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The breathing-mode giant monopole resonance (GMR) is studied within the framework of the rel-
ativistic mean-field (RMF) theory using the generator coordinate method (GCM). The constrained
incompressibility and the excitation energy of isoscalar giant monopole states are obtained for fi-

nite nuclei with various sets of Lagrangian parameters. A comparison is made with the results
of nonrelativistic constrained Skyrme Hartree-Fock (HF) calculations and with those from Skyrme
random phase approximation (RPA) calculations. In the RMF theory the GCM calculations give a
transition density for the breathing mode, which greatly resembles that obtained from the Skyrme
HF+RPA approach and also that from the scaling mode of the GMR. From the systematic study
of the breathing-mode as a function of the incompressibility in GCM, it is shown that the GCM
succeeds in describing the GMR energies in nuclei and that the empirical breathing-mode energies
of heavy nuclei can be reproduced by forces with an incompressibility close to K = 300 MeV in the
RMF theory.

PACS number(s): 24.30.Cz, 21.60.Jz, 21.65.+f

I. INTRODUCTION

The nuclear matter incompressibility signifies an im-
portant and cardinal point on the equation of state
(EOS). The behavior of the nuclear matter at the sat-
uration point is relevant not only to the property of fi-

nite nuclei, but also to astrophysical phenomena such as
supernovae explosion and neutron stars. The breathing-
mode giant monopole resonance (GMR), whereby nuclei
undergo radial density oscillations, provides a source for
extracting the dynamical behavior, i.e., the compression
properties of nuclei and nuclear xnatter [1]. In addi-
tion to the GMR excitation mode, which represents a
small-amplitude collective motion, the intermediate en-

ergy heavy-ion collisions [2], on the other hand, strive
to map out the EOS of the nuclear matter for densities
higher than the saturation density. This is also expected
to constrain the incompressibility at the saturation point.
However, owing to the complex interplay of many de-
grees of &eedom in the heavy-ion collision, it has not yet
been possible to gain much insight into the behavior of
the EOS. For properties around the saturation point, the
GMR remains an important object of investigations.

The GMR has been measured over almost all of the Pe-
riodic Table [3]. Some time ago, the GMR energy was ob-
tained [4] with considerable precision in a set of medium
heavy Sn and Sm nuclei. Attempts were made to extract

Permanent address: Institute of Nuclear Research and Nu-
clear Energy, Bulgarian Academy of Sciences, Blvd. Tzari-
gradsko Chossee 72, Sofia 1784, Bulgaria.

the nuclear matter incompressibility &om such precision
measurements. An earlier analysis based upon a lepto-
dermous expansion of finite nuclear incompressibility into
various finite-size components led to the nuclear matter
incompressibility of 300 6 25 MeV [5]. This analysis,
which took into account the correlation of the Coulomb
term involving the third derivative of the EOS, was based
upon the systematics &om the density-dependent Skyrme
interactions. In a real case, however, Skyrme forces might
not be reliable for this purpose. Circumventing this con-
straint based upon the Skyrme interactions, it was found
that error bars on the nuclear matter incompressibility
increased by more than 50% and the value itself was ob-
tained at slightly higher than 300 MeV [6]. More recently
an analysis of experimental data was attempted, includ-
ing deformed nuclei and data f'rom many laboratories [7].
However, this analysis, which again, comprises data of
various origins, was not conclusive on the extraction of
the nuclear matter incompressibility. A detailed and crit-
ical analysis of empirical breathing-mode GMR data is in
progress.

Theoretically, the incompressibility has been obtained
using the density-dependent interactions [8]. The de-
ductions base themselves upon an interpolation between
various Skyrme and Gogny forces for the GMR energies
obtained &om self-consistent Hartree-Fock and random
phase approximation (HF+RPA) calculations. These
calculations were a major eGort intended to explaining
the breathing-xnode energies in finite nuclei in a micro-
scopic approach. This approach, however, succeeded in
reproducing the GMR energy of only Pb within the in-
terpolation scheme. The GMR energies of Zr were over-
estimated by 1—2 MeV. This fact has been corroborated
by the calculations within the RPA sum-rule approach
using various Skyrme interactions [5]. The calculations
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indeed reproduce the GMR energy of Pb using Skyrme
force SkM*. The GMR energies of medium-heavy nuclei
such as Zr, Sn, and Sm isotopes could not, however, be
reproduced within the Skyrme forces. The Skyrme inter-
action SkM* has been used extensively to calculate the
properties of giant resonances [9]. It reproduces the em-
pirical excitation energies of giant quadrupole resonance
(GQR) very well. The appropriate effective mass of this
force helps to achieve the required GQR energies. The
force SkM', however, reproduces the GMR energies of
only 2osPb well. This is due to a simple relationship of
the surface incompressibility to the bulk incompressibil-
ity for the Skyrme type of forces, that for a given force
the surface incompressibility has about the same value
as the bulk incompressibility [10]. This relationship has
essentially been at the root of the problems in describing
adequately the mass dependence of the GMR energies in
the Skyrme ansatz.

Relativistic mean-field (RMF) theory [11] has in the
last years been found to be especially appealing in de-
scribing the ground-state properties of nuclei at and far
away f'rom the stability line [12,13]. The long-standing
problem of the kink in isotope shifts in Pb nuclei, which
could not be described with the Skyrme forces includ-
ing all possible correlations, has been successfully solved
in the RMF theory [14]. The theory has subsequently
also been able to provide a good description of the bind-
ing energies and deformations of nuclei close to the neu-
tron dripline [15]. Shell effects arising &om the Dirac
structure of the spin-orbit interaction in the RMF the-
ory manifest in the behavior of the binding energies. The
strong shell effects arising from the RMF theory are cor-
roborated by the finite-range droplet model (FRDM) [16]
and are in contrast with those from the Skyrme theory
[17,18]. Thus, the RMF theory has achieved a consider-
able success in describing many aspects of the ground-
state properties of nuclei.

The dynamical aspects within the RMF theory have
remained largely unexplored. A first attempt was made
to obtain the breathing-mode energies and incompress-
ibilities within the RMF theory using the linear Walecka
model in constrained calculations [19]. Such calculations
were further extended to light nuclei, and anharmonic-
ities in the breathing-mode oscillations were indicated
[20]. The relationship of the GMR energies to the incom-
pressibility of nuclear matter is, however, not yet known
for the RMF theory. On the contrary, in the Skyrme ap-
proach, the relationship between the GMR energies and
the incompressibility has been studied extensively (see,
e.g. , Refs. [8,10,5,1,9]) and has been found to be straight-
forward. An exercise to understand this relationship in
the RMF theory has recently been undertaken [21], em-

ploying relativistic constrained calculations within the
mean field. Another approach which has received con-
siderable attention as a useful tool for studying proper-
ties of excited stated in nuclei is the generator coordinate
method (GCM) [22]. It has been applied amongst oth-
ers also for the breathing mode [23—25]. This has been
attempted in the nonrelativistic theories with the inten-
tion of taking into account the relevant correlations in
the nuclei. In this paper, we investigate the GCM for the

II. RELATIVISTIC MEAN-FIELD THEORY

We start from relativistic mean field theory [11],which
treats the nucleons as Dirac spinors g interacting by the
exchange of several mesons: scalar 0 meson that produces
a strong attraction, isoscalar vector u meson that causes
a strong repulsion, isovector p meson required to gen-
erate the required isospin asymmetry, and photon that
produces the electromagnetic interaction. The model La-
grangian density is:

12 = Q(ip„B" —M)Q+ 8"o—ct„o —U(a) —g @cree

4 Pv 2 ~ P M P,

4
——R 8» + —m P&P —gp'lP'7 7 gP&

F""F„„——e—gp" QA„, (1)

where U(cr) is the nonlinear scalar self-interaction with
the cubic and quartic terms required for appropriate sur-
face properties [26]:

1 2 2 1 3 1 4
U(cr) = —m o + —g2o + —gso .

2 3 4
(2)

M, m, m, and m~ are the nucleon, the o-, the u-, and
the p-meson masses, respectively, and g, g, g~, and
e /42m=1/137 are the coupling constants for the cr, ~,
and the p mesons, and for the photon. The field tensors
for the vector mesons are

0" = t9"(u" —t9 ~", (3)

R" = 8"p —8"p~ —gp(p~ x p ), (4)

and for the electromagnetic field

F" = 0"A —0 A". (5)

The associated Hamiltonian operator 0 is then obtained
using the well-known canonical quantization procedure
based on the anticommutator (for the fermions) and the
commutator (for the mesons) relations [27,28].

Within the relativistic mean-field (RMF) approxi-
mation the A-independent nucleons with single-particle
spinors @; (i = 1, 2, ..., A), are assumed to form a single

first time in the RMF theory and focus upon the struc-
ture and properties of the breathing-mode GMR using
the method of generator coordinates. A comparison of
the properties of the GMR will be made with those from
the Skyrme ansatz.

The paper is organized in the following way: In Sec. II
we provide the theoretical framework of the RMF theory.
The details on the generator coordinate method in the
RMF theory are presented in Sec. III. The problem of
the breathing mode GMR is discussed in Sec. IV. In Sec.
V we discuss the results obtained in this framework. The
last section contains a summary and conclusions.
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Slater determinant 4 and to move independently in the
meson fields. In the particular case of spherical nuclei,
symmetries simplify the calculations considerably and
only the timelike components (do(r), p (r), and As(r)
of the cu, the p, and the electromagnetic fields survive.
When describing ground-state properties of nuclei, one
looks for static field solutions P(r) = (r(r), (ds(r), po(r),

I

and As(r) that satisfy the Klein-Gordon equation

8' 28———+my I &(r) = &~(r)Br2 r Br (6)

where m~ are the meson masses for P = cr, (d, p; m~ is
zero for the photon. The source terms

g~p, (—r) —g2o (r) —gso (r) for the a field

, g-p. (r) for the cu field

g7 Ps(") for the p field

~ p() for the Coulomb field,

depend on the spherical densities ergy density

p (") = ).~'(r)~'(r)
i=1
A

p. ( ) =):4,"(r)4'(r)
i=1

A

ps(r) = ).&; (r)&s&'(r)
i=1

A

p ( ) =).&,'(r) 2
&*(r)

("):).~'(r)( '~+}~'(r) (i4)

and the spherical densities (8) and therefore the mesonic
fields (9) are all expressed in terms of the Dirac spinors
(g;}.In the RMF approach, Fock terms in Eq. (13) are
neglected.

Taking the variation of Eq. (12) with respect to g, one
obtains the stationary Dirac equation with the single-
particle energies as eigenvalues,

where, in the no-sea approximation, the summation runs
over all occupied states in the Slater determinant 4. The
solution of Eq. (6) can, in principle, be expressed in terms
of Green's functions, i.e.,

P(r) = Gp(r, r')sp(r')r'2dr',
0

h~g;(r) = s;g;(r),

where

hD = inV +P(M—+g 7r(r))

+g (u (r) + gprspo(r) + e A (r) (i6)

where, for the massive fields,

Gq(rr') = e ,
e~" '

~ —e e~"e" ~), (10)
2m/ pT'

Solving this equation self-consistently [the mesonic fields
depend on the baryon solution according to Eq. (9)], one
obtains the nuclear ground state 40 in terms of the solu-
tions (g;}.

and for the Coulomb field,

1/r for r ) r'
|-"~(r r') =

III. RELATIVISTIC GENERATOR COORDINATE
METHOD

@RMF[0'] = (@I~ I @) (12)

where the Hamiltonian density

'gRMF(r) = r(r) + Mp, (r) + 2g p, (r)0 (r)
--,'4g2~'(r) + —.'gs~'(r) }
+ ,'g- p-(r)~'(r) + 2g.-ps(r) p'(r)
+ ep (")A (") (13)

The total ground-state energy of spherical nuclei can be
expressed, in the center-of-mass frame, as a functional of
the baryon spinors (g;}

The GCM has been used extensively within the non-
relativistic approaches to obtain the ground state and
excited states of nuclei [29]. With the use of the Skyrme
forces, the GCM was applied to study the giant reso-
nances [24]. Recently, the GCM has also been employed
to investigate the efFect of correlations on the ground-
state properties of nuclei [30]. Here we present a rel-
ativistic extension of the generator coordinate method
(GCM), which is based upon a trial A-particle wave func-
tion ansatz 4'C~M written in the form of a linear combi-
nation:

qrccM(er, . . . , ee) = /E(q)O(er, . . . , re;q)dq, (17)

depends only on the baryon field since the "kinetic" en- where the generating function O(q) = 4(ri, . . . , r~, q) is
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chosen to be a Slater determinant 4(q) built upon single-
particle spinors Q, (r, q), (i = 1, 2, ..., A), depending on
the generator coordinate q. It is obvious that in this case
the wave function of the system (17), being a superposi-
tion of Slater determinants 4(q), goes beyond the limits
of the RMF approach. The so-called "weight, " or "gen-
erator" function X(q) is determined after varying with
respect to P(q) the energy of the system

(@GCMi~i@GCM)

(@GCMi@GCM)

where

and

~(q q') = (~(q) li'(q'))

(20)

are the energy and the norm overlap kernels, respectively.
A straightforward calculation shows that with the

Hamiltonian H associated with our model Lagrangian
(1) one obtains

This leads to the Hill-Wheeler integral equation for the
weight function: &(q, q') =— (c'(q) I~le'(q')) (22)

[&(q q') —E&(q q')] &(q')dq' = o where A'(q, q') is the overlap kernel (21) and 'R(r; q, q')
is the overlap energy-density kernel:

Q(r; q, q') = 7 (r; q, q') + Mp, (r; q, q') + 2 g~ p, (r; q, q') o (r; q, q')

2 ( 3g2~'(r; q, q') + 2 ~s~'(r; q, q') }+ 2 ~-p- (r; q, q')~'( rq, q')

+2»ps(r ~ qi q') p (r~ q~ q') + 2 ep~(r; q, q') A (r; q, q')

In this equation the "kinetic" energy density is defined by the spinors (g;(r; q)} as

r(r; q, q') = ) N, gt(r;q)( —inV}@z(r;q'). (24)

Similarly the other densities entering Eq. (23) are

A A

p, (r;q, q') = ) N, ' Q;(r;q)Q~(r;q'), p„(r;q, q') = ) N, Qt(r;q)Q~(r;q'), (25)

A A

ps(r;q, q') = ) N, @,(r;q)aspic(r;q'), pz(v", q, q') = ) N, Q, (r;q) gz(r;q').

They appear as source terms

u- p. (r; q, q') ——a2~' —gs~'
q-p-(r;q, q')

sy("iq~q ) = & („. i)

cps ("'q q )

for the 0 Beld
for the w Beld
for the p Beld
for the Coulomb Beld,

(26)

in Klein-Gordon equations of the type (6) whose solution
determines the fields P(r; q, q') = 0(r; q, q'), ur P (r. ; q, q'),

p (r;q, q') and AP(r; q, q') entering Eq. (23) as

4 (r; q, q') = G&(r, r') s&(r'; q, q') r'2dr'
0

The Green functions are defined as before by Eqs. (10)
and (11).

In the above equations the sums run over all occupied
single-particle states and ¹ are the elements of the
matrix N (q, q') where

The determinant of N(q, q') siinply gives the overlap ker-
nel (21)

A'(q, q') = det(N(q, q')}. (29)

IV. ISOSCALAR GIANT MONOPOLE
RESONANCE

Thus, having determined the integral kernels (22) and

(29), the associated Hill-Wheeler integral equation (19)
has to be solved in order to determine the nuclear
ground and n-excited states through its eigensolutions

(Ep, Xp(q) }and (E,X„(q)},respectively

~'|(av') = J ~'~4,'(~;e)4, (~;q'). (28) The constrained Hartree-Fock calculations have been
a common method to obtain description of the excited
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states in nuclei. An extension of this method in the
&amework of the RMF theory has been made recently,
where the breathing-mode GMR in 6nite nuclei has been
obtained in the constrained calculations [21]. We extend
some of the discussion here for the sake of clarity. In
order to analyze the isoscalar GMR we perform also con-
strained RMF calculations, where the Dirac equation [see
Eq. (15)]

(~~ —qr')0" (~) = s*&'(*) (30)

is solved at diferent values of the Lagrange multiplier
q which are associated with values of the nuclear root-
mean-square (rms) radius

R= (31)

where

A

a-(r; q) = ) .0, (r; q) 4'(r' q) (32)

is the baryon local density determined by the solution
(Q;(r; q)). According to Eq. (12), the total energy of the
constrained system

(34)

The constrained energy (33) as a function of q represents
the energy surface for the isoscalar monopole motion of
the nucleus, where R changes around its ground-state

ERMF(q) = ERMF[Q;(q)]

is a function of q (or the nuclear rms radius R). It has a
minimum, the ground-state energy ERMF ——ERMF(0), at
q = 0 corresponding to the ground-state rms radius Ro.
The curvature of this function around the equilibrium
point Ro de6nes the so-called constrained incompress-
ibility coefficient of the 6nite nucleus

value RD. In order to derive vibrational excitation ener-
gies one needs in addition the inertial parameter for this
motion. In the nonrelativisitic RPA sum-rule approach
(SRA) [31],the inertia parameter for the GMR is derived
as MRO. In this case one obtains the GMR excitation
energy Eq as

zc(A)
MR2

In order to obtain a description of the GMR in the RMF
theory, we consider the Lagrange multiplier q entering
Eq. (30) as generator coordinate for the GCM calcula-
tions as described in Sec. III. The solution (g;(r;q))
of Eq. (30) at different values q then defines the genera-
tor Slater determinants e'(q) and therefore the integral
kernels (20) and (21). In fact, the diagonal part of the
energy kernel 'R(q, q') coincides with the constrained en-
ergy (33), i.e., ERMF(q) = 'R(q, q). The off-diagonal ele-
ments 'R(q, q') contain the information about the inertia.
We then solve the resulting Hill-Wheeler equation (19)
numerically using the method of Ref. [24].

V. RESULTS

A. Relativistic GCM calculations

We have performed GCM calculations for four closed-
shell nuclei 0, Ca, Zr, and Pb with the sets of
Lagrangian parameters given in Table I. The Lagrangian
parameters sets are NL1 [32], NL-SH [13], NL2 [33], HS
[34], and Ll [33] in the increasing order of the nuclear
matter incompressibility with KNM ——211.7, 355.0, 399.2,
545, and 626.3 MeV, respectively. This allows us to ex-
amine the dependence of GMR energies on the nuclear
matter incompressibility KNM. These sets of parameters
have also been employed in our earlier constrained RMF
calculations [21]. The last two sets, HS and Ll, corre-
spond to the linear model without the self-coupling of
the 0 6eld. In addition, the set Ll excludes the contri-

TABLE I. Parameter sets for the Lagrangian (1).

M

mp
ger

g~
gp
g2
g3

M'/M
KNM

+aym

NL1 [32]
938.0
492.25
795.355
763.0
10.138
13.285
4.975

—12.172
—36.265

0.57
211.7
43.5

NL-SH [13]
939.0
526.0592
783.0
763.0
10.44355
12.9451
4.3828

—6.9099
—15.8337

Nuclear
0.60

355.0
36.1

NL2 [33]
938.0
504.89
780.0
763.0

9.111
11.493
5.507

—2.304
13.783

matter characteristics
0.67

399.2
43.9

HS [34]
939.0
520.0
783.0
770.0
10.47
13.80
4.04
0.0
0.0

0.54
545.0
35.0

L1 [33]
938.0
550.0
783.0

10.30
12.60

0.0
0.0

0.53
626.3

The masses, the incompressibility K~M and the asymmetry energy a,„are in MeV; the coupling
g3 is in fm
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TABLE II. RMF and constrained GCM results for the ground-state energies and mass rms radii

and for the excitation energies b,E = (E„—Eo) of the first three monopole states calculated with

the set NL1.

Nuclei
16p

40C
90Z

208Pb

—127.2
—342.5
—784.9

—1639.9

—127.5
—342.6
—785.0

—1640.1

Energies (MeV)
RMF GCM

Radii (fm)
RMF GCM

2.65 2.65
3.38 3.38
4.28 4.28
5.67 5.67

Excitation energies (MeV)
AE1 EE2 EE3
20.6 38.9 49.8
17.1 29.9 37.3
14.7 29.1 43.1
11.7 23.3 34.9

usual bell shape with a maximum around the RMF
ground-state value q=0. With an increase in mass num-

ber A the width of go(q) decreases, while its amplitude
increases keeping fixed the normalization EA/X = 1.

Typical GCM results for energies and rms radii calcu-
lated with the set NL1 are given in TableII. It is worth
noting that the GCM ground-state energy is slightly
lower than the RMF one. This small difference, which is
too small to be seen in Fig. 1, contains in fact two con-
tributions: (i) the positive zero-point energy of roughly
1/2k' in the harmonic approximation and (ii) the corre-
lation energy induced by the GCM correlations lowering
the mean field energy of the ground state by roughly the
same amount. This is an important point and reBects
the fact that GCM is beyond the RMF approximation.

There is also no perceptible effect on the rms radii of
the nuclear ground state in the GCM. The largest differ-
ence between the RMF and the GCM ground-state rms
radii is seen for the nucleus 0. It is about 0.0025 fm.
Figure 2 shows the RMF and the GCM vector (p„) and
scalar (p, ) densities. The RMF and GCM local densities
do not differ significantly. For heavy nuclei the GCM
ground-state local densities are even closer to the un-
correlated RMF ones. We can thus conclude that the
correlations in the GCM ground state are small and the
main purpose of the GCM consideration here is in the
possibility of its generating nuclear excited states.

In Fig. 2 we show the local vector and scalar densities

ppp(T) of the GCM ground state and pqq(r) of the first
excited GMR state for the set NL1. The densities are
more extended in space in comparison with the ground-
state ones. Consequently, the rms radii in the first exited
state are larger than that of the associated ground-state
values by about 0.15 fm in ~sO and by only 0.015 fm in
208Pb

D. Transition density

The transition density of the GMR provides the
strongest evidence for the radial density oscillations in
nuclei and hence of the "breathing" or the compression
character of the GMR mode. We show in Fig. 3 the vec-
tor and scalar transition densities psq(r) for protons and
neutrons in 2osPb obtained in the relativistic GCM cal-
culations for the force NL-SH. The transition densities
show a change in the density in the bulk at the expense
of that in the surface. A node at 6 fm is clearly to be seen
for protons and at about 6.4 fm for neutrons. The exis-
tence of a well-defined node in the transition density is
the typical behavior for the breathing-mode motion and
testifies for the compressional property of the GMR. The

C. GMR excited states

The first three GMR excited states obtained in the
GCM with the parameter set NL1 are shown in Ta-
ble II. These states show a clear equidistant spectrum for
heavy nuclei. A similar behavior is also apparent from
Fig. 1 for Zr too, which has been shown for the set
NL-SH. For the lighter nuclei, however, there are signif-
icant deviations from this type of spectrum, as can be
seen from the energies of the excited states in Ca and

O. With an increase in mass number, the excitation
energies decrease. Here we take the excitation energy
AE~ ——E~ —Eo, which is equivalent to the excitation
energy of a collective state in the nonrelativistic con-
strained Hartree-Fock approach. The mass dependence
LE& ——cA ~ of the excitation energy for Pb, the nu-
cleus on which there exists well-measured GMR energy,
is obtained as c = 69.1, 79.6, 93.6, 104.9, 97.0, and 126.2
MeV for the sets NL1, NL-S1, NL-SH, NL2, HS, and L1,
respectively.

0.005

0.004

0.003

0.002

0.001

0.000

-0.001

-0.002
I I I . . . I . . I . . I . . . I. . . . I . . I

0 1 2 3 4 5 6 7 8 9 10 11
r (fm)

FIG. 3. The vector and the scalar transition density for the
GMR in Pb obtained in the relativistic GCM calculations
arith the force NL-SH. There is a conspicuous node in the
densities of both the protons and neutrons. The change in
the bulk of the vector density takes place at the expense of
the change in the surface, thus conserving the total number
of particles.
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transition density from RPA calculations for the GMR
in Pb with Skyrme force SIII was seen to be very
similar to the transition density in Fig. 3. The tran-
sition density for SIII also showed a node at about 6.2
fm. Beth these transition densities, one in the RMF the-
ory for NL-SH and the other in the Skyrme approach for
SIII, closely resemble that obtained from a simple radial
scaling of ground-state density. The point of difFerence
to be noted is that in our RMF case, we have obtained
the transition density for the GMR in the GCM, with
some form of a constrained motion. Here we do not ob-
serve any conspicuous difFerences between the transition
densities of the relativistic GCM and the scaling mode
in the Skyrme approach. The oscillations in the interior
of the nucleus are obviously due to the shell efFects. The
vector transition density shown in the figure conserves
the particle number. The same cannot, however, be said
for the scalar transition density, which is albeit similar
to the vector transition density, but manifests mainly the
relativistic efFect similar to that exhibited by total scalar
density.

We observe that the difference between the scalar and
the vector transition densities, which is connected with
the small components of the Dirac wave functions, arises
mainly in the interior of the nucleus. In the surface region
both densities coincide more or less.

400 t I I

Constrained Incompressibility
Pb

300
90Z

)
Q)

200

40C

16O

100
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0
200 300 400 500

K„(MeV)

I

600

FIG. 4. The constrained incompressibility K& obtained in
the RMF theory using various parameter sets. K& increases
monotonically from NL1 to NL-SH for all nuclei. The val-

ues for HS show a slight dip, indicating a very large surface
incompressibility.

E. Constrained incompressibility of Bnite nuclei

We now consider the constrained incompressibility
Kc(A) as calculated from Eq. (34). The results as a
function of the nuclear matter incompressibility KNM are
shown in Fig. 4 for a few nuclei. It may be worth men-
tioning that empirically the GMR has been well estab-
lished only in heavy nuclei such as Pb and Zr. We
have also included the light nuclei such as Ca, 0,
and He. In the light nuclei it is very uncertain and a
full energy-weighted sum-rule strength has rarely been
observed. Thus, in our case the light nuclei serve mostly
the purpose of illustration and for the possible anhar-
monic effects.

With exceptions for light nuclei, the incompressibility
Kc (A) shows a strong dependence on the nuclear matter
incompressibility KNM. For the linear force HS, Kc(A)
shows a slight dip from the increasing trend for Pb
and Zr, whereas for light nuclei Ca, 0, and He,
the HS values are even smaller than the NL2 values. The
dependence of Kc (A) in the Skyrme approach is differ-
ent, where it increases monotonically with K~M. The
finite nuclear incompressibility receives a sizeable contri-
bution from the surface incompressibility, and this differ-
ence could be explained from the difference in the behav-
ior of the surface incompressibility in the two methods.
In the Skyrme approach, the surface incompressibility
has been shown to be Ks —KNM for all standard
Skyrme forces. This does not seem to be the case for the
RMF theory, however, as shown by the HS values. Thus,
the surface incompressibility is not necessarily a straight
function of the nuclear matter incompressibility in the
RMF theory. This point has also been dealt with in Ref.
[21].

F. Comparison with nonrelativistic calculations and
experimental data

The excitation energy AEz corresponds to the en-

ergy E~ ~ usually obtained from the nonrelativistic con-
strained Skyrme Hartree-Fock (SHF) calculations within
the sum rule approach [10]. In Table III, energies AEq are
compared with such nonrelativistic constrained SHF re-
sults obtained with the Skyrme-type forces SkM and SIII.
These Skyrme forces have nearly the same nuclear matter
incompressibility KNM as do the sets NL1 and NL-SH,
respectively. It can be seen that the nonrelativistic SHF
results difFer slightly from the values of AEq. This difFer-

ence in the relativistic GCM excitation energy AEz from
the SHF energy is small for heavy nuclei. It, however,
increases for lighter nuclei, where the GCM shows lower
values.

Figure 5 shows the GCM breathing-mode energy AEq
for various nuclei and parameter sets. The energy AE~
erst increases with KNM from NL1 to NL2 almost lin-
early for all nuclei. For the force HS, which has KNM
even larger than that of NL2, the energy shows a de-
crease for all the nuclei, however. This is due to a rather
large surface incompressibility which is in disproportion
to its bulk incompressibility for HS. This reduces the in-

compressibility of the nuclei, as also shown in Fig. 4.
For the force L1, AE-i shows an increase compared to
HS. Thus, AE~ is not related in a simple way to KNM.
This reflects the role played by the surface component
of the compression in the RMF theory. Even for heavy
nuclei AEq does not show an overall increasing tendency
with KNM. For lighter nuclei this effect is even more
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TABLE III. Comparison of the GMR excitation energies (in MeV) obtained within the con-
strained GCM calculations and the approximation (35) using the constrained incompressibility (34)
with the nonrelativistic sum-rule approach obtained within nonrelativistic constrained Hartree-Fock
(HF) calculations [31]. In the relativistic case sets NL1 and NL-SH are used, which have nearly the
same nuclear matter incompressibility KNM as do the sets of Skyrme force parameters SkM and
SIII used in the nonrelativistic HF calculations [11].

Nuclei
ieO

40C
90Z

208Pb

GCM

20.6
17.1
14.7
11.7

NL1: KNM = 211.7MeV
SkM: KNM ——216.7 MeV

Eq. (35) Skyrme HF

20.9 22.4
19.2 20.2
16.3 17.0
12.2 12.9

GCM

25.3
22.4

20.16
15.8

NL-SH: K~M = 354.95MeV
SIII: KNM ——356.00 MeV

Eq. (35) Skyrme HF

25.8 26.6
23.9 24.7
21.1 21.2
16.1 16.2

30

I I

Relativistic GCM: excitation energy of GMR
L1

l 60

25
40C

20

208pb

zr l

15

Pb l

apparent.
It is interesting to note that the dip in energy AEq

for HS seems to signal the transition &om nonlinear
(NL1, NL-SH, NL2) to linear (HS, Ll) models in the
Lagrangian (1). Even with significantly higher nuclear
matter incompressibility (KNM= 545 MeV for HS) the
linear model gives comparable GMR excitation energies
(and even lower) in comparison with the nonlinear ones
(notice that KNM= 399.2 MeV for NL2).

It is instructive to see that the approximate expression,
(35) which is exactly the same as in the nonrelativistic
sum-rule approach but calculated with the incompress-
ibihty Kc(A) emerging from the relativistic RMF cal-
culations, gives acceptable results for GMR excitation
energies. The results &om Eq. (35) are compared with
the GCM and SHF results also in Table III.

In the nonrelativistic approach using density-
dependent interactions, extensive work was carried out

to obtain the incompressibility and breathing-mode en-

ergy [8] with HF + RPA calculations. The RPA calcu-
lations were performed on a set of Skyrme and Gogny
interactions including the 6nite-range Gogny force Dl,
with an increasing order of incompressibility of nuclear
matter. This work attempted to reproduce the empirical
breathing-mode energies on Pb and Zr, where exper-
iments showed the existence of the GMR unambiguously.
The GMR energy in 2osPb is rather well established and
lies at 13.7+0.3 MeV. The GMR energy in Zr has been
measured to be in the range 16.5 —17.3 MeV by difFer-

ent experiments. The average value of the energy &om
different experiment comes at about 17.0 MeV. Table IV
shows the GMR values for Zr and Pb obtained in
the RPA calculations [8] for the forces Dl, Ska, and SIII.
A comparison of the RPA values with the empirical val-
ues in Table IV shows that the Gogny force D1 repro-
duces the GMR energy for 2osPb quite well. The force
Dl, however, overestimates the GMR energy for Zr by
about 1.5 MeV. The force Ska, which has incompressibil-
ity of nuclear matter at 263 MeV, gives the GMR energy
for 2osPb only slightly higher than Dl. The GMR en-

ergy with Ska for OZr is, however, about 2 MeV higher
than the empirical value. Thus, within the nonrelativistic
approach, with Dl one comes very close to reproducing
the GMR energy of 2 Pb in the RPA calculations. The
GMR energy of Zr could not, however, be reproduced
by any Skyrme force. This has been the scenario within
the Skyrme approach, where the conclusions of Ref. [8] on
the incompressibility hinged very strongly on Pb only.
Consequently, a value of the incompressibility of nuclear

10 I

200 300
I

400
K, (MeV)

I

500
I

600

FIG. 5. The energy EEz of the GMR obtained with var-
ious relativistic Lagrangian sets in the GCM. The empirical
values of the GMR in Pb and Zr have been shown at their
average values by horizontal quadrangles. The widths of the
quadrangles span the error bars in the empirical data. The
empirical data encompass the corresponding GCM results at
about K = 280 —310 MeV and show a good agreement with
the values obtained with the set NL-S1.

Skyrme interactions+RPA
D1 Ska SIII

KNM 228 263 356
Zr 18.5 19.1 22.1
Pb 14.4 14.7 17.2

GCM-RMF
NL-S1
296

17.6
13.4

Expt.

17.0 + 0.5
13.5 + 0.3

TABLE IV. Comparison of the RMF results from the pa-
rameter set NL-S1, with the HF+RPA calculations using den-
sity-dependent Skyrme interactions. Here we show the results
only for the nuclei Pb and Zr, where the empirical data
is reliable and rather well established.
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matter of about 210 MeV seem to have been favoured.
We now compare the empirical values and the RPA re-

sults with those in the relativistic GCM calculations with
the force NL-Sl. It may be noted that this force which
describes the ground-state properties of nuclei only very
approximately, and was constructed with a view to fill in
the gap at about KNM 300 MeV in the dependence of
the incompressibility on the breathing-mode energy. It
has presently only a schematic character. With its incom-
pressibility of 296 MeV, the GMR energy for SPb in the
GCM has been obtained at 13.4 MeV. It is very close to
the empirical values obtained in many experiments. The
GCM energy for Zr has been obtained at 17.6 MeV,
which is slightly higher than the average value of 17.0
MeV but is closer to an earlier empirical result. On the
whole, it is within the uncertainties of the empirical val-
ues. In comparison, the GMR energy &om the Gogny
force Dl in the RPA lies at 18.5 MeV. Systematics of the
values for Pb and Zr in Fig. 5 show that both empir-
ical values as shown by the quadrangles are encompassed
by the GCM calculations curve &om KNM ——290 —310
MeV. The width of the quadrangles signify the corre-
sponding experimental uncertainties in the determina-
tion of the GMR centroid energies. The empirical values
themselves have been reproduced by KNM 300 MeV
as can be seen by intersecting the empirical values at the
curves for Pb and Zr.

VI. CONCLUSIONS AND DISCUSSION

We have performed a systematic study of the
breathing-mode energy and the incompressibility of finite
nuclei with the generator coordinate method in the RMF
theory. It has been observed that the transition density
of the giant monopole mode shows a character very sim-
ilar to that obtained in the Hartree-Fock —RPA approach
with density-dependent Skyrme interactions. This be-
havior is also similar to what one expects in the simple
radial scaling of the ground-state density.

Using a set of relativistic mean-field Lagrangian pa-
rameters, it has been shown that the GCM energies for
the realistic forces show an increasing tendency with the
nuclear matter incompressibility. Only for unrealistic
forces such as HS does one observe a decrease in the
breathing-mode energy and also in the incompressibil-
ity of nuclei even when this force has a larger KNM. This
is due to a very large surface incompressibility of HS.

The GCM values obtained with the force NL1 are much
lower than the empirical values, and those with NL-SH
are a little higher than the latter. The empirical GMR en-

ergies, on the other hand, can be well encompassed by the
GCM curve at K = 280 —310 MeV. This is corroborated
by the GCM values obtained with a rather schematic
force having an incompressibility K = 296 MeU, where
the GCM values for Pb and OZr are very close to
the corresponding empirical values. Thus, the empiri-

cal GMR energies for both these nuclei have been clearly
bracketed by the GCM calculations in the RMF theory.
We know of no other theoretical result where the GMR
energies for both these nuclei have been reproduced. Our
results also bring about severe constraints on the value
of the nuclear matter incompressibility, the observable
which has theoretically been held rather uncertain. The
GCM results, thus, favor an incompressibility at about
300 MeV. This is in contrast with the usual assumption of
the incompressibility of about 210 MeV concluded from
the nonrelativistic Skyrme ansatz, where the empirical
value for Pb only could be reproduced. Our conclu-
sion, on the other hand, is in good agreement with the
analysis of the empirical breathing-mode energies, where
the incompressibility of nuclear matter was obtained as
300 MeV or higher [5,6]. This analysis is, however, not
yet complete and further work on it is in progress.

Differences in the shell effects of the RMF theory
and the Skyrme approach and their implications on the
ground-state properties of nuclei such as isotope shifts
[14] and on nuclei at drip lines [15] have been discussed
earlier. The present work on the breathing-mode energies
in the GCM has brought about important differences also
in the dynamical properties of the RMF theory and the
Skyrme ansatz. The nearly good reproduction of the em-
pirical GMR energies in the relativistic GCM approach
has become possible due to the ratio of the surface incom-
pressibility to the bulk incompressibility, which has been
obtained as different &om 1 in the RMF forces. This was
also demonstrated in Ref. [35] using various schematic
parameter sets where, in the RMF theory, it is possible
to obtain the ratio of the surface incompressibility to the
bulk incompressibility of up to about 2 or more. For
the realistic parameter sets NL1 and NL-SH, this ratio
has been shown [21] to be higher than 1 (1.58 and 1.72,
respectively) in the simple radial scaling of the ground-
state density in the semi-infinite nuclear matter with the
Thomas-Fermi approximation. In the Skyrme approach,
the ratio of 1 has essentially been at the origin of prob-
lems in describing the mass dependence of the GMR en-
ergies. Of course, there still remain some improvements
to be made in the ansatz of the RMF theory with a view
to describe accurately the ground-state energies of nuclei
at and far away &om the stability line as is the case with
the force NL-SH as well as the dynamical properties such
as the breathing-mode energies in nuclei.
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