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The basis states generated in the sp(6) 0 u(3) algebra of the fermion dynamical symmetry
model (FDSM) are studied. The assumption made in the FDSM that the lowest-lying states of even
nuclei are states with u = 0 and the largest SU(3) quantum numbers is analyzed. A pairing plus
quadrupole-quadrupole interaction is diagonalized for valence nucleons of the actinide region in (i) a
complete basis for two protons and two neutrons, (ii) a truncated FDSM basis for 10 protons and 14
neutrons, and (iii) a strongly-coupled FDSM basis for 24 nucleons. The existence of a multiplicity of
FDSM bases is taken into account. In all cases, the overlap between the truncated FDSM subspace
and the full shell model space is very small for the n-identical-particle calculations. This implies
that a complicated renormalization of shell model e8'ective interactions is required before they can
be used in the individual proton and neutron spaces. However, with the proper forced choice of
proton and neutron bases, a strong proton-neutron quadrupole-quadrupole interaction drives the
states with the largest possible FDSM-SU(3) quantum numbers to lie lowest in energy. This leads
to a rotational band structure in actinide nuclei with excited rotational bands ordered by the FDSM-
SU(3) quantum numbers in the strong coupling limit.

PACS number(s): 21.60.Fw, 27.90.+b

I. INTRODUCTION

The study of nuclear collective behavior in terms of
the single-particle degrees of keedom of the nuclear shell
model still forms one of the great challenges for our un-
derstanding of nuclear structure. Shell model dimension-
alities for heavy deformed nuclei become prohibitively
large even for modern computational facilities. In any
case, the enormity of the bases precludes an under-
standing of the eigenstates in terms of the j-j coupling
scheme. The pioneering work of Elliott [1,2] using group-
theoretical methods, in particular the three-dimensional
harmonic oscillator symmetry group SU(3), led to a
physically relevant truncation scheme in light rotational
nuclei whose low-lying rotational bands are dominated
by a single SU(3) representation. An extension to the
pseudo-SU(3) model [3] has led to an analogous trunca-
tion scheme in heavy deformed nuclei. Much of the suc-
cess associated with the correspondence between the real
and pseudo-oscillator shell model is related to the fact
that the real quadrupole moment operator maps almost
perfectly onto the corresponding pseudo-space operator
of the same SU(3) symmetry [4].

The appeal of a mathematically dictated truncation
of the shell model basis has led to the development of
algebraic models, of which the most successful one is
the interacting boson model (IBM) [5]. In the IBM, the
bosonlike characteristics of nucleon pairs are exploited
and the low-energy excitations of even nuclei are replaced
by purely bosonic ones. The main limitation which shad-
ows the phenomenological successes of the IBM is its neb-
ulous connection to the many-fermion microscopic foun-
dation of the shell model. The mapping from the shell
model fermion pairs of even nuclei coupled to a total an-
gular momentum of J = 0 and J = 2 to the 8 and d

bosons of the IBM is very complicated. Although rela-
tively satisfactory methods exist for the derivation of the
coeKcients of IBM Hamiltonians in and near the vibra-
tional limit of the model, much less progress has been
made in and near the deformed limit.

An attempt at formulating an algebraic model based
on a fermion structure with only the favored 8 (J = 0)
and D (J = 2) pairs was made by Ginocchio to gain
some insights into the s, d boson pairs of the IBM [6]. In
Ginocchio's model, the single-nucleon angular momenta
j of the shell model are built in terms of pseudo-orbital
quantum numbers k and pseudospin quantum numbers
i, with k+ i = j. Combinations of k and i are chosen
to reproduce the observed normal parity single particle j
values of the major oscillator shells for nuclei with neu-
tron and proton numbers greater than 28. For example,
k = 2, i =

2 gives the 81, ds, d L-*, g~ orbits of N = 4.2' 2' 2' 2

k = 1, i = 2, —gives the pi ps I fs, fv, ha orbits of
2 2' 2' 2' 2

N = 5. k = 1, i = 2, 2 gives the si ds, ds, gz, g9, i»
2 2 2 2 2 2

orbits of N = 6.
Now consider the construction of the favored S (J = 0)

and D (J = 2) pairs of identical protons or neutrons.
For shells with a single pseudospin i = 2, such pairs
are formed by coupling the individual k spins of the two
particles to a resultant K„=0 and their i spins to I„=
0, 2. These are the 8 and D pairs in the so-called i-
active version of the model. On the other hand, for shells
with a single pseudo-orbital angular momentum k = 1,
the favored pairs of identical nucleons are obtained by
coupling the two individual i spins to a resultant I~ = 0
and the k spins to Kz ——0, 2. These are the S and D
pairs in the so-called k-active version of the model.

The i-active algebra is generated by the six favored
pair creation operators St and Dt, their six correspond-
ing Hermitian conjugate pair annihilation operators, and
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the sixteen one-body operators built kom single-nucleon
creation and annihilation operators coupled to a resul-
tant Kz ——0 and Iz ——0, 1, 2, and 3. These 28 k-space
scalar operators generate the so(8) Lie algebra with three
subalgebras; (i) so(6) + u(1), (ii) so(7), and (iii) su(2) +
so(5). (We adhere to the common practice of using lower
case letters for algebras and capital letters for groups).

The k-active algebra is generated by the six favored
pair creation operators S~ and D~, their six correspond-
ing Hermitian conjugate pair annihilation operators, and
the nine one-body operators built &om single-nucleon
creation and annihilation operators coupled to a resul-
tant I„= 0 and Kz ——0, 1, and 2. These 21 i-space
scalar operators generate the sp(6) Lie algebra with a
u(3) subalgebra generated by the nine one-body opera-
tors with K„=0, 1, and 2. If we subtract the u(1) alge-
bra generated by the number operator with Kz ——0 and
I~ = 0 from u(3), we get the su(3) algebra. Ginocchio
noted the inability to generate sufficiently large SU(3)
quantum numbers and consequently sufficiently large ro-
tational angular momenta in the k-active sp(6) algebra
with the su(3) subalgebra. Due to this "fatal flaw" he
abandoned this branch of his "toy" model.

The Ginocchio coupling schemes were extended to in-
clude all major shells of the shell model and reincarnated
as a new model, the fermion dynamical symmetry model
(FDSM) by Wu, Feng, Chen, Chen, and Guidry [7]. The
high-j wrong-parity intruder orbits h», iis, and j15,

2
' 2

'

which lie within the normal parity orbits of the N = 4, 5,
and 6 shells enumerated above, are assigned k spins of 0
and i spins of i = j in both versions of Ginocchio's model.
Pairs formed &om the high-j wrong-parity intruder or-
bits are assumed to be coupled to angular momentum,
J = 0. They are not expected to participate in the rota-
tional dynamics of the nucleons at least for the rotational
states below the backbending region.

The FDSM has numerous advantages. The building
blocks of the model constructed &om the single-fermion
creation and annihilation operators reproduce the nu-

clear shell model completely. The fermionic structure
of the pairs is very explicit. The algebraic structure of
the model is amenable to the construction of symmetry-
breaking operators. Since protons and neutrons are or-
dered into their respective shells separately, n identical
particle calculations can be performed which preserve the
individual nucleon degrees of freedom. The protons and
neutrons can then be coupled together within a chosen
algebraic framework of the model. The validity of the
FDSM as a phenomenological model has also been es-
tablished by the existence of effective interactions in the
model space which reproduce the observed physical phe-
nomena associated with the symmetry limits of the ap-
propriate group chains.

The FDSM basis states are described in terms of the
generalized seniority quantum number u, which is defined
as the number of nucleons that do not couple to form the
favored S,D pairs. The lowest energy states in the FDSM
are built entirely from the favored S, D pairs. In even
nuclei, for example, these are purely states with u = 0.
Then a state with one pair of identical nucleons whose
K„and I~ spins for either the so(8) or sp(6) algebras

are not the favored combinations is built. This is the
state with generalized seniority u = 2. States with more
than two particles and with generalized seniority u = 2
can be constructed by coupling the necessary number of
favored S, D pairs to the state with u = 2. The states
with generalized seniority u = 2, u = 4, . . . are assumed
to lie at a higher energy than the u = 0 states which
constitute the model space. In actual applications of the
FDSM, this truncation from the shell model space to the
u = 0 subspace is effected by model Hamiltonians built
entirely &om group generators which cannot mix states of
different u. In the decoupled FDSM subspace the lowest
eigenstates of even nuclei are thus assumed to be pure
u = 0 states. Appreciable admixtures of states with u &
2 in complete shell model calculations would question the
validity of this fundamental assumption of the FDSM.

The FDSM has in fact been criticized by Halse because
the exact eigenstates of realistic shell model Hamiltonians
in the sd shell have very little overlap with the pure u = 0
states of the FDSM [8] and because the favored D pairs
of the FDSM are very different from D pairs derived from
Hartree-Fock-Bogoliubov and other realistic calculations
[9] in ~ssGd. Although the necessity of a strong overlap
between "realistic" shell model eigenstates and the highly
truncated u = 0 states of the FDSM has been questioned
[10],a further test of the microscopic validity of the model
is strongly indicated [11].

Our reason for choosing the Sp(6) 0 U(3) group chain
for this study is twofold. The first is to establish whether
the presence of the SU(3) symmetry automatically leads
to rotational spectra. The second reason is a mathemat-
ical one. If the n-particle basis states are labeled with
SU(3) quantum numbers, then the operator matrix ele-
ments can be given as explicit functions of SU(3) coeffi-
cients. This is a significant advantage since there is an
extensive SU(3) code from which the necessary Racah,
generalized Wigner and 9j-type coefficients are easily ob-
tained [12]. On the other hand, such tools for detailed
calculations are not available for the so(8) subalgebras,
namely, so(7), so(6), and so(5).

The motivation for studying the actinide nuclei is also
twofold. The mathematical one stems from the presence
of the Sp(6) 0 U(3) group chain for both protons and
neutrons. In actinide nuclei, protons fill the N = 5 shell
while neutrons fill the N = 6 shell. Thus both are clas-
sifie with k = 1 in the k-active Sp(6) D U(3) branch
of the FDSM with readily available SU(3) technology.
In addition, actinide nuclei with many active protons
and neutrons exhibit beautifully rotational spectra. The
goodness of Elliott's SU(3) symmetry is based on the
dominance of a strong quadrupole-quadrupole (Q. Q) in-

teraction which automatically leads to the observation of
low-lying rotational spectra [13]. The SU(3) symmetry
in the FDSM is, however, quite different from Elliott's
SU(3) symmetry and its pseudo-SU(3) analogue. Will
the SU(3) symmetry in the FDSM also lead to rotational
spectra? The results presented in Secs. VI and VII ad-
dress this question and assess the rotational nature of
the SU(3) symmetry imposed on both the protons and
neutrons of the actinide nuclei through the FDSM clas-
sification.
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at = ) (kmsim, [jm)be

ax = ) (km' im; [jm) bs (2)

Furthermore,

For actinide nuclei classif1ed in the k-active scheme
with the total i-space spins I„,MI equal to 0, there
is only one St pair with Kz, M~ also equal to 0 as
given in Eq. (4). The five Dt pairs with K„= 2 and
p = 2, 1, 0, —1, 2 are given by Eq. (5) and the nine opera-
tors P„", with r = 0, 1, 2 which generate the u(3) = su(3)
x u(1) algebra are given as Eq. (6). The four quantuxn
numbers outside the square bracket in Eqs. (4)—(6) re-

Since actinide nuclei exhibit beautifully rotational
spectra, this leads us to first reexamine Ginocchio's "fatal
ffaw. " The sp(6) 0 u(3) algebra was discarded by Ginoc-
chio because the limit on the SU(3) quantuxn numbers
(Ap) and consequently on the value of the total angular
momentum J for n particles failed to produce the maxi-
mum value of J observed in the rotational bands of Ne
and Mg. For the actinides, the limit on J is J = 24
when ten protons with (Ap) = (10 0) are coupled to four-
teen neutrons with (Ap) = (14 0) to give (Ay) = (24 0).
The observed rotational spectra in the actinide nuclei
reach J values of 30 —40 before backbending signals
the possible participation of wrong-parity intruder lev-
els. Higher values of the total angular momentum in
the needed J range can, however, be obtained within the
&amework of the FDSM, if single-particle states of the
N = 7 shell with j = 2, 2, and 2 are admixed into
the proton orbits of the N = 5 shell. The Nilsson model
gives considerable justification for this, since the down-
ward sloping Nilsson orbits particularly &om the j is and
hii members of the N = 7 shell reach to the middle of
the N = 5 levels in strongly deformed prolate nuclei. The
single-particle states j = 2, 2, and 2 can be obtained11 13 15

in the k-active scheme of the FDSM with k = 1 and
i =

2 . The highest value of (Ap) which can be obtained
for the protons is now equal to (24 0). The coupling of
(Ap) = (24 0) for the protons with a (Ap) = (14 0) for
the neutrons results in a (Ay) of (38 0) and a maximuxn
J value of 38. The allowed SU(3) states with quantuxn
numbers (Ap) which are used in labeling the initial and
final states in our calculations are given in Ref. [14] for
the N = 5 shell, in Sec. III for the N = 6 shell, and
in Ref. [15] for the inixed N = 5, 7 shells. Even higher
J values could in principle be obtained if single-particle
states &om the N = 8 shell were to be admixed into the
neutron orbits of the N = 6 shell.

The group generators which make up the FDSM
Hamiltonians are built from the single-nucleon creation
and annihilation operators of the shell model basis
at, a~~ which are first expressed in terms of the bt, b

operators of the FDSM basis as follows:

fer to the total spins K„,M~„——p, I„,MI„obtained by
coupling the k and i spins for each particle. The SU(3)
tensor character of the operators is discussed later when
they are generalized as the At and P operators in the
vector coherent state (VCS) method:

(4)

D = ) -/3(2~+ 1)[ba,. x bx, ]g (5)

P„" = ) -/3(2i+ 1)[be,. x bs;]„„os. (6)

To test the assumptions of the model, more realistic
Hamiltonians constructed &om microscopically based op-
erators must be used to examine the generalized seniority
composition of the lowest eigenstates. Since the simple
algebraic framework of the FDSM makes it possible to
construct such operators, it is reasonable to require that
such a test of the model be performed. The difBculty in
deriving matrix elements of operators that are not gen-
erators of the relevant group algebras has prevented such
tests of the FDSM until recently. Since the quadrupole
moment operator plays a central role in driving nuclei to
deformed shapes leading to low-lying rotational spectra,
a semirealistic interaction for the actinide nuclei should
include a Q Q interaction built from the real quadrupole
moment operator Q. The effective interactions used in
this investigation are therefore chosen to be simple J = 0
pairing plus Q Q interactions or FDSM pairing plus Q Q
interactions. The techniques used to calculate the matrix
elements of such operators are described in Sec. II.

The construction of the favored D pair in the FDSM
does not depend on the relative phases of the radial wave
functions of the harmonic oscillator shell model with dif-
ferent values of orbital angular momentum L. The ma-
trix elements of physically relevant operators, such as
the ones that make up the Hamiltonian, must be inde-
pendent of such phase choices. However, the overlap of
the low-lying two-particle shell model energy eigenstates
with the FDSM two-particle states having generalized se-
niority u = 0 may be larger or smaller for certain phase
choices. Effectively, this results in several FDSM bases:
two for the N = 5 and four for the N = 6 shell. The
coefficients of Q transformed to these FDSM bases are
tabulated in Sec. IV, which also includes a description
of a rigorous check of our calculations using the pseudo-
SU(3) model.

Three types of calculations have been performed using
the formulas from Sec. II, the relevant SU(3) states from
Sec. III, and the Q coefficients from Sec. IV. The cal-
culations are described along with their results in Secs.
V—VII.

First, a complete calculation has been performed for
two valence protons and two valence neutrons of the ac-
tinide region. No truncation of the shell model space is
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necessary for this calculation. A Hamiltonian consisting
of an FDSM pairing term and a Q.Q term is diagonalized
in the two-particle basis and the resulting eigenstates are
analyzed. The calculation is described in detail in Sec.
V and the contribution of the states with u = 0 to the
lowest eigenstates of total angular momentum J = 0, 2 is
given. The results are presented for the two independent
FDSM bases for the protons and the four independent
FDSM bases for the neutrons.

The second complete calculation is a diagonalization of
a J = 0 pairing plus Q . Q interaction in the pure u = 0
space, separately for ten valence protons and fourteen
valence neutrons of the actinide region. These nucleon
numbers have been chosen so that the possible SU(3)
quantum numbers (Ay) can range from very low values
such as (02) or (20) to the highest possible permitted by
the Pauli principle in the N = 5 and N = 6 shells, i.e.,
(10 0) for the protons and (14 0) for the neutrons.
The purpose here is to examine the nature of the FDSM-
SU(3) symmetry. In Elliott's SU(3) symmetry, an attrac-
tive, real Q Q interaction drives the lowest eigenstates
to be dominated by the highest possible SU(3) quantum
numbers and leads to rotational spectra. As shown in
Sec. VI, this test is not met by the FDSM-SU(3) symme-
try. In the separate proton space, the (10 0) symmetry
is far kom dominant in the lowest eigenstates. Similarly,
the separate neutron space calculation leads to low-lying
eigenstates with only very small percentages of (14 0).

The third calculation, presented in Sec. VII, assesses
the effect of a strong coupling of proton and neutron con-
figurations via a proton-neutron Q Q interaction. For
this purpose, the ten protons are forced to be in the
(10 0) symmetry and the fourteen neutrons in the (14 0)
symmetry, effectively making them the dominant u = 0
representations, contrary to the results of Sec. VI. Then
a J = 0 pairing plus Q Q interaction is diagonalized in
the strongly coupled proton-neutron basis. Now, we find
that, with the proper phase choices the lowest eigenstates
are dominated by the highest possible SU(3) representa-
tion in the coupled basis with (Ap) = (24 0), and the
low-energy spectra contain the rotational bands expected
from the first few highest SU(3) representations.

These somewhat contradictory results are summarized
and discussed in Sec. VIII.

II. MATRIX ELEMENTS IN THE Sp(6) g U(3)
SCHEME

The analytical expressions for the matrix elements of
the most general operators in the sp(6) D u(3) algebra
of the FDSM have been derived by vector coherent state
(VCS) theory [16]. An outline of the strategy for deriving
the expressions which were used in our calculations, is
given below, along with definitions of the symbols.

The state vectors we are interested in consist of an
(71] + A2 + YL3)-degree polynomial of St, Dt coupled to
the generalized seniority u = oi + o2 + f13 particle state.
Standard angular brackets

1 ) are used to denote the
state vectors of the coupled basis in ordinary Hilbert

space. With At = St, Dt

The U(3) irreducible representation (irrep) which is la-
beled as [n]—:[nzn2ns] gives the collective quantum num-
bers for the favored S, D pair subspace whereas the one
labeled as [o] = [trqtr2os] gives the intrinsic quantum
numbers of the u nucleons that do not couple to form
the S, D pair subspace. The intrinsic and collective ir-
reducible representations couple to form the U(3) irrep
[(u] = [ur, (u2(us]. The coupling of [0] and [n] can give
a particular [ur] more than once. This multiplicity is de-
noted by the label p. The U(3) subgroup labels including
K, M~ are denoted by the label o..

The state vectors of Eq. (7) are difficult to normalize
and do not form an orthonormal set. The overlap is given
in terms of a Herrnitian matrix (KKt) as

An orthonormal set of state vectors is obtained by a map-
ping to the Bargmann z space. These state vectors are
specified by polynomials of z-space functions with even
values for nq, n2 and ns, and round brackets

1 ) are used
to denote them:

The overlap for the state vectors of Eq. (9) is given as

(~[ ]P I~[ ]P) [ ] [ ']~PP (10)

(K)[„)p „=(Ut ) [„)p „~A„. (12)

(13)(K ) v, [n]p
— +v, [ra]p

In the sp(6) 0 u(3) algebra generated in the k-active

The operators 0 which act on the state vectors are also
transformed into the Bargmann z space. These z-space
realizations I'(0) exist for both the collective operators,
Z["'"'"')(z) as well as the intrinsic operators such as
the single-fermion operators bt, b, the pair-creation and
pair-annihilation operators, and the one-body operator.
The collective and intrinsic operators commute with each
other. The VCS realization of state vectors and opera-
tors ensures that the intrinsic part of the operator acts
only in the subspace of u particles and the collective part
acts only in the S, D pair subspace.

The z-space realization F(0) of an operator 0 is a
nonunitary realization. The unitary realization p(0) is

defined by taking an operator realization of the matrix
K as follows:

p(0) = K 'I'(0)K.
The K and K matrices can be explicitly written in
terms of the unitary matrix U, which is used to diago-
nalize the KKt matrix and the nonzero eigenvalues, A

of this matrix:
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scheme of the FDSM with k = 1, the single-fermion-
creation operator bt is a U(3) tensor with the U(3) irrep

[u]—:[1], and the single-fermion-annihilation operator b

is a U(3) tensor with the U(3) irrep [u] = [ll]. Both op-
erators are actually double tensors with SU(3) symmetry
in k space and SU(2) symmety in i space. The k- and
i-space quantum numbers are a = K, MK and I, Ml re-
spectively. The conjugation rules for the bt, b operators
are given by

( M")'= ~''M-(- )""'(-1)' ' (1 )

where (zv) = (A p ) = (erg —(uz, (u2 —ups), (~) = (p A ),
and 6 = K, —M~. The phase factor y(u, a) is the
SU(3) analog of the well-known angular momenturn-
conjugation phase factor (—1)I M'. Since it is some-
what dependent on phase conventions and the choice of
the quantum number o., it is not specifically defined. It
does not appear in the final form of the reduced matrix
elements although it is used in their derivation.

The pair and one-body operators used in our calcula-
tions are given below

i" )KPMKPIPMIP I ki " kt)3KPMKPIPMIP

A(i~')Jr~M» IpM~
—[b» x b»i]~~M» r~MI (16)

ping (&)( o) bt xg . ( o)
( )KM IM 2[»»']KM IM

+(-I)'" "-2[bc; xb»]KM I M,,

(17)

These expressions are taken from Ref. [16] and differ
from Eqs. (4)—(6) by the FDSM normalization factor
zg(2k+1)(2i+ I) for k = 1. The SU(3) tensor charac-
tor of the operators is also included here in the form of
the SU(3) irreps (u~), (u„), and (ur ). These are obtained
by coupling the SU(3) irreps for the single-fermion oper-
ators as follows; (10) and (10) couple to give (u„) equal
to (20) or (01), (01) and (01) couple to give (u~) equal
to (02) or (10), and (10) and (01) couple to give (tu )
equal to (11) or (00). The individual k, i, ms, and m;
values couple to K„, I„, MK, , and Ml, , respectively.
Bxrthermore, a specific phase dependence is introduced
in the one-body operator of Eq. (18) for i g i' whose ef-
fect on the n-particle calculations will be discussed in the
later sections. The upper sign (—) gives symmetry in k

space. In this case, the symbol (p) becomes (s) and (u )
= (ll) or (00). The lower sign (+) gives antisymmetry
in k space. Now, the symbol (p) becomes (a), and (u )
= (11).

We aim to construct the matrix element of an arbitrary
tensor operator 0, in an orthonormal basis of the Hilbert
space l[[n] x [o'])[u]p;a). We first write down the matrix
element of the unitary realization of the operator p(0)
in an orthonormal basis of z space I[[n] x [0']][tu]p; n).
Then we use the K and K ~ matrices to transform it
into the matrix element of the nonunitary realisation of
the operator I'(0) in the orthonormal basis of z space.
This procedure is explicitly written down in terms of the
reduced matrix elements as follows:

([[n'] x [~']][~'l~' I'III0' "Ill[[~1 x [&]][~1~ I& .= ([[~'] x [&']][~'l~' I'Ill~(0) "'lll[[n] x [~]][~]~; I) .
= ).).4K '([~'][~'])-,( )& K([~][~])(-j&,

In] p [n']p'

([[ '1 [ '1][ 'lp' I'IIII'(0)' '"III[[ ] [ ]][ ]p I) .).
The triple-barred matrix element of Eq. (19) is reduced in the SU(3) symmetry of k space as well as in the SU(2)
symmetry of i space. The label p is the multiplicity in the coupling of [ur] and [u ] to [u ].

Let

M =(H '] [ ']][ ']p' I'IIII'(0)' '"III[[ ] [ ]1[ ]p I) .. (20)

The reduced matrix elements M of the one-body operators P(ii') of Eq. (18) are illustrated below for the simplest
case with u' = u —2.



1476 SUDHA R. SWAMINATHAN AND K. T. HECHT 50

[ 1 [~] s

M = (—1) cI".'. )
' „x([~']llzlll~])([~'] I'Ill&(~~')I„'Ill[~] I& (21)

with

(22)

The slightly more complicated case for u' = u can be
taken from Table IV of Ref. [16]. Equations (21) and
(22) are given here partly to illustrate the general com-
plexity of the expressions and partly to correct an error
of Ref. [16]. In the 9(Ap) coefficient of Eq. (21), the
irrep [2] replaces the irrep [~~] found in the correspond-
ing equation of Ref. [16], which suggests that [cu„] can
have both the possible values, [2] and [11]. The reduced
matrix elements ([n'][[z][[n]) are expressed as functions
of nq, n2, and ns on p. 84 of Ref. [17]. The coefficients

c~"„
l

for (p) = (s), (a) and (ur ) = (ll), (00), are given

in Ref. [16]. The labels p and p give the multiplicity in
the coupling of the U(3) irreps [a] and [n] to [u], and [0']
and [n'] to [ur'].

The VCS techniques have successfully reduced the ma-
trix elements in the complicated algebra of sp(6) to ma-
trix elements in the simpler algebra of u(3). These ma-
trix elements are expressed in terms of the 9(Ay, ) and
Racah-U coefficients of U(3) which are easily obtained
&om existing codes [12], the i-space Racah coefficients of
SU(2) and a few simple reduced matrix elements of the
single-fermion creation and annihilation operators. The
advantage of having an U(3) subgroup has thus been fully
exploited. Moreover, the VCS method has provided us
with expressions for the reduced matrix elements of oper-
ators with any Iz spin. We can therefore use the formulas
in this section for the real quadrupole moment operator,
which is not a generator of the sp(6) Du(3) algebra of the
FDSM and includes operators with nonzero I~ spins.

III. POSSIBLE SU(3) IRREDUCIBLE
REPRESENTATIONS

To perform detailed calculations for arbitrary proton
and neutron numbers n in the actinide region, the possi-
ble SU(3) irreps in the sp(6) 0 u(3) group chain must be
enumerated. Only the low generalized seniority states are
of the greatest interest in the FDSM truncation scheme.
Therefore, it is sufficient to list the possible SU(3) ir-
reps as a function of n for Sp(6) irreps with u & 2.
The quantum numbers that label the Sp(6) irreps are
obtained from the highest weight;s which are t;he max-
imal eigenvalues of the Hermitian operators that form
the Cartan subalgebra of Sp(6). These are expressed in
terms of the intrinsic U(3) quantum numbers, oq, 02, 0's

with u = o & + o 2+ o3, and the shell degeneracy quantum
number O. In the k —i basis of the FDSM,

0 = ) —(2k + 1)(2i + 1)
1

(23)

and the Sp(6) irreps are labeled by ( s
—os, s

—02,
oq). The U(3) irreps [~~~2~s] for n ) u are then built
starting with n = u + 2, u + 4, . . . through the U(3) cou-
pling rules implied in Eq. (7). In this process forbidden
states are recognized by constructing the KKt matrices
of Eq. (8) using the formulas in Ref. [16]. A zero denom-
inator in the analytical expressions for one-dimensional
KKt matrices, or a zero eigenvalue for two- and three-
dimensional KKt matrices signals the occurrence of a
forbidden state.

In this section, the allowed U(3) irreps [ug&24)3] for
the N = 6 neutron shell are tabulated as functions of
the neutron number n for Sp(6) irreps with u = 0, 2 in
Tables I—III. The Elliott-SU(3) notation (Ap) is used to
label the states, where A = ~q —~q, and p = uQ 4)3.
Tables I—III are labeled by the quantum numbers u, the
single-particle normal parity states j for the N = 6 shell,
the shell degeneracy 0 and the Sp(6) irrep. The SU(3)
quantum numbers for the intrinsic state are also given
when necessary, with A = oz —o2 and p = ep —o3.
Table I for the Sp(6) irrep ( s, s, s) with u = 0 gives
the SU(3) irreps for all neutron numbers 0 & n & 42. Ta-
bles II and III give the SU(3) irreps for the particle states
up to the half-full shell with n & 21. The irreps for the
hole states with n ) 21 can be obtained &om the par-
ticle states by particle-hole conjugation which replaces
the quantum numbers (Ap) by (pA). The superscripts in
the tables give the number of occurrences of a particular
(Ap). The corresponding tables for the N = 5 proton
shell are Tables 1, 3, and 4 of Ref. [14].

The most noteworthy features of these tables are the
"Pauli holes" near the half-full shell where states with
the largest values of the quantum numbers (Ap) would
have occurred without the Pauli exclusion principle and
the fermion character of the pair constituents. It is this
Pauli void which restricts the maximum (Ap) value of
(14 0) to occur at n = 14 for the N = 6 neutron shell
and is responsible for the "fatal flaw" of Ginocchio. As
mentioned in Sec. I, in order to obtain higher angular
momentum states for highly deformed actinide nuclei, it
may become necessary to mix shell model orbits from the
N = 7 shell with those of the N = 5 shell and thus reach
larger values of the SU(3) quantum numbers. The rather
lengthy tables of possible SU(3) irreps for the mixed N =
5, 7 shell for the protons are given as Tables 5.9, 5.11, and
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TABLE I. Possible (Ay, ) for the u = 0 states of a j = —
~ 22 ——shell with 0 = 21 and

Sp(6) irrep = (777).

42 (oo)
40 (02)
38 (04) (20)
36 (06) (22) (00)
34 (08) (24) (40)
32 (0,10) (26) (42)
30 (0,12) (28) (44)
28 (0,14) (2,10) (46)
26 (2,12) (48)
24 (4,10)
22
20
18 (10,4)
16 (12,2) (S4)
14 (14,0) (10,2) (64)
12 (12,0) (82) (44)
10 (10,0) (62) (24)
8 (80) (42) (04)
6 (60) (22) (00)
4 (40) (02)

(2o)
0 (00)

(02)
(04) (2o)
(60) (06)
(62) (08)
(64) (so)
(«) (82)
(68) (84)
(86) (48)
(66) (28)
(46) (08)
(26) (80)
(06) (60)
(4o) (o2)
(»)

(22) (oo)
(24) (02) (4o)

(0,10) (26) (04)
(0,12) (28) (06)
(10,0) (2,10) (08)
(0,10) (10,2) (80)
(12,0) (82) (60)
(10,0) (62) (40)
(42) (20) (04)
(22) (00)

(42) (2O)
(44) (22) (00) (60)
(46) (24) (02) (62) (40)
(64) (42) (») (26) (o4)
(44) (22) (00) (06)
(24) (O2)

5.12 in Ref. [15].
Only calculations for even particle numbers are con-

sidered in this work. The possible SU(3) irreps for u = 1
have been tabulated for the shells of interest as Table II
in Ref. [14] and Tables 5.6 and 5.10 in Ref. [15]. This
serves to illustrate that calculations for odd particle num-
ber can be performed in a similar manner and the FDSM
assumptions for low-lying states of odd nuclei can also be
studied.

Iy'. QUADRUPOLE MOMENT OPERATOR
COEFFICIENTS

In order to do calculations in a truncated Sp(6) 0 U(3)
basis, the operators to be used in the effective interaction
Hamiltonian must be expanded in terms of irreducible

tensor operators of the type introduced in Sec. II. As dis-
cussed in Sec. I, we will consider an effective interaction
which includes a Q.Q term where Q is the real quadrupole
moment operator. This operator, transformed to the k —i
basis of the FDSM, is a linear combination of the one-
body operators similar to those of Eq. (18), and includes
some whose values of I„are not zero.

A. CoefBcients of qs in the Is —i basis

The standard form for the real dimensionless
quadrupole moment operator is given by

(24)

= (01),Q = 21 and Sp(6) irrep = (766).shell with (A p )

(~~)
(94) (11,0) (67)
(37) (18) (45)
(23) (31) (12)
(74) (10,1) (90)
(33) (14) (41)
(54) (») (7o)

(75)
(53)
(01)
(47)
(3o)
(27)

(56) (83) (») (72) (29)
(34) (61) (50) (07) (15)

20

(55) (36) (63) (») (52)
(03) (»)
(35) (16) (43) (51) (32)

(85)
(17)
(65)

(11,2)
(09)
(92)
(10)
(72)
(52)
(32)
(12)

18

16 (13,0) (10,3) (11,1)
(05) (13) (21)

14 (12,1) (11,0) (83) (91)
12 (10,1) (90) (63) (71)
10 (81) (70) (43) (51)
8 (61) (50) (23) (31)
6 (41) (30) (03) (11)
4 (21) (1O)
2 (01)

(45) (53) (34)
(25) (33) (14)
(o5) (») (»)
(»)

(15) (61) (50) (23) (31) (12) (01)
(30) (03) (11)

(07)
(41)
(1o)

TABLE II. Possible (Ap) for the u = 2 states of a j =
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TABLE III. Possible (Ap) for the u = 2 states of a j = —' —————shell with (A p ) = (20),O = 21 and Sp(6) irrep = (775).

n
20

18

16

14 (12,1)
(2o)'

12 (12,0) (10,1)
(«)

10 (10,0) (81)
8 (80) (61)
6 (60) (41)
4 (40) (21)
2 (20)

(12,2)
(40)'

(Io, 2)'
(o4)'
(82)'

(62)'
(42)
(22)
(02)

(43)
(23)
(11)

(24) (51)
(04) (31)
(»)

(32)
(»)

(10,4) (11,2) (12,0)
(6o)' (44)' (o6)
(22)' (41) (14)

(10,3) (84) (11,1) (92)
(24) (35) (43) (32)
(83) (64) (91) (72)
(15) (23) (12)
(63) (44)' (»)

(93)
(55)
(11)

(10,0)
(08)
(8o)'

(Ay, )
(10,2)' (86)
(26)' (75)
(56) (53)

(0,10) (2,9)
(82) (10,1)
(63) (52)
(»)
(73)
(27)
(53)

(94) (») (37) (80)' (64)'
(83) (72) (45) (48)' (67)
(42)' (61) (34) (») (2o)'
(18) (15) (04) (23) (12)
(66) (85) (74) (71) (17)
(25) (28) (47) (36) (33)

(62)s (81) (46)' (65) (54) (51)
(16) (13) (02) (21)
(42) (61) (26) (45) (34) (31)

(40)2

(2o)'
(13) (02) (21)

(60) (33) (22) (41) (06) (25) (14) (11)

This can be expressed in terms of nucleon creation and annihilation operators as

5 I + (—I)'-'
drr RIV&(r) r RjV~[~(r)4' 2 0

~ 1 ~ I Ix j —2 0 j — (j mz 2yj(m, )a, , a„, )
with even values for l —I, within a major shell such as N = 5 or N = 6. The single-fermion creation and annihilation
operators at, aj~. of the shell model basis are written in terms of the pseudo-angular momenta k and i of the
FDSM as Eqs. (I) and (2). Using standard angular momentum recoupling, the quadrupole moment operator is then
written in the k —i basis as

with C;; ~„l„given by

qp = ) +ii'K&I& [bgi x &hi'j[KpIp]2p)
ii'KpIp

(26)

fA(d
+ii'K I

1

4m

I + ( I)l —1

drr Riv&(r) r R~i (r) x j —2 0 j' — y 2j +1 k i'
2 0 2 2

(27)

drr Riv&(r) r RIjIj(r) = N+ —.
0 2

(28)

When the quantum numbers l' and l differ by 2, defining
the larger (smaller) value as li, (l, ), we get for N' = N,

drr R~i, (r) r Rjvi (r)
0

= Sj,i Q(N + li, + 1)(N —l, ) (29).

For N' = N and I,
' = I, using N = 2n+l, the radial

integral is
The phase factor 8~, ~ with the value +1, influences

the magrutudes of the expansion coefficients of Q„ in
Eq. (26). The different combinations of S~ i which result
in different phase choices for the coefficients are given
in Table IV. For the N = 5 shell, for example, with
I, = 1,3, 5, there are four possible combinations of 8~ ~.

This multiplicity arises because the relative signs of the
radial wave functions B~~ and B~~ are quite arbitrary.
For the N = 5 shell, we see &om Table IV that the phase
choice labeled phase 1 requires the value of both 83~ and
853 to be positive. This corresponds to positive signs
for R5q, B53 and B55 as r goes to infinity and hence,
alternating signs as r goes to zero. With the signs of
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TABLE IV. The possible phase choices for the radial wave
functions.

N=5
Phase 1

Phase 2

Phase 3

Phase 4

l'

3
5
3
5
3
5
3
5

+
+

N=6
Phase 1

Phase 2

Phase 4

Phase 6

~l

2
4
6
2
4
6
2
4
6
2
4
6

+
+
+

all three radial wave functions positive as r goes to zero,
phase choice labeled Phase 2 is obtained. The other two
possible phase choices are obtained &om these two by
changing the sign of R5& relative to the signs of R53 and
R55, thus phase 1 ~ phase 4 and phase 2 ~ phase 3. In
the k —i basis of the FDSM, the dependence on l and l'
is implicit in the generation of the single-particle states.
For the N = 5 shell, in the k-active scheme with k = 1,
the single-particle states j =

2 and j =
2 are obtained

with i = 2. In the shell model basis these states have
l = 1. The single-particle states j =
obtained in the k —i basis with i = 2, but in the shell
model basis the states j =

2 and j =
2 have l = 3

whereas the state j =
2 has l = 5. The relative signs

of the states with difFerent i are also arbitrary, therefore,
the signs of the i =

2 states can be reversed relative to
those for i = 2. This is equivalent to changing the sign
of R5q relative to those of R53 and R55 which established
the equivalence of phase 1 to phase 4, and phase 2 to
phase 3.

For the N = 6 shell, therefore, there are only four
independent phase choices, instead of eight. These four
are shown in Table IV. The remaining four labeled phase
3, 5, 7, and 8 can be obtained &om these four by changing
the phases for R64 and R66 relative to those for R62 and
R6p. This is indeed equivalent to changing the sign of
the i =

2 states relative to those for the i =
2 states in

the k —i basis.
The expansion coeKcients of Q in the A: —i basis for

the different values of i, i', K„,I„are tabulated without

the factor 4 in Tables V and VI for the N = 5 and
N = 6 shells. Table V gives the coefBcients for all four

TABLE V. The coefficients C,; ~„l for the N = 5 shell.

i' Kp
22

0

1

17
2

27
2

27
2

27
2

17
2

27
2

27
2

12

2

22

I„Phase 1
0 —2.8406

Phase 2
—2.8406

Phase 3
—2.8406

Phase 4
—2.8406

2 —2.9442 —3.87411 —3.8741 —2.9442

1 —3.3162 —1.4566 —1.4566 —3.3162

3 —2.2004 —0.4162 —0.4162 —2.2004

0 1.8221 —1.1908 —1.1908 1.8221

2 1.8158 —3.1043 —3.1043 1.8158

4 —0.4343 —1.7190 —1.7190 —0.4343

3 2.2708 —2.2708 2.2708 —2.2708

3 1.6057 —1.6057 1.6057 —1.6057

4 1.6057 —1.6057 1.6057 —1.6057

3 —2.2708 2.2708 —2.2?08 2.2708

3 1.6057 —1.6057 1.6057 —1.6057

4 —1.6057 1.6057 —1.6057 1.6057

TABLE VI. The coefficients C,; ~pip for the N = 6 shell.

i i' K„ I„Phase 1 Phase 2 Phase 4 Phase 6

2 1.7241 —2.6423
1 —5.0719 —0.7276

1.7241
—5.0719

—2.6423
—0.7276

1 3 —0.3249 —2.3361 —0.3249 —2.3361
2 0 0.7933 —3.6821 0.7933 —3.6821

2 2 0.7386 -1.8578 0.7386 -1.8578

0 2 —4.5364 —0.5269 —0.5269 —4.5364

1 —3.4115 —1.5298 —1.5298 —3.4115
3 —2.4359 —0.6656 —0.6656 —2.4359

2 0 2.3638 —1.6334 —1.6334 2.3638
2 2 2.4329 —3.6215 —3.6215 2.4329

2 4 —0.2062 —1.8366 —1.8366 —0.2062

1 3 3.6758 —3.6758 3.6758

2 3 1.3690 —1.3690 1.3690
2 4 1.6190 —1.6190 1.6190

3.6758

1.3690

1.6190
1 3 —3.6758 3.6758 —3.6758 —3.6758
2 3 1.3690 —1.3690 1.3690 1.3690
2 4 —1.6190 1.6190 —1.6190 —1.6190

phase choices. The equivalence of phase 1 and phase 4
as well as phase 2 and phase 3 can be seen explicitly.
Table VI gives the coeKcients only for the four indepen-
dent phases of the N = 6 shell. Prom these tables, it is
clear that the overlap between a state vector in the shell
model basis with specific values of l and l', and one in
the k —i basis with specific values of i and i will be af-
fected by the phase choice as determined by the signs of
the radial wave functions RN~ and R~~ . We have thus
demonstrated the existence of more than one FDSM ba-
sis for a particular oscillator shell. This seems to have
been overlooked by the founders of the FDSM, but has
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already been noted by Halse [8,9]. Neither the radial
wave functions B~~, B~~ nor the quantum numbers l, l'

appear anywhere in the construction of the FDSM gen-
erators and the basis states.

It is also clear from these tables that the real Qz op-

erator is very diferent from P„, the one-body operator
with rank 2, used in the FDSM. The latter has nonzero
coefficients only for entries with i = i, K„= 2, and

Iz ——0, which would be proportional to /2i+ 1 as seen
in Eq. (6). Tables V and VI show that these coefficients
are by no means dominant in the real Q„operator.

B. The pseudo-SU(3) scheme

In the real SU(3) basis of Elliott, the Q Q operator
has a simple known eigenvalue. Nevertheless, a test of the
calculations using Q Q in the full untruncated shell model
space for two particles, with FDSM basis states, cannot
be performed since the FDSM basis is a truncated one.
Only the normal-parity states with j = —,—, z, z, z are2' 2' 2' 2' 2
included for the N = 5 shell with the h» orbit pushed

2

down into the lower shell. Similarly, for the N = 6 shell,
only the normal parity states with j = z, z, z, ~, ~, —
are included in the FDSM with the i13 orbit pushed down

into the lower shell. However, the normal-parity states
of the N = 5 and N = 6 shells are identical to those
of the pseudo-oscillator shells with N = 4, l = 0, 2, 4;
and N = 5, l = 1,3, 5, respectively. The tildes are used
to differentiate the pseudo-oscillator quantum numbers
from the real oscillator quantum numbers. The pseudo-

quadrupole moment operator Q can also be expressed
in the k —i basis of the FDSM. Since the pseudo-SU(3)
basis spans the same subspace of the shell model space as
that of the FDSM, a diagonalization of Q Q with known
eigenvalues serves as a test in those cases when the full
untruncated shell model space can be used in the FDSM.

C. CoefBcients of Q in the I&: —i basis

For the N = 4 shell, the bt operator is an t space tensor
belonging to the pseudo-SU(3) irrep (40)—:[4]. Similarly,
the b is an t space tensor belonging to the pseudo-SU(3)
irrep (04) = [44]. For the N = 5 shell, these operators
are l space tensors belonging to the U(3) irreps [5] and
[55], respectively. The pseudo-SU(3) quadrupole moment

operator for a pseudo-oscillator shell, N, is obtained by
coupling the bt and b operators and is given as

j[N] [NN]
lyly [ i & ][I=2S=Ojzp&

where

with

Q ) c 'K I [be x b1e'][K I j2
ii' KpIp

(32)

c;; = ((NO)ti, (ON)lzn(11)2).

This is transformed to the k —i basis by angular momen-
tum recoupling techniques to give

l1
C q K I = ) ( ((NO)ti, (ON)tgn(11)2)

l i l 2 j1

lg 2
1 0

j2 2

- k i
k i' jp

Kp Ip 2
(33)

The only phase choice available in calculating the coeffi-

cients of Qz is implicitly made in the SU(3)-Wigner co-

efficient ((NO)ti, (ON)lzI(11)2) from the computer code
of Draayer and Akiyama [12].

Since it has been shown that Q„and Qz have a large
overlap [4] if properly normalized, the coefficients c;; ~ I
are not tabulated here. They can be found in Ref. [1.5],
where it is also shown that the properly normalized co-
efEcients Cii K I defined by

Cii'KpI~
5N(N + 1)(N + 2) (N + 3)

327r
&ii ' K„Ip 34

are such that Cii K I —Cii K I for phase 1 in Tables V
and VI. The coefficients of Q„and Q for the N = 5 and
N = 6 shells are not related exactly because of the dif-
ferences in the FDSM and pseudo-SU(3) bases for these
shells. However, a comparison of the two operators in
this manner illustrates that they are efI'ectively identical
and serves as a check on the magnitude of the coefBcients
of Q~.

D. The Q ~ Q matrix

The Q Q matrix has been calculated in the complete
one- and two-particle basis of the FDSM. In order to ver-

ify that the states have been counted correctly, the states
were also enumerated in the l —s basis of the pseudo-
SU(3) model. For the two-identical-particle case, the to-
tal spin is S = 1 or S = 0 corresponding to a spin sym-
metric or spin-antisymmetric wave function. The space
wave functions are chosen to make the total wave func-
tion totally antisymmetric. The SU(3) irreps (Ay) for
the space wave functions are taken from the tables of
Draayer and Leschber [18]. The values of L are obtained
for each (AP, ) for the N = 4 and N = 5 shells using El-
liott's rule [1]. The number of occurrences for each value

of the total angular momentum J = J is obtained with
J = L x S. The diagonalization of the Q Q matrix in the
k —i basis reproduces the correct number of occurrences
for each value of J. The eigenvalues for each J, given
by EJ, are explicitly expressed in terms of the eigenvalue
of the Casimir operator of pseudo-SU(3), and the total
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pseudo-orbital quantum number L. For

Eg = a —(A + p + Ay+3(A+ p)) — L—(L+1), (35)
3 2

we get a = b =
&&

for the N = 4 shell and a = b =
14p for

the N = 5 shell. The eigenvalues of the Q . Q matrix for
two particles are reproduced correctly. It is interesting to
note that the quantum numbers A, p, for the two-particle
spaces in the N = 4 and N = 5 shells are much larger
than the A, p values of the FDSM-SV(3) symmetry. For
the N = 5 shell, Tables III and IV of Ref. [14] show that
A and p are & 2 when n = 2. The same is true for the
N = 6 shell as seen in Tables II and III of this work. We
also verified that the eigenvalues of the Q Q matrix for a
single particle describe a rotational energy spectrum for
both shells.

The self-consistency checks described above have ver-
ified the values of the expansion coefficients of Q2, the
number of occurrences for a particular J, and the eigen-
values of the Q Q matrix for a one- and two-particle
calculation. The tests validate all the analytical expres-
sions of Sec. II which were used in the calculation as
well as the computer codes that evaluate the numerical
results. The success of the tests lends credibility to the
results of the two-particle calculations with the real Q Q
matrix, which is presented in the following section.

V. GENERALIZED SENIORITY MIXING IN THE
TWO-PARTICLE STATES

In this section we describe a complete two-particle cal-
culation using a modified FDSM Hamiltonian as a first
step in studying the FDSM assumptions. Our calculation
is performed for (i) two valence protons and (ii) two va-
lence neutrons which, for actinide nuclei are assigned to
the N = 5 and N = 6 shells, respectively, in the k-active
scheme of the FDSM.

We begin by compiling the dictionary of allowed SU(3)
irreps for two-particle states in the k —i basis expanded
in terms of the generalized seniority states with u = 0
and u=2.

lu = 2) =— (36)

This state, given with only the i~i2 values, is orthogonal
to the u = 0 state with the same [u], K, I quantum
numbers.

For the N = 6 shell with j = ~, 2, ~, —,—,—', the
i values are i = 2, 2 in the k-active scheme of the
FDSM with k = 1. The u = 0 state is identical to
that for the N = 5 shell. The u = 2 states now have

[o] = [ur] = [2], [n] = [0] and K = 0 or 2, with (iqi2)I
combinations of (22)I = 0, 2, (22)I = 0, 2, 4, 6, 8,
and (s s)I = 3, 4, 5, 6, or [a] = [~] = [11],[n] = [0] and
K = 1, with (izi2)I = (22)1, 3, (22)3,
(s s)3, 4, 5, 6. Again, the two-particle state with u = 2
and I = 0 involves a linear combination

5 33 2 99lu=2) =—
7 22 7 22

which is orthogonal to the u = 0 state.

(37)

B. The Hamiltonian

1s

The Hamiltonian used for the two-particle calculation

—= —[(1 —g)Q Q+g(S S+D D)].
Vp

(38)

and u = 2 are labeled as
l [[n] x [o]][sr; K; (iqi2) I; JM).

The u = 0 state with [o] = [0],[n] = co] = [2];K = 0 or
2 is the coherent superposition of states with i1 ——i2 and

I = 0 whose coefficients are proportional to i1+ 2.
The u = 2 state with [cr] = [u] = [2], [n] = [0] and
K = 0 or 2, includes states with (iqi2)I combinations
of (- )I -= 0, (- )I -= 0, 2, 4, 6, and (- )I -= 3, 4
while the u = 2 state with [o] = [ur] = [11],[n] = [0]
and K = 1, includes states with (iqi2)I combinations of
(2 2)I = 1, (2 2)I = 1, 3, 5, 7, and (z~ z)I = 3, 4. Note
that the two-particle state with u = 2 and I = 0 involves
a linear combination

A. Dictionary of two-particle states Conetncction of the q ~ Q matrix

The ~ingle particle j = 2, 2, 2, 2, 2 states of the N = 5
shell are obtained in the k-active scheme of the FDSM
with k = 1 andi = 2, 2. The two-particle states for u = 0

With Q. Q = P„Q2Q2 „(—1)",and a designating the

(iqi2) structure of the states, the Q. Q matrix can be put
in the form

([[n'] x [o ']][cu']; n' [K' x I']J'M'l Q . Q l [[n] x [o ]][cu]; a [K x I]JM)

) ) (([[n'] x [o']][~'];n'[K' x I']J'l]Q ll[[n] x [e]][a];n[Kx I]J)
[n][s][u]nRIJ

x(([n] " [&)][~]'~[Kx I]JIIQ'Il[n] x [e]][~] ~[K x I]J)) (39)

where the Wigner-Eckart theorem has been used after the introduction of a sum over the complete set of intermediate
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states. Angular momentum recoupling is also used to uncouple the quantum numbers K, I, J in the initial and
intermediate states, and in the operator. The double-barred angular momentum-reduced matrix elements of Eq. (39)
are further reduced to triple-barred matrix elements of the type defined in Sec. II. Finally, after identifying the U(3)
character of Q specifically, we write these double-barred matrix elements as follows

([[n] x [o]][~];~[Kx I]JIIQ~~"„'1)J Il[[n] x [e]][~];~[K»]J&

K I J
= ([[n] x [a]][(u];nIIIIQI, III[[nl x [s]][a] ciI&([u]K' [ceo]Ki ll[~]K&([1]1'[11]111[~]Kg & Ki Ii 2 (40)

K I J

The triple-barred xnatrix element of Q in Eq. (40) is cal-
culated using the expressions for the triple-barred ma-
trix elements in the VCS method given for example, by
Eq. (21). The SU(3) 2 SO(3) Wigner coefficients in
Eq. (40) include the coefficient ([l]1;[11]ill[a ]K„)which
is needed to convert the one-body operator Q of Eq. (26)
from a spherical tensor in k space to a U(3) irreducible
tensor.

The analytical expressions given above and the corre-
sponding computer codes have been tested by diagonal-
jzjng the P ~ P matrix with the generators P defined
in Eq. (6). The numerical values obtained using these
complicated formulas for the reduced matrix elements
are identical to the eigenvalues given by Eq. (35) with a
and 6 equal to 1, and L replaced by K.

2. Const~ction of the StS and Dt ~ D matricee

The S~, S and D~, D operators are special cases of the
pair-creation operator At and the pair-annihilation op-
erator A given by Eqs. (15) and (16). The initial and
final states for the matrix elements of these generators
are the same, i.e. , the U(3) irreps [n] = [n'], [o'] = [o'],
and [~] = [u']. The expression for the reduced matrix
element of At is given by Eq. (30) of Ref. [14]. Includ-

ing the normalization factor of 4 to be consistent with

the FDSM definitions and using the procedure discussed
above for the matrix elements of Q Q, we get the matrix
elements of the two-body operator At A as follows:

([[n] x [o.]][cu];o.[K x I]JMIAt Al[[n] x [o]][a];n[K x I]JM&

) -(A(-) (-)
—A(=) (=)) ([n] llz II [n]&'([1l1 [111ll[2]K~&'

[n] [cu]KJ
K I J

x([~]K [2]K~II[~]K&'&'([~]ln][~][2] l~][n]) K.
K I J

(41)

For the calculation of the StS matrix, the value of K„
is 0 and for the Dt D matrix it is 2. The value of
(A~ ) I )

—A~-) ~-)) is given by Eq. (20) of Ref. [14]. Since

the St, S and Dt, D operators are generators, the com-
bination StS + Dt - D can be expressed in terms of the
Casimir operator of Sp(6), the Casimir operator of SU(3),
the number operator, and the shell degeneracy quantum
number 0 given by Eq. (23). The numerical results of the
computer codes and the complicated formulas of Eq. (41)
needed to calculate the pure StS, or Dt - D term are
therefore verified against the values obtained Rom this
simpler form for the matrix elements of StS+ Dt . D.

C. Results of seniority mixing for two particles

In the FDSM, the favored St, S and Dt, D pairs ap-
pear on an equal footing. FDSM Hamiltonians usually
include the scalar product of these generators of the sp(6)

algebra as well as a P ~ P term, where the P-type oper-
ators are the generators of the u(3) subalgebra. In the
Hamiltonian given in Eq. (38), the P operator of Eq. (6)
is replaced by the real quadrupole moment operator Q„
defined in Eqs. (26) and (27). This operator connects the
generalized seniority states u = 0 and u = 2, since it in-

cludes some P-type operators whose values of I& are not
zero. Therefore, an assessment of the seniority mixing
between states with u = 0 and states with u = 2 can be
made by diagonalizing the Hamiltonian of Eq. (38). We
have quantified our assessment by computing the per-
centage of the u = 0 components for the lowest J = 0
and the lowest J = 2 two-particle eigenstates The results
are given as a function of the strength of the quadrupole
moment operator contribution, 1 —g. With the coupling
strength g ranging &om 0.0 to 1.0, we can analyze the
seniority mixing for the two extreme cases; with g = 0.0,
only the Q Q term in the Hamiltonian gives a contribu-
tion whereas with g = 1.0 only the pairing terms do. A
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TABLE VII. Percentage of u = 0 for the lowest J = 0, 2

eigenstates in the N = 5 shell.

1 —g

0.0
0.2
0.4
0.6
0.8
1.0

J=0
100
96.5
86.8
75.8
66.6
59.9

J=2
Phase 1

100
97.5
26.7
4.9
2.8
2.1

J=2
Phase 2

100
95.1
59.1
24.7
14.6
10.9

TABLE VIII. Percentage of u = 0 for the lowest J = 0, 2
eigenstates in the N = 6 shell.

0.0
0.2
0.4
0.6
0.8
1.0

J=0
100
96.4
85.6
72.5
61.8
54.1

J= 2
Phase 1

100
95.7
26.3
6.8
4.1
3.2

J= 2
Phase 2

100
95.1
50

20.4
12.1
10

J=2
Phase 4

100
98.4
15
1.5
0.8
0.6

J=2
Phase 6

100
95.4
40

10.7
6.2
4.6

specific value of the potential Vo is not chosen here. It is
introduced in Eq. (38) in order to make the Hamiltonian
dimensionless.

The dependence of seniority mixing on the relative
phases of the radial wave functions with different l quan-
tum numbers is also shown. For one particle, the eigen-
values and eigenvectors obtained after diagonalizing the
Q Q matrix are the same irrespective of the phase choice.
For two particles, the eigenvalues are independent of the
choice of phase for all J, but the coefficients of the k —i
basis vectors in the eigenstates are independent of the
phase choice only for J = 0. The total spin for the two
particles, each with spin 8 = 2, is S = 0 or S = 1. In
order to get a total J value of J = 0, we have two choices.
Either the total orbital angular momentum, L and S both
have a value of 0 or both have a value of 1. The value of
L = 0 can be obtained only if t and l' are equal. However,
a multiplicity in the choice of phase is available only if l
and l' differ by 2, in which case they also cannot give a
resultant value of L = 1. Therefore, the results for the
J = 0 eigenstate are independent of the relative phases of
the radial wave functions. The second column of Tables
VII and VIII contain the results for the J = 0 eigenstate
for the N = 5 and N = 6 shell, respectively. The third
(fourth) column of Table VII contains the percentage of
the u = 0 components in the lowest J = 2 eigenstate for
the N = 5 shell when the coefficients of Q2 labeled phase
1 (phase 2) in Table V are used in the calculation. The
percentage of the u = 0 components in the lowest J = 2
eigenstate for the four independent phase choices for the
N = 6 shell are tabulated in the last four columns of
Table VIII.

The efFective interaction of Eq. (38) is a reasonable

one for testing the validity of the FDSM ass»options
since it simulates the more traditional J = 0 pairing
plus quadrupole-quadrupole interaction of Kumar and
Baranger [19],and also incorporates the favored-pair op-
erators of the FDSM. A two-particle state with u = 0
and J = 2 can be created only by a Dt pair operator.
The matrix elements of the Dt ~ D operator are the diag-
onal matrix elements of the Hamiltonian of Eq. (38) with
both the initial and final states having values of u = 0
and J = 2. The off-diagonal matrix elements between
the u = O, J = 2 and u = 2, J = 2 states come &om
the Q Q term in Eq. (38). On the other hand, the St
operator can only make a two-particle state with u = 0
and J = 0. If a Hamiltonian with only the StS and Q Q
terms is diagonalized for a two-particle system, the eigen-
values and eigenvectors with J = 0 are identical to those
for the full Hamiltonian of Eq. (38). This is because the
Dt .D term makes no contribution to the J = 0 matrix.
The seniority mixing for such a Hamiltonian for the low-

est J = 0 eigenstate is still given by the J = 0 column
of Tables VII and VIII. For any J g 0 matrix, on the
other hand, the StS term makes no contribution in the
two-particle calculation, and a Hamiltonian with a pair-
ing term of pure StS type contributes only through the
Q Q term. The percentages for the u = 0 states in the
lowest J = 2 eigenstates are thus given by the entries for
g = 0.0 in the J = 2 columns of Tables VII and VIII. We
see that the u = 0 components in the lowest J = 2 eigen-
states are less than 10.9% for all possible phases for this
Kumar and Baranger type of effective interaction. The
high u = 0 percentages for the J = 0 eigenstates serve
only to confirm that the favored S pair of the FDSM is
very close to the S pair in the shell model j —j basis. It
is the "realistic" nature of the favored D pair with J = 2
that is appraised in this section.

Now consider the results for 1 —g = 0.4 in the N = 5
shell for a moderate FDSM pairing interaction combined
with a Q Q interaction. The choice of basis labeled phase
2 gives 59.1% u = 0 components in the lowest J = 2
eigenstates. The other choice gives an even poorer result
of 26.7%. The case for the N = 6 shell is also not very
strong since, among the four possible choices for a basis,
the highest percentage is only 50/p. For both protons and
neutrons of actinide nuclei, as the value of 1 —g increases
(indicating stronger quadrupole strengths and therefore
stronger seniority mixing), we see that the percentage of
the u = 0 components decreases.

The two-particle calculation presented in this sec-
tion has shown that the u g 0 components are signifi-
cantly large when an FDSM pairing plus real quadrupole-
quadrupole interaction is diagonalized in the complete
two-particle basis expanded in terms of generalized se-
niority states. The evidence for strong generalized senior-
ity mixing which is seen here indicates that the low-lying
states of even nuclei are not predominantly states with
u = 0 made entirely &om the favored S,D pairs of the
FDSM. If they were, then the overlap between the lowest
J = 2 eigenstates in the FDSM truncated basis which
is a subspace of the shell model basis, and the complete
shell model basis (u = 0 and u = 2) for two particles
would be close to unity.
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VI. THE NATURE OF THE FDSM-SU(3)
SYMMETRY

A. Dictionary of basis states

The SU(3) irreps for the states with u = 0 for ten

protons are chosen &om Table 1 of Ref. [14]. They are

(10 0), (62), (24), (40), and (02). For u = 2, with

(A p ) = (01), the states chosen &om Table 3 of Ref.

[14] are (81), (70), (43), (51), (32), (05), (13), (21), (10),
and with (A p ) = (20), the states chosen &om Table 4

of Ref. [14] are (81), (62)2, (43), (51), (24), (40), (32),
(13), (02)2, (21). The SU(3) irreps for the states with

u = 0 for fourteen neutrons (n = 14) are chosen &om

Table I. For u = 2, with (A p ) = (Ol) and (20), the

states are chosen &om Tables II and III, respectively.

B. The Hamiltonian

The Hamiltonian used for both the proton and the neu-
tron calculation is

Vp
(42)

The calculation of the matrix elements for the opera-
tors in the Hamiltonian proceeds in the same manner
as for two particles. The main difFerence is that the K
and K matrices of Eq. (19) are no longer one dimen-

An ideal truncation scheme would have been based on
S and D fermion pairs which create two-particle states
very similar to the lowest J = 0 and J = 2 eigenstates in
a two-particle system. However, it has been argued [10]
that a good test of the validity of a truncation scheme
cannot be made in a two-identical-particle system since it
is thought to be noncollective in nature. As a next test
of the FDSM, we therefore turn to (i) a system of ten
protons in the N = 5 shell and (ii) a system of fourteen
neutrons in the N = 6 shell. Both are identical-particle
systems for actinide nuclei and contain the largest pos-
sible values of the FDSM-SU(3) quantum numbers, i.e. ,

(10 0) for the protons and (14 0) for the neutrons. Their
potential for greater collectivity is thus established. If
the FDSM basis with its SU(3) symmetry is a good one
for collective states, we would expect an effective inter-
action with a large Q . Q component to drive these most
collective SU(3) irreps to be the dominant components
in the lowest eigenstates of the ten-proton and fourteen-
neutron systems. Since even the u = 0 Sp(6) irreps con-
tain a fairly rich combination of both large and small
SU(3) quantum numbers, a calculation in the truncated
FDSM basis consisting of the pure u = 0 states should
be sufBcient for this purpose. The conclusions based on
such a calculation for ten protons and fourteen neutrons
could only be reinforced by the inclusion of the u = 2

states, since these states contain many SU(3) irreps with
smaller values of the SU(3) quantum numbers than the
u = 0 states.

sional. The quantum number v has two values when two
different irreps [n] couple to [o] = [2] to give the same
[w]. The matrices are then explicitly constructed using
Eqs. (12) and (13). We have veri6ed the computer codes
and the expressions for the matrix elements of P ~ P
and of StS + Dt . D which they evaluate, in an analo-
gous manner to the two-particle case. However, the test
of the matrix elements of Q Q using the pseudo-SU(3)
model cannot be performed since the pseudo-SU(3) ba-
sis no longer spans the same subspace of the shell model
space as the truncated k —i basis for the ten-proton or
fourteen-neutron calculation.

C. Results

The values of 1 —g for which the calculations were

performed range &om 0.0 to 1.0 in increments of 0.2.
Our motivation to use the interaction of Eq. (42) comes
&om the work of Kumar and Baranger [19],who used the
J = 0 pairing plus Q Q interaction to study the com-
petition between the shell model and the collective rota-
tional model for nuclei with increasing numbers of valence
protons and neutrons. A comparison of the coupling
strengths of the operators in the interaction of Eq. (42)
with those used by Kumar and Baranger for actinide nu-

clei, gives a value of 1 —g equal to 0.11 for the protons
and 0.13 for the neutrons. These two additional points
have also been calculated explicitly.

Although we have chosen a truncated basis consisting
only of states with u = 0, the states with u = 2 enter into
the picture as intermediate states in the calculation of the
off-diagonal matrix elements of Q2, which in turn con-

tribute to the matrix elements of Q Q. The large values

for such off-diagonal matrix elements in our calculations
are an indirect signal that if the states with u = 2 were

permitted, their contributions to the eigenstates would

be large. Note also that the effect of the phase choice for

the radial wave functions is seen not only in the eigenvec-

tors but also in the eigenvalues for all J. This is because
we are no longer dealing with a complete basis as we did

for the two-particle calculation.
The most important result which we present here ad-

dresses the assumption made in the FDSM that the low-

est eigenstates of even nuclei have the largest SU(3) quan-
tum numbers (Ap). This cannot be done with the two-

particle calculation, since only one SU(3) irrep is avail-

able for the state with u = 0. On the other hand, Ave

different SU(3) irreps are available in the truncated basis
for ten protons in the N = 5 shell and eight for fourteen
neutrons in the N = 6 shell. The Hamiltonian in Eq. (42)
is diagonalized in this richer basis and the percentage of
different basis states in the resulting eigenstates is com-

puted. For the ten-proton system, the eigenvalues of
the Casimir operator of SU(3) are s (130), s (76), s(46),
s(28), and s(10) for (Ap)=(10 0), (62), (24), (40), and

(02), respectively. If the FDSM-SU(3) symmetry leads
to collectivity and rotational spectra in the same way
as Elliott's SU(3) symmetry, we would expect the lowest

eigenstates to be dominated by the basis state with the

SU(3) irrep (10 0) and a J = 0, 2, 4, 6, 8, 10 rota-
tional band structure. This would be followed at higher
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energies by bands with dominant (Ap) = (62), (24), (40),
and (02) characteristics. Similar conclusions would hold
for the fourteen-neutron system.

In Fig. 1 we present the percentage of basis states in
the three lowest eigenstates of J = 0 as a function of 1—g
for ten protons in the N = 5 shell. The coeKcients of
Q„ labeled phase 1 in Table V are used in calculating the
Q Q matrix. The basis states are labeled by the SU(3)
irreps. For the lowest eigenstate, the contribution of the
state with (10 0) is close to 0'%%up for all values of 1 —g.
For the second lowest eigenstate, the contribution of the
state with (62) is not the dominant one for any value
of 1 —g. For the third lowest eigenstate, the state with
(24) becomes the dominant component only for values
of 1 —g greater than 0.5. The scenario is very similar
in Fig. 2 where the coefficients of Q~ labeled phase 2

in Table V are used to calculate the Q . Q matrix. For
the lowest eigenstate, the results are almost identical to
that of Fig. 1. The percentages of the state with (62) in
the second lowest eigenstate and the state with (24) in
the third lowest eigenstate are smaller than for phase 1,
increasing only when 1 —g is greater than 0.7. In Figs.
3 and 4 the results for fourteen neutrons in the N =
shell are presented for two of the four possible phases
for the coeKcients in Table VI. We plot the percentage
of the basis states labeled with six of the eight possible
SU(3) irreps. For the lowest eigenstate in both phases,
the contribution of the state with (14 0) is close to 0%.
For the second lowest eigenstate the contribution for the

100-
80-

~60-
V~ 40-

2O- &

—(10 0)--- (e 2)-- (&4)--- (4 O)
----- (o 2)

100-
80
6oV
40
20

0
100
80~ 60V 40
20

0

—30-
C)

—60-
—90-

—120-
—150-

0.0 0.2
I

0.4 0.6
1 —g

I

0.8

2

S

I

1.0

FIG. 2. Using phase 2 for the N = 5 shell, the percentage of
basis states in the lowest J = 0 eigenstate (plot labeled 1), the
second-lowest eigenstste (plot labeled 2) snd the third-lowest
eigenstste (plot labeled 3). The corresponding three lowest
J = 0 eigenvalues are shown in the plot labelled eigenvalues.
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FIG. 3. Using phase 1 for the N = 6 shell, the percentage of
basis states in the lowest J = 0 eigenstate (plot labeled 1), the
second-lowest eigenstate (plot labeled 2) and the third-lowest
eigenstate (plot labeled 3). The corresponding three lowest
J = 0 eigenvalues are shown in the plot labeled eigenvalues.
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This operator plays the role of the quadrupole-
quadrupole interaction in the FDSM Hamiltonians. Ap-
propriate attractive values of the coupling strength for
this operator will guarantee that FDSM Hamiltonians in
the truncated basis of states with u = 0 give eigenstates
which exhibit an Elliott-type SU(3) symmetry. Since the
FDSM space is a subspace of the full shell model space,
one could expect these to be the eigenstates of a shell
model interaction. The interaction we have used is a erst
approximation towards a reasonable effective interaction
for the shell model. However, the SU(3) irreps of the
eigenstates which result &om diagonalizing this interac-
tion do not have the order dictated by a collective-SU(3)
scheme. Clearly, the two sets of eigenstates are very dif-
ferent. This implies that a drastic renormalization of
shell model efFective interactions is necessary before they
can be used in the truncated space.

—80-
—160-
-Z40-
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VII. THE COUPLED PROTON-NEUTRON
SYSTEM

I

0.0
I

0.2 0.8

state with (10 2) is dominant for values of 1 —g between
0.3 and 1.0 for phase 1, but very close to 0'%%uo for all values

of 1 —g for phase 2. For the third lowest eigenstate
the state with (64) is not the dominant component for

either choice of phase. For both protons and neutrons
the results for phase 2 are slightly worse than that for

phase 1. The other phase choices for the neutrons also

give similar results. For both protons and neutrons, the
results for the J g 0 eigenstates are equally unfavorable.

Prom the results presented in this section we conclude
that the SU(3) symmetry in the eigenstates of our in-

teraction in the FDSM basis is completely different from
that of Elliott's SU(3) symmetry. The lowest states of
even nuclei do not have the largest SU(3) quantum num-

bers as assumed in the FDSM. The phenomenological
validity of Elliott's SU(3) symmetry lies in a large cor-

respondence between wave functions in Elliott's scheme

and those in the shell model associated with observed
rotational bands. The SU(3) content of our eigenstates
have no correspondence with those obtained in Elliott's
scheme. Therefore, the rotational feature of the FDSM-
SU(3) symmetry for both the protons and the neutrons
of actinide nuclei is subject to question.

The SU(3) symmetry arises in the FDSM through the
P ~ P term, where P is one of the generators of the

u(3) algebra in the k-active scheme. The eigenvalue of
this operator is

0 4 1.0

1 —g
FIG. 4. Using phase 2 for the N = 6 shell, the percentage of

basis states in the lowest J = 0 eigenstate (plot labeled 1), the
second-lowest eigenstate (plot labeled 2), and the third-lowest
eigenstate (plot labeled 3). The corresponding three lowest
J = 0 eigenvalues are shown in the plot labeled eigenvalues.

H—= —[(1 —~)Q Q+a(~'~)j
Vp

(44)

where now

In the n-identical-particle calculations discussed ear-

lier, we tested the FDSM assumptions in the proton
and neutron bases separately. Since quadrupole collec-

tivity in nuclei depends on cooperative efFects involving

both protons and neutrons, the next logical step is to
diagonalize an effective interaction which includes a cou-

pled proton-neutron quadrupole interaction in a strongly-
coupled proton-neutron basis.

In view of the results of Sec. VI, we would not ex-

pect the low-lying states of the coupled proton-neutron
system to be dominated by high SU(3) quantum num-

bers without a drastic renormalization in the separate
proton and neutron bases. For this reason we have cho-

sen to force the proton and neutron SU(3) representa-
tions to be pure (10 0) and (14 0) representations and

neglect all other components completely. This will still

permit us to answer the question: Does an effective in-

teraction with a strong attractive proton-neutron Q Q
component drive the coupled proton-neutron system into
the most collective SU(3) representations with well estab-
lished rotational band structure'? The basis states for the
coupled twenty-four-particle system are thus obtained by
coupling the (10 0 ) ten-proton states with the (14 0)
fourteen-neutron states. The SU(3) irreps which label
the coupled-basis states are (24 0), (22 1), (20 2), (18
3), (16 4), (14 5), (12 6), (10 7), (8 8), (6 9), (4 10).
The Hamiltonian used for the calculations in the coupled

system is again

(43)E(P' - P') = E(C'""') — K(K + 1). —
2 Q Q= Q. Q. +Q. Q. + 2Q. Q. (45)
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and

Sts = St S.+ StS„+ St S„+Sts.. (46)

The subscripts vr and v refer to the proton and neutron
pieces of the operators, respectively. The St S„and St8
terms are not needed since we preserve both proton and
neutron numbers.

A. Construction of the Q ~ Q and StS matrix
elements

The angular momentum recoupling techniques used to
derive the expressions for the matrix elements of the op-
erators Q Q„, Q .Q, and Q„Q„are similar to those
outlined in Sec. V. The Q Q matrix with initial and
anal states in the strongly coupled proton-neutron basis
is written in terms of reduced matrix elements of the in-
dividual Q, Q„operators in their respective proton or
neutron bases:

([(A' p,
' )I„' x (A'„p'„)I„'](A'p') p'[K' x I']J'M'IQ . Q I [(A p )I x (A„p„)I„](Ay)p[K x I]JM)

). v~((A'. u'. )I.'IIIQ2i, lll(A p )r.)~.((1o)1;(01)111(A~p~) ~)
Ko Io (~oPo) &opoo Pw Pv Po

x ((A'„~'„)I„'IIIQ', Ill(A„p,„)I„),.((10)1;(01)1II(A„p,„)K„)
x((Apyp)Kp, (A„IJ,„)K„II(A p, )K K )p. ((AIJ)KK; (A p, )K K ll(A'y, ')K'K')

P- -I. I„r- -K I J- -K, I„
I I„r. K. I. O K„' I„

- -I' I„' I'- -K' I' J -K, I-0-
p~ pv poo

(47)

is p . The special case of interest has generalized se-
niority quantum numbers u = u' = 0. This implies that
the total I-spins such as I' = I = I„' = I„=0. In
addition, by choosing (A' p' ) = (A p ) = (10 0), and
(A'„p, '„) = (A„p„) = (14 0), we eliminate the need for the
multiplicity labels p, p, p0, p, p„and also simplify the
9j,9(Ap) and SU(3)-Wigner coefficients. The symmetry
of these coefBcients further restricts the quantum num-
bersto: I=I'=l„=l = I =O, henceK =0;
Kp: K:2' and K = K' = J = J'. This now limits
the values of (A„p„) and (A„p„) both to (11) and elim-
inates the need for the label ~ . There are two terms
in the sum with (A p ) = (22) and (00). The final sum
includes the multiplicity quantum number p . The ex-
pression which results is given below for the Q Q„ma-
trix:

The subscripts on the quantum numbers which label the
proton and neutron basis states are x and v respectively;
for the proton and neutron operator the subscripts are p
and n respectively; and for the coupled proton-neutron
operator the subscript is o. The double-barred SU(3)
0 SO(3) Wigner coefficients will require a band label,
to be denoted by e. This is included only in those
symbols where it is needed. For the (Ap) = (20 2) ir-

rep, for example, the two states with angular momentum
K = 2 are distinguished by the two possible values of

We use the prolate prescription for the label K in
the Draayer-Akiyama code [12] when A & p. The mul-

tiplicity in the coupling of the the SU(3) irrep (Ap) for
the initial proton-neutron basis state and the SU(3) ir-

rep (A p ) for the proton-neutron operator to give the
SU(3) irrep (A'p') for the final proton-neutron basis state

I

([(10 0)0 x (14 0)0](A'p )K M IQ ' Q l[((10 0)0 x (14 0)0](Ap,)KM)

) ~5((10 o)r.' = olllQ-i. =sill(10 o)r. = o)((1o)1;(o1)1II(»)2)
(A p )p

x((14 0)I„' = OIIIQ I„=Dill(14 0)I„=0)((10)l; (01)ill(»)2)
(10 0) (14 0) (Ap)

x((»)2 (»)2ll(A-s-)0)((Av)K~;(A-v-)oil(A'p')K'~')p. . (10 0) (14 0) (A )

(11) (11) (A p )

poo
The analytical form for the Q . Q matrix used in our calculation is given by

([(10 0)0 x (14 0)0)(A'y, ')K'M'IQ~ . Q~l[((10 0)0 x (14 0)0](Ap)KM)
10 14

= ) ) (((10 o)K. = J.r. = ol[Q. Q. ll(1o 0)K. = J.r. = 0)h„„,((10 o)K.;(14 0)K„II(A'p')K'~ ')
K„=oK„=o
x((1o o)K.; (14 0)K„II(Ap,)K~))

(48)

(49)
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with only even values for K and K„. The expressions
for the matrix elements of Q„.Q, St S, and St S„can
be obtained from Eq. (49) by replacing the operators
in the double-barred matrix element, the quantum num-

bers, and the values of K and K with the appropriate
ones.

B. Results

In Fig. 5 we present the percentage of the dominant
basis states in the three lowest eigenstates of J = 0 as a
function of 1 —g for the 24 particle system. Recall that
there are two independent phase choices for the coeffi-
cients of Qz for the protons and four for the neutrons.
The calculations were performed for all the eight possi-
ble combinations for the coupled system, but the results
are shown for only four of them in Fig. 5. As before,
the values of 1 —g range &om 0.0 to 1.0 in increments
of 0.2. We shall also focus on the value of 1 —g = 0.12
which is the average of the values of 1 —g for the protons
and neutrons of actinide nuclei extracted &om the work
of Kumar and Baranger.

Since J = 0 occurs only in irreps with A and p both
even, the six basis states which comprise the J = 0 eigen-
states are restricted to the SU(3) irreps (24 0), (20 2),
(16 4), (12 6), (8 8), and (4 10). If the FDSM-SU(3)
symmetry is to show Elliott-type SU(3) characteristics,
then we would expect the eigenstates to appear in the
same order. This implies that the dominant contribu-
tion to the lowest J = 0 eigenstate should be &om the
state with (24 0). The second lowest J = 0 eigenstate
should be predominantly (20 2) and the third lowest
J = 0 eigenstate should be predominantly (16 4). It is
clear from Fig. 5 that this pattern emerges only for the
phase combination labeled (a). The calculation for this
case uses the coefficients of Q2 labeled phase 2 for both
the protons and the neutrons. The contribution of the
basis states with (24 0) is greater than 99% for values
of 1 —g ) 0.2, of those with (20 2) for 1 —g ) 0.4,
and of those with (16 4) for 1 —g ) 0.6. The phase
combination labeled (b) is the worst of the four since,
for all three eigenstates, the dominant contribution does
not come from the expected basis states. For the phase
combination (c) the state with (20 2) is the dominant
component of the second lowest eigenstate but only for
values of 1 —g between 0.0 and 0.3. The result for the
phase combination (d) is better than for (c), with the
state (24 0) being the dominant component of the low-
est eigenstate for all values of 1 —g.

This vast discrepancy in the results for the diferent
phase combinations is difficult to understand in the con-
text of the the results of Sec. VI where we saw that the
coefficients of the basis states with (10 0) for the protons
and (14 0) for the neutrons were practically zero regard-
less of the phase choice. However, a possible source of
the discrepancy is identified by considering the Q - Q
Q . Q, and Q„.Q terms in the efFective interaction
which are sensitive to the phase choices.

By restricting the basis to include only the (10 0)
proton and (14 0) neutron states, we have minimized
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FIG. 5. The percentage of the dominant basis states in the
three lowest eigenstates (1,2,3) of J = 0 for the coupled basis
using four possible phase combinations: (a) phase 2 for the
N = 5 shell and phase 2 for the N = 6 shell, (b) phase 2

for the N = 5 shell and phase 1 for the N = 6 shell, (c)
phase 1 for the N = 5 shell and phase 2 for the N = 6 shell,

(d) phase 1 for the N = 5 shell and phase 1 for the N = 6
shell. In the plot labeled 2 in (c) and (d), the dominant
basis state labeled with the SU(3) irrep (20 2) and (4 10)
respectively, changes to one with (16 4). The lines are joined
as would be expected if the points at the transition area had
been calculated explicitly.

the size of the double-barred matrix elements in Eq. (49)
considerably and have reduced the phase-dependent in-

fiuence of the Q .Q and Q„Q„terms. The ordering of
the (Ay) states is thus largely dependent on the SU(3)-
Wigner coefficients of Eq. (48) and is also affected by the
sign and magnitude of the triple-barred matrix elements
of Q and Q„. Moreover, in the pure (10 0) and (14 0)
states, these diagonal matrix elements now gain contribu-
tions only &om two terms, namely, those with coefficients

C;, lr 2I p withi =i' =
2 andi =i' =

2 for Q and

i = i' = s and i = i' = — for Q as seen from Eq. (26).
Operators with I„g 0 make no contribution because of
the severe basis truncation. We tabulate the product of
the two diagonal-triple-barred matrix elements for all the
possible phase combinations in Table IX.

The value of the product for the phase combination la-
beled (a) in Fig. 5 or phase 2 and phase 2 in Table IX is
the most positive whereas that for (b) in Fig. 5 or phase 2

and phase 1 in Table IX is the most negative. This corre-
sponds to the results discussed above where the ordering
of the SU(3) irreps is closest to the Elliott ordering for (a)
and farthest for (b). Recall from Sec. IV that the phase
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TABLE IX. The product of the two diagonal-triple-barred matrix elements of Q„and Q„.
Phase 1
Phase 1
+ 8.6

Phase 1
Phase 2
—11.9

Phase 2
Phase 1
—56.1

Phase 2

Phase 2

+ 77.5

Phase 1
Phase 4
—3.4

Phase 1
Phase 6
+ 0.11

Phase 2

Phase 4
+ 22.1

Phase 2
Phase 6
—0.69

combination (a) has the same type of phase convention
for both protons and neutrons, all radial functions being
positive in the limit of r going to 0. The higher value
of the product for (d) compared to (c) is also in keeping
with the earlier discussion for these phase coxnbinations.
The plots for the other phase combinations are not shown
here but the percentages of the dominant basis states
have been calculated. We found that the correspondence
between the values of the products of the triple-barred
matrix elements of Q„and Q„ in Table IX, and the order-
ing of the SU(3) irreps in the strong-coupling limit holds
for these cases also. We conclude that the FDSM-SU(3)
symmetry shows Elliott-type characteristics if the contri-
bution of the Q Q„ terxn with an attractive coupling
strength in the Hamiltonian of Eq. (44) is the largest.
This is in keeping with standard nuclear structure cal-
culations which indicate a connection between large cou-
pling strengths for the Q Q„ term and rotational bands.
However, the issue of a muliplicity of FDSM bases needs
to be addressed by the founders of the FDSM to explain
why only one of the eight possible combinations works so
well.

As a final analysis of the SU(3) symmetry in the cou-
pled basis in the k-active scheme of the FDSM, we present
an energy level diagram in Fig. 6 for the favored phase
combination (a) with 1 —g = 0.12. The rotational bands
shown are ordered according to the SU(3) irreps (24 0),
(22 1), (20 2), (18 3) and (16 4). There are seemingly
two bands for the state with (22 1). This is because the
odd values of J beginning with J = 1 have been sepa-
rated &om the even values of J beginning with J = 2
and have been placed into two separate columns due to
a relatively large odd- J and even- J staggering of the en-

ergy levels of this single "Kp" ——1 band. This staggering
also results in seemingly three bands with minimum J
values of (J;„=0, 2, 3) for the state with (20 2) in-
stead of two "Kg" bands, with "Kg" ——0 and 2, four
(J; = 1,2, 3, 4) for the state with (18 3) instead of two,
and five (J;„=0, 2, 3, 4, 5) for the state with (16 4) in-
stead of three. We also show the bandheads for J;„=0
or J; = 1 for the states with the irreps (14 5), (12 6),
(10 7), (8 8), (6 9), and (4 10). The percentages of the
basis states labeled with the expected SU(3) irreps for
a particular eigenstate are very high for the lower bands
and decrease for the higher bands. In Fig. 7, we show the
rotational nature of the bands shown in Fig. 6 by plot-
ting the energy as a function of J(J + 1). The number
of bands in Fig. 7 are also accounted for by the even-J
and odd-J staggering of the bands with Kg g 0. In the
ideal case, for a perfect rotational band, we should get a
straight line as seen for the single band for (24 0). From
the plots in Fig. 7 we conclude that the bands are indeed
quite rotational.

These results show that the SU(3) eigenstates in a

strongly coupled FDSM basis with the favored phase
combination are rotational provided that the necessary
renormalization has been perforxned in the separate pro-
ton and neutron basis to ensure that the states with
(10 0) and (14 0) are the dominant components of the
lowest eigenstates.

VIII. SUMMARY AND CONCLUSIONS

In this paper we have studied the fundamental assuxnp-
tions xnade in the fermion dynaxnical symmetry model
(FDSM). In the FDSM, it is assumed that the lowest

—20—

-so—

—60—

—70—

-80
J=012 023 1234 02345 101010

FIG. 6. Rotational bands for states with predominant
SU(3) symmetry (24 0), (22 1), (20 2), (18 3), and (16
4), along with J = 0 or J = 1 bandheads for states with pre-
dominant SU(3) symmetry (14 5), (12 6), (10 7), (8 8), (6
9) and (4 10 ) . The bandhead J values are designated byJ . These spectra are calculated for phase 2 in the N = 5
and N = 6 shells with 1 —g = 0.12. The energy levels in
the band whose J value for the bandhead is denoted by an
asterisk and those in the band immediately to its left belong
to the same "Kz" branch of a rotational band. The energy
levels with even and odd J values are shown in separate adja-
cent columns since there is considerable even-odd staggering
within a band. For example, the two columns designated
J = 1, 2 are the staggered odd and even J members of the
(22 1) band with a single "Kg" = 1 branch, the two columns
designated J = 2, 3 are the staggered even and odd J mem-
bers of the "Kg" = 2 branch of (20 2) while J = 0 gives its
"Kz" ——0 branch of even J values only, and so on. The "Kz"
notation is chosen to correspond to the conventional nuclear
K-branch notation. In the text "Kg" occurs in the SU(3) 2
SO(3) Wigner coeiiicients, where it is replaced by ~.



1490 SUDHA R. SWAMINATHAN AND K. T. HECHT 50

—20

—25

—30—
I

(~6 4) (~8 3)
(20 2}

2 t)

—35—

—40—

—55—

100 200 300 400 500

J(a+1)
600

PIC. 7. Rotational nature of the bands. The larger number
of lines plotted for each SU(3) irrep reflects the even-J and
odd- J staggering in the bands shown in Fig. 6.

(& IH I& ) = (@ U' IU & &' I&& )

(50)

If the overlaps

(&.I@ ) = (& IU& )

are close to unity, then the eigenstates of the model, such
as the FDSM, would be close to the lowest eigenstates
of the shell model and the shell model effective interac-
tions could be mapped into the model space by pertur-
bative methods. On the other hand, if the overlaps are
close to zero, it would be virtually impossible to calcu-
late U, and the mapping from the shell model space to
the model space becomes extremely complicated. With
this perspective in mind, the results obtained from the
calculations which were performed for systems of protons

eigenstates of even nuclei are dominated by states built
from the favored S and D pairs only, i.e. , by states with
generalized seniority u = 0. In the Sp(6) & U(3) branch
of the model, moreover, it is assumed that the lowest
eigenstates of actinide nuclei are states with the largest
SU(3) quantum numbers perxnitted in the model. The
FDSM basis space built on these two assumptions is the
type of severe truncation of the shell model space needed
in order to perform calculations in heavy deformed nu-

clei such as the actinides. To assess the validity of such
a severe truncation let us consider the overlap between
a symmetry dictated model space like that of the PDSM
with the lowest eigenstates of the full shell model space.
If U is the unitary transformation which transforms the
basis states of the model space, Ig ), to the correspond-
ing lowest states of the shell model space, Ig, ), and the
model Hamiltonian H is related to the shell model ef-

fective Hamiltonian H, by H = UH, Ut, then

and neutrons filling the valence shells appropriate for the
actinide region can be summarised as follows.

A semirealistic effective interaction consisting of an
FDSM pairing plus a quadrupole-quadrupole term was
diagonahzed in a complete two-particle basis which was
expanded in terms of states with u = 0 and u = 2. The
results for the lowest J = 0, 2 eigenstates were analyzed.
The percentage of the state with u = 0 was small, par-
ticularly in the lowest J = 2 eigenstates, and decreased
as the strength of the Q . Q term was increased. This
implies that the FDSM basis states have a small overlap
with the lowest J = 2 shell model eigenstates.

As a next test of the FDSM assumptions, a single J = 0
pairing plus quadrupole-quadrupole interaction was di-
agonalized in the u = 0 subspace separately for (i) ten
protons in the N = 5 shell and (ii) fourteen neutrons in
the N = 6 shell. These identical particle systems were
chosen for two reasons. First, they contain the largest
possible FDSM-SU(3) quantum numbers for the actinide
region, namely, (10 0) for the protons and (14 0) for the
neutrons, thereby having the largest potential for collec-
tivity. Secondly, these systems contain a fairly rich con-
figuration of both large and small SU(3) quantum num-
bers. For both the pure proton and the pure neutron
calculations the eigenstates did not exhibit the ordering
expected of an SU(3) rotational symmetry. The states
with (10 0) contribute less than 0.3% to the lowest eigen-
states in the ten-proton calculation for all values of the
coupling strength of Q . Q. Similarly, for the fourteen-
neutron calculation, the (14 0) contribution to the low-
est eigenstates is very close to zero. Again, the overlap
between the lowest eigenstates and the expected FDSM-
SU(3) basis states is close to zero. Due to the smallness
of the overlaps even with our simple effective shell model
interaction of the Kumar-Baranger type, the plans to use
more realistic Kuo-Brown interactions were abandoned,
since we would not expect a qualitative change in this
basic result.

An important result of this study is the discovery that
there is more than one FDSM basis. This multiplicity of
FDSM bases arises because the overlaps between the shell
model basis and the FDSM basis depend on the choice of
the relative signs of the harmonic oscillator radial wave
functions with different values of the orbital angular mo-
mentum-quantum number /. There are two independent
FDSM bases for the N = 5 shell and four for the N = 6
shell. This fact was not apparent in the original formula-
tion of the FDSM, since the transformation of the group
generators from the shell model j —j basis to the FDSM
k —i basis does not include the radial functions. It does
become apparent at once when the real quadrupole mo-
ment operator is transformed to the k —i basis. Results
for physical quantities such as energy eigenvalues cannot
be dependent on such phase choices when calculations are
carried out in a full shell model basis, as verified by the
complete two-particle calculations. However, the results
in a truncated FDSM basis are very sensitive to these
phase choices as illustrated dramatically by our final cal-
culation for a coupled-proton-neutron system.

In this calculation we attempt to answer the follow-

ing question. Does an effective interaction with a strong
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Q .Q„component drive the coupled-proton-neutron sys-
tem into the most collective SU(3) representations with
well-established rotational structure? Despite the results
for the separate ten-proton and fourteen-neutron systems
where the states with the SU(3) irreps (10 0) and (14 0)
are extremely minor components of the lowest eigen-
states, we force them to be the dominant components
of the lowest eigenstates for the coupled-24-nucleon sys-
tem. Of the eight possible FDSM bases corresponding
to the 2 x 4 = 8 possible phase combinations for this
system, only one led to the expected pattern of SU(3)
irreps for a rotational nucleus. For this phase choice,
rotational bands are predicted when a J = 0 pairing
plus quadrupole-quadrupole interaction of the Kumar-
Baranger type is diagonalized in the strongly coupled-
proton-neutron basis. Moreover, the ground state band
is a nearly pure (24 0) band; the first excited band with a
staggered even- J and odd- J structure is predominantly a
(22 1) band; followed in order by bands which are domi-
nated by the expected SU(3) symmetries (20 2), (18 3),
and (16 4). The phase choice for the various possible
FDSM bases which leads to these excellent SU(3) char-
acteristics of the type expected for rotational nuclei is
the one for which the contribution of the Q Q„ term to
the matrix elements of the effective interaction is by far
the largest.

The fermion pair structure in the FDSM basis which
leads to the dynamical symmetry in the Hamiltonians
is indeed a mathematically convenient one for the pur-
poses of model building in a workable algebraic frame-
work. The original purpose of Ginocchio's fermion pair
algebra was to better understand the boson space of the
IBM and to simplify the mapping from the shell model
fermion space to the less complicated boson space. It
should be remembered that the S and D pairs of the
fermion pair algebra are identical nucleon pairs, i.e. , pure
proton pairs or pure neutron pairs. It is thus disappoint-

ing that the overlaps between the truncated FDSM basis
states and the lowest shell model eigenstates are so small
in pure proton or pure neutron configurations. Our 24-
nucleon calculation perhaps gives some indication of how
the Sp(6) 0 U(3) truncation scheme of the FDSM may
be salvaged in the actinide region. With a choice of the
proper FDSM basis, a strong attractive Q Q„ interac-
tion may possibly single out those pure proton and pure
neutron SU(3) irreps which are only a tiny fraction of
the shell model eigenstates in the pure proton or pure
neutron configurations. If these are the grounds for the
validity of the FDSM, then we have to conclude that
the mapping &om the shell model fermion space to the
FDSM fermion space is just as complicated as the map-
ping to the IBM boson space. The advantage of having
fermion pairs as the basic building blocks of the model is
partially lost.

The group-theoretical methods pioneered by Elliott
have stimulated a continuing interest in algebraic models
using symmetry groups as a guide for making approxi-
mations in many-nucleon systems with strong collective
properties. By probing the assumptions made in one of
these models, the FDSM, we have arrived at somewhat
contradictory conclusions. One hopes that this work will
lead to a more careful evaluation of the limitations of the
FDSM as a nuclear model based on fermion S and D
pairs.
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