbers chosen f'rom the set
1, 2, . . . , b; and i runs over all numbers of the subset (s).

A detailed version of the general expression (15) for
a-cluster knockout (b = 4) is given in Appendix A (its
schematic description is presented in Ref. [32]), the case
of b = 2 and 3 is illuminated in Refs. [25,28,32].

Here, we present a broad panorama of the potentiali-
ties of our generalized DWIA theory containing the deex-
citation amplitudes by means of a thorough investigation
of the cluster quasielastic knockout process at various
kinematical situations. We can manipulate by kinematics
to optimize, say, the contribution of deexcitation scatter-
ing amplitudes (or, opposite, to arrange the maximal con-
tribution of diagonal ground-state to ground-state ones).
The plane-wave formulas presented in Appendix B can
serve here as some qualitative guide. We investigate
both the q dependence of the form factors along different
"rays" characterized by some fixed Oq, yq values and the
anisotropies of form factors when the q value is fixed and
either Oq or yq angle is varied. This picture depends on
the proton scattering multiplicity, i.e., on the momentum
transfer value p. So, we see, actually, a rich landscape.
The reaction C(p, pa) Be is considered as the most fa-
vorable from an experimental point of view.

Nuclear shell model wave functions of LS coupling are
used in formula (9) for simplicity, but all the calcula-
tions are done in the intermediate coupling scheme (see
Appendix A). The results are presented below.

To conclude this section of our paper it is reasonable to
comment on the effects of nucleon exchange in the final
state. We can expand the final state cluster distorted
wave f('(k, R)Y(' (nR) Yi (n(, ) in the region of overlap of
nuclei A —b and b on the oscillator wave functions [34)

where

C„", = (f; (k, R)Yi (n()IR,((R)),

and R„i(R) is the radial part of the oscillator wave func-
tion O„i (R). It is not difficult to demonstrate that the
main components of expansion (16) in the region of over-
lap of nuclei A —6 and 6 are characterized by n values
centered around n no + k2/2k&2 —

2 [35] where ko ——

/AM ~ 200 MeV/c and np = 4. So, due to the high
energy of final cluster b this expansion is characterized by
high excitations n 8. The final state exchange effects
modify the function f(*(k, R)Y( (nR)Y( (n~) to [19]

f(*(k, R)Y(* (nR) Yi (n( )

d R'K R, R t ~, R Yim a &im &a

d R'K(R, R')4„( (R') = A„@„( (R), (19)

where

A„= (A —b; b; C„( (R)iAiA —b; b; 4„(~(R)), (20)

f( (k, R)Y(* (nR)Yi (n(, ) = ) A C i 4 ( (R)

where K(R, R') is the exchange kernel. If Ru~ s fuu(,

bc', (real for the light nuclei) then the oscillator func-
tions become eigenfunctions of the kernel K(R, R') [19],
&.e. ,

f('(k, R)Y(' (nR)Yi (n(, ) = ) C„"( C„( (R), (16) However, A(v 1 for n ) 6 [19] and there is no difference
between y( ) (k, R) and y( ) (k, R).
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III. sC(p, pa) BE REACTION EXAMPLE

The sole experimental result [36] in our area of inter-
est is shown in Fig. 1. It corresponds to E„=600 MeV,
0„=36, and 0 = —65 within the coplanar geome-
try. Energy resolution in this energy sharing experiment
is about 9 MeV. The reaction 2C(p, per)sBe(0+) dom-
inates at small q values; however, the in8uence of the
~2C(p, pn) sBe(2+) transition can be visible in the form
factor tail region which we do not discuss here. The pro-
ton energy is not large enough here to neglect the spin
terms in the nucleon-nucleon scattering amplitude, so
this illustration is mainly of qualitative character. Keep-
ing this in mind we see that our theoretical description
of this experiment is quite reasonable; nevertheless, the
choice of geometry is not very favorable to reveal the de-
excitation of virtual clusters —its inQuence increases the
cross section twice within the above kinematics but with
no change of momentum distribution shape.

However, being armed by the general formula (12) and
by its plane-wave simplification (see Appendix B) we can
optimize the contribution of virtually excited clusters,
making it rather pronounced.

In Figs. 2—4 the "effective momentum distributions"
(EMD) of C(p, pa)sBe reaction are presented for three
levels 0+, 2+, and 4+ of the Be nucleus. The kinematics
chosen corresponds to double plus triple scattering of the
fast proton on the nucleons of the knocked-out n cluster

[p = ]po —
po~ = 1 (GeV/c) ] and to one of the optimal

orientations of the recoil momentum q e& ——71', &ps ——5'
(the z axis is directed along vector po). We see that
both absolute magnitudes and shapes of EMD's are very
sensitive to the deexcitation effects (the logarithmic scale
is used).

In accordance with the above conclusion, Figs. 5 and
6 show very remarkable evolution of EMD for the par-
tial reaction ~2C(p, pa)sBe(0+) when both the multiplic-
ity of proton scattering [p2 = 1.6 (GeV/c)2 corresponds
to the interference of triple and quadruple scattering]
and the orientation of vector q are changed (compare to
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FIG. 2. "Effective momentum distribution" (form
factor) F~ (q) of recoil nucleus Be for the reaction

C(p, pn) Be(0+) at p = 1 (GeV/c), O~ = 71', and

p~ = 5'. Solid curve, generalized DWIA with deexcitations;
dashed curve, DWIA with no deexcitations.
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FIG. 3. The same as in Fig. 2 but for the 2+ level of Be
nucleus.
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FIG. 4. The same as in Fig. 2 but for the 4+ level of Be
nucleus.
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FIG. 1. Cross section of the C(p, pa. ) Be(0+) reaction at
E~ = 600 MeV within the coplanar geometry [36] in compari-
son to our calculations (solid line) and to the eikonal approxi-
mation for cluster distorted waves [33] (dot-dashed line). The
theoretical curve with no deexcitations is of a similar shape
but lies 2 times lower. o'" means d o'/dAqdAsdE, oo" is 1
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FIG. 5. The same as in Fig. 2 but at p = 1.6 (GeV/c),
~ = 36, rp~ = 41 . Dotted curve is the plane-wave IA with

deexcitations.
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FIG. 9. Oo anisotropy of form factor F~ (q) for the
' C(p, po.) Be(4+) reaction at medium momentum transfer

p = 0.5 (GeV/c) . Solid line: q = 90 MeV/c, rpo = 60'
(the inelastic component with Np ——4, Lp ——4, Mp ——4 dom-
inates). Dotted line: q = 80 MeV/c, p = 20' (Np ——4,
Lp = 41 Mp ——4, too). Dashed line: q = 70 MeV/c, yo = 10'
(No = 4, Lo ——4, Mo = 2).
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FIG. 7. Form factors F„(q) of recoil nucleus Be for the re-
actions ' C(p, pa) Be(2+) and ' C(p, pa) Be(4+) at p = 1.6
(GeV/c), Oo = 90', rpo = O'. Solid curve, 2+ level with de-
excitations calculated in the eikonal approximation of DULIA
according to the routine of this paper. Dotted curve, the
same but with the oscillator wave function of the a particle
in the C nucleus (hu = 16 MeV). Dash-dotted curve, 4+
leva' with deexcitations calculated in the eikonal approxima-
tion of DWIA according to the routine of this paper. Dashed
curve, the same but with the oscillator wave function of the
o particle in the C nucleus (M = 16 MeV).

Fig. 2). All the above results were also calculated within
the eikonal version of the DULIA procedure. Good agree-
ment was found.

In Fig. 7 the form factors for levels 2+ and 4+ of the
Be nucleus at p2 = 1.6 (GeV/c)2 along the "ray" eo =

90', yo = 0' are calculated (within the eikonal version
of the DWIA only) under two assumptions: (a) the cr-

particle wave function in the C nucleus corresponds
to the potential description [29] adopted here; (b) the
oscillator wave function is used (hcu = 16 MeV). We see
the very remarkable difference testifying against the use
of oscillator functions here.

The q dependence of EMD's is presented in Figs. 8—
12 by the O~ and y~ anisotropies at diH'erent values of
p and q, which is inspired by some concepts of meson
physics (Treiman- Yang anisotropy, etc. [37]). However,
the composite particles and their internal rearrangements
were not considered there.

The predominating deexcitation amplitudes for the 4+
level of the Be nucleus are indicated in the figure cap-
tions. This level is very convenient for revealing these
amplitudes as far as the "old" form factor (with no de-

excitation) is small at q ( 100 MeV/c. We see that the
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FIG. 8. Oo anisotropy of the form factor F~ (q) for
the C(p, po;) Be(0+) reaction at small momentum transfer

p = 0.2 (GeV/c): (a) q = 90 MeV/c, yo = 20'; (b) q = 110
Mev/c, po = 53'.
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FIG. 10. po anisotropy of form factor F„(l) fror the
C(p, per) Be(4+) reaction at medium momentum transfer

p = 0.5 (GeV/c) . Solid line: q = 100 MeV/c, yo = 15'
(Np = 4, Lp ——4, Mp ——2 dominates). Dashed line: q = 55
MeV/c, rpo = 45 (Np = 4, Lp = 4, Mp = 4 dominates).
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FIG. 11. ep anisotropy of form factor E~(q) for the
' C(p, pa) Be(4+) reaction at high momentum transfer

p = 1.6 (GeV/c): (a) q = 82 MeV/c, yp = 10' (the compo-
nent Np ——4, Lp ——4, Mp ——2 is still quite visible); (b) q = 90
MeV/c, rpq ——20' (here Np = 4, Lp = 4, Mp = 4); (c) q = 110
MeV/c, yq

——53' (Np = 4, Lp = 4, Mp = 4, too).

anisotropies under discussion can be very strong: the ra-
tio of maximum to minimum exceeds sometimes 50. It
must be noted here that the large rotation angle of vec-
tor q is connected with rather small mutually consistent
changes of vectors pp and Q.

In total, Figs. 2, 5, 6, and 8 give some partial re-
construction of three-dimensional EMD (form factor) for
the reaction i2C(p, pa)sBe(0+) and Figs. 4, 7, 9, 10,
11, and 12 for the reaction i2C(p, po. ) Be(4+). In all
the above calculations, the bound-state o.-cluster po-
tential of the Woods-Saxon shape have the parameters
Vp = —90.0 MeV, Rp = 2.46 fiil, aild a = 0.75 fm [29].
Distorted waves for the knocked-out a particles are de-
scribed by the complex potential [29] with the parameters
Vp = —89 MeV, Rp = 1.98 fm, a = 0.81 fm of the energy-
independent real part and with the energy-dependent
imaginary part. Its radial parameters Rp = 6 0 fm and
a' = 0.58 fm are fixed; meanwhile, the amplitude W is
growing with energy by the usual way: W = 4.9, 19.7,
and 32.9 MeV for E = 20 MeV, 40, and 70 MeV, re-
spectively.

The experimental verification of the above concepts
and of numerical results seems to be a very interesting
problem.

Proton beams with energies above 800 MeV can be
used here and our calculations can be extended in accor-
dance with the conditions of experiment (lower proton
energies probably need spin corrections).

-I

CV Q -2
o

Cll0 -3

There are a few opportunities to extend the experience
accumulated in the course of this research.

First, it is expected also [38] that the direct process
O(p, dd) C(0+; 2+; 4+) at the photon energies of 80

MeV is connected with the disintegration of the virtually
excited o. cluster, which should result in approximately
the same shape of recoil momentum distributions for all
three above levels of C nucleus.

Second, investigation of electron-induced cluster
knockout &om light nuclei at electron energies of 500—600
MeV [39] is interesting, too. The specific property of this
reaction, however, is that the electron collision here is al-
ways a single one (with the essential role of spin-isospin
variables). So, in contrast to Glauber-Sitenko theory,
the electron-cluster scattering amplitude decreases very
fast with increasing transferred momentum p = ]ps —pp]
and, say, the knocked-out a cluster cannot be supplied
really by the kinetic energy higher than 30—40 MeV. So,
it seems very reasonable to investigate here, say, Oq and

pq anisotropies near the maximal available energies of
knocked-out clusters to avoid the situation resembling
the cluster quasielastic knockout by the 100—200 MeV
protons discussed above. However, the number of actual
excited states of virtual cluster is rather large here which
can result in the smearing of the anisotropies in compar-
ison to the proton-induced knockout. The simplest deex-
citation process i2C(e, e'd) ioB'(0+, T = 1) with the spin-
isospin rearrangement of virtual cluster e+ d, ~ e'+ d
was just observed a few years ago [40].

Third, ten times increase of electron energy to the
value of Ep 5 GeV overs the opportunity to in-
vestigate the structure of quark configurations in the
lightest nuclei by means of exclusive knockout reactions
like 2H(e, e'p)N' with the investigation of excitations of
baryon-spectator N' [41] (the probability is 10 s).
Here, if N* corresponds to one of negative parity states
(J = 3/2 or 1/2 ), there are two ways to produce it.
The first of them is e + N ~ e + N (elastic knockout
amplitude) which corresponds to the distribution of two
oscillator quanta of quark configuration 84p2 over Jacobi
coordinates like N(lp)N' [the symbol (1p) characterizes
the relative motion of two baryons]. The second way is
connected with the wave-function component N'(Os)N'
with deexcitation knockout amplitude e + ¹ ~ e'+

¹

In the H(e, e'vr+) n process, evidently, the above
anisotropies can result &om, say, the nondiagonal knock-
out amplitude e + (1+) m e'+ vr if the virtual mesons
with the nonzero value of internal orbital momentum are
present in the mesonic cloud of the nucleon.

l I
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FIG. 12. yp anisotropy of form factor P (q) for the
C(p, po.) Be(4+) reaction at high momenum transfer

p = 1.6 (GeV/c): (a) q = 60 MeV/c, ep = 44' (component
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APPENDIX A

50

The reaction amplitude is, as usual [25,26],

M; t(p, q) = dpe'e'e f deobSBeb;2'

Here, the initial shell-model wave function in the intermediate coupling can be written as [12,13]

(A1)

) . a(y'jl, S I Acd[f]NLST: Js MZ, Mr).
[f]

Introducing cluster spectroscopic amplitudes [11,26] [see formulas (10) and (12) above] we represent (A2) as

(A2)

) a(yI~s ) (Ao([f]NLSTIA —ba [if ]iN LiSiiTi', nA;b[fp]NpLpSpTp(l;))
[f],L,S

Lg Sg Jg
xg(2Ji+1)(2j+1)(2L+1)(2S+1)& l: Sp j ( (—1) + '+ '+s

L S J
x of(2L+ 1)(2do + 1) ( S & (T M oToeMs~TMe) ) (1oMo„SoMs, ~doMs, )So j Jo

x(AMA, JpM&plf'Mc)(J, M~„f'M&l JM~)IA —boi[fi]NiLiSiTi . Ji, Mg, , Mr, )
x InAMA) Ibo(o[fo]NoLoSoToMr, ,Ms, Mr, ),

where the composite index t means Ny, ay, Ly, Sy, Jy, T], Np, ap, Lp, Sp, Jp, Tp, A, l'. , j, n = N —Nq —Np, and
M = Ms„MI,„M~, Mg, , Mg, , Mc. The final state wave function looks like [35]

——exp(o(Q —q) Re)d{k1 &(k, R) bo~obaeoS(foS)NoSLoSSoSToSMoeMseMse))f,

where 2()'ff is [12,13]

(A4)

) a~&1& s IA —bo(f[ff]NfLfSfTf ~ Jf Mg, Mr ).
Iff],Lf,Sf

(A5)

As long as the interaction operator 0 is symmetric with respect to the permutations (see below) and the wave functions
sob

Q; and Qf are antisymmetric, we can remove the operator A, replacing it by the factor(&+)if2. Taking into account
that

m~-s
exp[i(Q —q) . Rq] = exp(ip Rz) exp

I

i p R I,
m~

we introduce the subsidiary integral

bP oM (k p) = f dRexp
I

—bp R
I

IX' '(»R))'le~Me)m„)
The final state distorted wave is

)(k, R) = 42r) i' f;(k, R) ) Yi~(R)Y,' (k),

(A6)

(A7)

(A8)

exp
I

—ip R
I

= 47T) (—i)'gi,
I

pR
I Q Y(', , (R)Yi,~, (p) s

A f i 0 A
(A9)

Taking into account that

InAMfk) = (ff„f,(R)YAM (R) . (A10)
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YAM„(R)Yi' (R)Yi' (R)dR = (l0, lqOIAO) (lm, lqmq IAMB),
(2l + 1)(2li + 1)

(A11)

and using the notation

F ~ii, (p, k) = fi(k, R)ji, I

" 'pR
I
p„p(R)R'dR,'(m~ )

(A12)

we can write down integral (A7) as

W„&M„(k,p) = (4x) ) i + ' (l0, l&OIAO)(lm, lzm&IAM&)F„&«, (p, k)Yi~(k) Yi,~, (p), (A13)
(2l + 1)(2l~ + l)

)fA~ 1 )mg

and the matrix element of operator (Al) looks like

ipp 2
Fg&'

f(p 1)= (4 ) I b27l'

A, JT A —bJy Ty
[f)LS [ff]Lf Sf

[fl LS
[fy] Lf, Sy

x ) (Aa[f]NLSTIA —bay[fg)NiLiSgTi, ', nA;b[fp]apNpLpSpTp(Zj)

xg(2Jq+1)(2j+1)(2L+1)(2S+1)& l: Sp j & (—1) + '+ '+~/(2l:+1)(2Jp+1)
L S J

X J T]MTy ) TpMTO TMT LQMLO ) SQMSO JpMJO ™p ) JpMJO l:Mg
Sp j Jp

M
4~(2A+ 1)

x(lO, l&OIAO)(lm, lcm&IAMB')F aii, (p, k)Yi (k)Yi, ~, (p)B& I I [& ](p)

x(A —bay[fy]NyLgSgTf . Jg, Mg~) MT~ IBID —bai [fg]Ni LgSiTg . Jg, Mg, ) Mz;) (A14)

where B& & I [& ](p) is expressed by formula (15). After standard manipulations of angular momentum algebra we

obtain
I21 2 ~p ~ ~ A JT A JT A b J~T~ A b JfTf

* f(»&))l =
2 b ) [erg [f']1, 5' [f ]L s [f']I'. s,

x ) (Aa[f]NLSTIA —haf[ff]NfLfSfTf, nA;ba [f ]N L S T (8))

x (Aa[f ]NL S TIA —bay [f~)NyLyS~Ty, 'n A; bap[fp]NpLpSpTp(Z))

x( 1) + '+ o+—0+ (TyMz~, TpMT;ITMT) (2' +1)(2j+1)
x(2Ly+ 1)(2Ly+ 1), Q(2L+ l)(2S+ 1)(2L'+ 1)(2S'+ 1)(2Jp+ 1)

(2Z+ 1)
2A'+ 1

f l T ( If f f f f f
x & l: Sp j & p 8 Sp j So j Jo Sp j Jo

x ) (—1) +" i'+"+ '+' (2l + 1)(2li + 1)(2l' + 1)(2l~ + 1)
l, l', L1, lq

l, 11,L

x(2L+ 1) i (l0, lgOIAO)(l'0, l~OIA'0)(l0, l'OIlO)(lgO, l~OIlgO)

lg A'
A Jp booo[4]l li L &, , - F„pii, (p) k)F„'ij,,ii)[(p, k)B~ ~ M [y ](p)

I,
'

I,
' A'

(JpMz„LMI JpMz~)(Yi(k)Yi (p))LM,
MJo, M~), Mg0

(A15)
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where g = [f],I, S, [f'],L', S', [ff],Lf, Sf, [ff],Lf, Sf and h, = Np, np, LI), Jp, A, 2, j, Np, op, Lp, Jp, A', n = N —Np-
Nf f) —N Np Nf . Exploiting the microscopic structure of operator 0 [22,23]

4

0=) Id4—
4 4

A A A A A A A A A~,~~ + Cu;~~~I, —~lul Cu2~3~4,
j)i=1 k)j)i=1

(A16)

1
dp e 4Pi'{P Pi) f (p. )

2 FXPG
(A17)

it is possible to reduce step-by-step expression (15) for the cluster deexcitation amplitude to the set of elementary
expressions. First,

bGOOI4] A
|v L M [f j (P) (Q ) (bop 0[4]Np OI p

—OS() —OT() —0 . 0, 04 0~

&& ) dp f(p, )b(p —p, )e"' " *'"'—

4

x ) f dpedpe f(pe) f(pz) (p d—pe —p4)e'(e"e +e'e'I
k)~=1

+ . , ) f dp«pedp, d(p —pi —pe —p, )f(pi)f(pe)f(p;)
(2m)'

27( happ l)k) j=l
(2"'

~(Pt 'P)+Pa 'PI. +Pj 'J j ) ~P Rbxe
(2n.ipp) 4 dpldp2dpsdp4f (pi)f (p2)f (ps)

xf(pe)d(p —pi —pe —pe —pe)e'""'"' "'"""'"' " ')
x ~bcdP[fP]NPLPSPTP '. ML, P, Msp, Mzp) = Iy —I2 + Is —I4. (A18)

Note, that the quantities p; in expressions (A17) and (A18) are ordinary c.m. coordinates of nucleons, which form

a virtual n cluster. The exponential terms in (A18), for example, exp(ipse p) —ip RI,), can be easily rewritten in
terms of cluster Jacobi coordinates, as was shown in Ref. [28].

Defining the internal Jacobi coordinates of the 0, particle

Xl = rl —I'2,

X2 = F3 —r4

~l + ~2
X3

2

r3+ r4
2

and conjugate momenta

Qi = -', (Pi —P2),

Q2 = —,'(Ps —P4),

Q, =
2 (Pg + Pg —Ps —P4),

we can write down Iq, I2, and I4 as (see also [33])

27r)2I (4P[4]MPP. P P P( f(p)I, e( ..
2Ãzpp

+e' *2 *3 ~ + e' *3 *2 bnp p NpLOOO: M1.„0,0, (A19)
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I2 ——(b0[4]0000: 0, 0, 0] . f ~

— e' 3 b(p, ) + e' '27l' l p
(2s.ipp)2 . &2

( ., —., )/ b
~

~ +
~
+ ' .(—.,+ ., )/

2 ") (,

*'+ I+ "' ' '"~l *' *'+ I+ "'"~( )') 0 2 *)
x ]hap [fp]NpLp00: MI,„O,0) ) (A20)

I4 = (b0[4]0000: 0, 0, 0~ . 4 f —
~ b(pz )h(pz )b(pz )~bap[fp]NpLp00: Mg, 0, 0).

(2vr)2 pi 4

2xipo 4 - 4&- (A21)

Concerning I3, by means of new variables

p& + pa + pi = p =—'Qi~

—,'(p, —ps) = Q2,

—,'(p, + pa) ——,'pi = Qi,

we express it as

&2x&5 p)(b0[4]0000. 0 0 0] f i

u (n, +,)/ g(& )
(2miPp) s 2 )

p ~

+e&P (P q+P')I h(p )b (p +
~

+eP'(P q P )3/s
+1 ( +s 2 )

e / a~ a~ ~ c ~ a~ 3 e~ a3 ip( p )/sb

xh
i

" "+ *
i

ibap[fp]NpLpooM1, „0,0) (A22)

This is the second step of simplifications. The third step is connected with the opportunity of using the nonsym-
metrized internal cluster wave functions, expressed by means of products of wave functions corresponding to separated
Jacobi coordinates (see Ref. [25] for a justification of this trick through consideration of the symmetry constraints).
So, we introduce the coefficients (b = 4)

K(y )~ L [vyAy, v2A2, vsAs] = ( bx c[pf ]oNpL~ pyvs) vgA2) vsAs),

where vq + v2 + vs ——No. Then

(A23)

(bco[fo]No o r,.) = ) (q, )~,L„[viAi, v2 2) s s]
(~x)

x ) (Agcy, A2p2]Ap) (Ap, Asps Lpga) ]vlA1V'1) ~vsA2V2) ]vsAsps) &

Pl~PasPS~P

(A24)

(vA) =—vgAgv2A2vsA3 ~ The unified approach to the calculation of all the four integrals I; consists in the transformation
of variables from the spherical system of coordinates to the Cartesian one (see Ref. [15]):

lvA~(r)) = A(vAp]n n„n, )4„.(x)4„„(y)4„,(z), (A25)

where 4' .(x) stands for the usual one-dimensional oscillator wave function:

(~) — II
~ (

-( I o) /21 f' x l
[2"-n !j~xp]'/2. " (xp)

To simplify the formula we introduce the notations

(A26)

DP.„.—— @p z4. xdx, (A27)
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J„n —= Cp X @„Xe'"* ~ dX. (A28)

In terms of these notations the single scattering deexcitation amplitude I1 [see formula (A18) above) looks like

1 —) [z j~ I, [vlAlo v2A2& v3A3]

(~w)
) (A1)M1, A2 jl2

i
A))1)

P1 «P2 «P3 «P

x (A XA y o)LoMoo)) A( OAnOXO ,,n, non)D oDo „Do,Jo „,( )
n j=1

XJp„„—" —1 " +n Dp„,Dp„„,Jp„., —Jp„„, —" +

x(1+(—1)" "")Do . &o „&o. (
—')io „(") . f(P)p p„ (2«r)2

(A29)

where the summation index n means n, + n» + n„= v1, n, + n» + n„= v2, n, + n» + n„= v3. Using the
abbreviation

Cp (z)C«„(z)@p (z)C„(z)e'" *( dz, (A30)

we can write down the triple scattering amplitude I3 as

(2«r)3 .
pI3 — . f ) K[y j1v g [vlA1~ v2A2~ v3A3]

2«ripp 3 . 2
(vA)

3

) (A1))l1, A2))l2iA))1) (A3)ll3iLpML„) ) A(v, A, p, in, ny, n, ,).
P1)P2 «P3 «P n j=1

xDp„Dp„Dpn @p 0 Cn 0 Cp 0 C„O 1+ —1 " 2+"»

xC'„. „. —* C„„„„—"+O' OC„. Q4' 04„„Q

x (i+ (
—i)" +"

) C'.. .. (~—') C„„P—")). (A31)

The simplest expression is that for the maximal scattering amplitude I4 where p dependence is trivial [25,33]

I4 —— . f i

— ) K(I j~ ~ [v1A1, v2A2, v3A3] (A10, A20iAO)
(2«r)s (p

2«ripp ' ), 4

3 3

x(AO, A30iLp0)bL, p ) A( v~AOiin~, n„, n, , ) 4p (0)C«„(0)4p (0)C „(0)Dp„
n j=1 i=1

(A32)

and the most complicated is I2.

(2~)' p ' - s .I2 = - 2 f ) K(y j~ r, [V1A«o 2 2o 3 3]
(vA)

x ) (v, A„v2A2iAp)(AIl, vsA3[LpML„) ) A(v; A«p, in, n„,n, ,.).
Pl «P2«V3«P n j=1

x Dp„Dp„Dpn Jpn —Jp„„, —"
p o . p

xD „D„+(—1)""+" C«' (0)4„(0)4' (0)C«„„(0)Dp„.Dp „,
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+ +'o. (»)@-., (zi)@'o. (z2)c'-., (z2)@o. I

~:„(~)~-„(~)~.*„,(~ )~-„,(~.)~:„, i' "', "'
i

~ P2 Vl iy (y~+y~)/4
OO

du&du2 + C'o. , (z&)@ ., (z&)@o. (»)~'-., (z2)

) "'
(. )

+ co. (»)c'...(»)@o. (z2)@:. (z2)c'o. I

/' yi ——@2'xe'"*(*' *'/'dz dz @o„(yi)@.„,(Wi)c'o„, {u2)@ „,{W2)c'o„, i

x e„
i

"' "'
i

e'""("' """dui42+ @'o (zi)@., (»)C'o. (z2)@., (z2)
—OO

2 ) —OO

(A33)

where the subsidiary integrals Do„and Jo„can be expressed as

2
&On & &Gn

[2~m!zoz ] / (n/2)! k z~ )

- n/2

(A34)

2- m/2

2) 2"n!zo I, z„) (8[1—(zo /z ) ]»2) (A35)

xo and z„here mean the parameters of oscillator radius of the ground-state 6nal a particle and of the excited virtual
a particle, respectively (if it is necessary to distinguish them), zo„——(2zoz2)~/2 x (zo2 + z2)~/2, and H„(z) is the
Hermitian polynomial. When calculating I2 we use the well-known formula

"HN (»)HM (»)dz

min(N, M)

) 2"k'i
i i i

(1-&')( +"'"-"H +N "i'( k) (k 2/1 —A2 )
(A36)

f
min(N, M)

~ ~
min(I, M+N 2k)—

e HN(+z)HM(»)HI (»)dz = ) . kt
i k i I k i ). u!
( k) (k)

&L l (M+N —2k 'xl
(, » E

e-* H.+M+N» 2„(»)dz. (A37)

APPENDIX B

Keeping in mind the final quantum numbers of the detected n particle, S = 0, T = 0, N = 0, L = 0, [f] = [4], we
obtain rather simple plane-wave approximation formulas:
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1 2pp i A ) ~ ~,gT' ~,JT' A b—,JrTr A b—,JrTrI2

, IM' I(»q)] — ~ l b I). (Iir,s (I)is (I,ii, s
g

x ) (Aa'[f]NLST]A —bcrI[fI]NILIST; nA; botp[fp]NpLp00(Z))
h'

x (Acr[f ']NL'S'T]A —bcrI [fI]NI L'I S"T;n'A'; bcrp [fp]NpLp00l:)

~+~+1+1.+I, +s+s +z (2L+1)(2L'+1)(2A+ I)(»'+ I)
2Lp +x, , (AO, A 0]LO) qr„A (q) (p„p (q) B~ ~ M (I ) (p)

0 0

x B ( ]
(p) ) (LM, LpMp]L'pMI„)Y&M(q),

MLO rMLr
0

where g':—[f],L, S, [f'], L', S', [fI],I I, [f&],L& and h' = Np, ap, Lp, A, n, [fp], 8, Np, ap, Lp, A', n', [fp], L Fu.rther-
more, y„~(q) is an ordinary Fourier transform of the mutual motion function p„~(q),

y„s (q)—: R (p„A(R)j h(qR) dR.
0

The totality of spherical harmonics Y&M(rI) in the above formulas is just the source of e~ and &ps anisotropies, and
we can trace easily its connection with the Mp dependence of amplitudes BN & M (& ](p) (if Mp ——0 only, M = 0 and
the ys anisotropy disappears, etc.).
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