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We simplify a treatment of pion distortions using a separable expansion of optical potential
in momentum space. We use this method to gain insight into the role of distortions in isoelastic
pion charge-exchange scattering within the framework of the isospin-invariant optical model. The
method provides an analytic procedure for calculating external distortions of single- and double-
charge-exchange scattering. This allows us to analyze separately the role of on- and ofF-shell pions
in distortions for each partial wave. Results for sequential scattering at 50 Mev for the reaction
' C(sr+, vr ) 0 are presented. It is shown that the external distortions give a small enhancement
in forward directions and reduce the differential cross sections at large angles.

PACS number(s): 25.80.Gn

I. INTRODUCTION

In recent years, a pion-nucleus double-charge-exchange
(DCX) scattering to the double-isobaric analog state
(DIAS) has been studied systematically at low energies
(T = 50 MeV) [1—4] and has attracted considerable in-
terest. This interest has arisen because in this case the
rather weak vr-N interaction allows a relatively deep pen-
etration of a pion into a nucleus. This is in contrast to the
situation in the resonance region, where pions are scat-
tered mostly by the nucleus surface. Thus, low-energy
pions provide a useful means to probe the nuclear inte-
rior. Moreover, because the pion changes its charge by
two units, it must interact with at least two nucleons.
Hence the increased penetrability of low-energy pions on
the one hand and the two-body character of DCX on
the other provide an excellent opportunity for extract-
ing information on interesting topics such as dynamical
short-range correlations of nucleons and isospin triplet
coupling of nucleon pairs.

Globally, there are two striking characteristics associ-
ated with low-energy pion DCX to the DIAS. The first
one is that the magnitudes of the measured cross sections
are comparable to those of the resonance region. The sec-
ond one is that the differential cross sections are forward
peaked. There are a number of microscopic mechanisms
which have been proposed in attempts to describe these
features [4—16].

Most the theoretical efforts have been devoted to clari-
fying the role of conventional sequential scattering (SEQ-

vr), which occurs when two pion single-charge-exchange
scatterings take place successively on different nucleons
[5—9]. One can summarize the results for SEQ-vr, calcu-
lated in the plane-wave approximation, as follows. (a)
The calculated differential cross sections qualitatively re-
produce the angular distributions, but they underesti-
mate the latter by more than a factor of 2; only in Ref.
[7] has a quantitative description of DGX scattering data
in the plane-wave approximation been obtained. (b) The
plane-wave results for SEQ-z are very sensitive to the
nuclear structure [5,6], to short-range correlation effects
[5], to the range of pion-nucleon form factor [5,8], and to
uncertainties in the 6 Ninteraction -(especially within
the framework of the b;hole model [6]).

In a number of studies, it has been shown that there
can be a significant contribution to DCX &om noncon-
ventional mechanisms such as meson-exchange currents
(MEC) [12,13] and absorption-channel effects [10,11].
According to these reports, each of the individual "ex-
otic" mechanisms interferes constructively with the SEQ-
vr process at low energies and reproduces the experi-
mental DCX angular distributions almost perfectly. It
should be stressed, however, that these results have been
obtained in the plane-wave approximation and that the
significance of the agreement is therefore unclear at the
present time.

The effect of pion distortions for the SEQ-vr mecha-
nism has been studied in several papers [4,6—9]. Distor-
tions arise both &om multiple scattering of the in- and
out-going charged pions (external distortion) and from
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multiple scattering of the intermediate neutral pion (in-
ternal distortion). In the Bleszynsky-Glauber paper [7],
it was argued that distortions are of no importance at
low energies and can be neglected. In contrast to this,
a strong pion-distortion efFect (external + internal) was
found in Refs. [6,4]. In these two papers, it was found
that by turning on the pion distortion the plane-wave
results were magnified by a factor of 2. Additionally,
it was reported that the main effect arose from the dis-
tortion of the intermediate pion; turning of this distor-
tion strongly decreased the cross section. On the other
hand, in Ref. [9], it was found that removing the in-
ternal distortion would generally increase the calculated
cross sections. The efFect of external distortions was stud-
ied recently within the &amework of the distorted-wave
impulse approximation (DWIA) in Ref. [8], where the
authors claimed that the distortion of the external pion
considerably changes the cross section, raising it above
the plane-wave result at forward angles and lowering it
below this result at large angles.

From the above discussion, one can see that the sit-
uation with pion distortions in sequential scattering is
controversial and that there is room for further study.
Two considerations have led us to develop a new ana-
lytic approach for handling the external distortions. The
first is the observation that the standard DWIA calcula-
tion is a rather complicated procedure. The second is our
belief that, to understand the physics of double charge
exchange, one needs a detailed understanding of the in-
terplay among distortions, the reaction mechanism, and
the cross section. Although approximate, our approach is
intended to provide a quantitative and more transparent
means for gaining insight into the relationship between
the DCX reaction and the nature of the pion optical po-
tential. Having such a treatment of the external distor-
tion is also advantageous because the same formulation
as we have applied here to sequential pion scattering may
also be applied to treat the nonconventional, exotic mech-
anisms, where only external distortions of the pions are
required.

To calculate the external distortions, we have devel-
oped a procedure based on approximating our assumed
optical potential by a separable interaction. This makes
it possible to represent the distorted-wave (DW) DCX
amplitude as a product of the plane-wave (PW) ampli-
tude and a distortion factor in any given partial-wave
channel. This distortion factor is calculated in terms
of pion-nucleus form factors, which we obtain using the
Bateman separable approximation method [23]. Accord-
ing to the Bateman method, these form factors determine
the o6-'energy-shell behavior of the elastic scattering am-
plitude.

This paper is organized as follows. In Sec. II, we
present the general formalism within the &amework of
the isospin-invariant model: the two-potential formula
for the DCX amplitude is derived and an expression for
the DW amplitude in the separable approximation is ob-
tained. Section III is devoted to the calculation of the @-
nucleus form factors. In Sec. IV, we present results and
conclusions. In the Appendix the details of constructing
the isotensor potential U2 are given.

II. FORMALISM

A. Isospin-invariant optical model

As described in the Introduction, the purpose of this
paper is to characterize the contribution of the pion ex-
ternal distortion to pion double charge exchange. We
have considered this problem within the context of an
isospin-invariant optical model, in which the pion-nucleus
isoelastic scattering (single and double charge exchange
to isobaric analog states, as well as elastic scattering) is
related to the strong interaction through isospin symme-
try [14—16]. If we assume that the isospin breaking efFects
can be ignored, the optical potential has the form

U = Up+ Ui($ T) + U2($ T)

where P (T) is the pion (nucleus) isospin operator [14].
We assume that the isoscalar (Up) and isovector (Ui)
potentials are known and are fitted to the elastic and
single-charge-exchange data [14—16].

In this theory, the ~-nucleus scattering T matrix

7 = 7p + 7i(p T) + 72(p T)'

has an isospin structure identical to that of U. In terms
of the T matrix, the DCX amplitude to the DIAS is given
by

(7r; DIAS~7 ~w+; g.s.) = QTp(2Tp —1)72,

where Tp is the z component of the nuclear isospin To ——

(N —Z)/2, ~g.s.) = [Tp, —Tp) aild ]DIAS) = [Tp, Tp+2). —
As we will show in the next section within the &ame-

work of the two-potential formalism, the amplitude in
Eq. (3) consists of two pieces. The first arises from the
iterations of Uo and Uq', that occurs when the equations
of motion are solved and describes DCX mediated by a
scattered pion and a nucleus excited to the isobaric ana-
log state. This piece, called the analog route (AR), is
quite large in many cases and is tightly constrained by
both empirical and theoretical considerations.

The second contribution to DCX comes &om all pro-
cesses except the sequential scattering through the iso-
baric analog intermediate state. This includes an ex-
citation of the nucleus through intermediate nonanalog
states as well as excitation of the meson and baryon fields
themselves. These are represented by the isotensor term
(U2) in the optical potential. In this paper, we will take
for U2 a piece of the complete isotensor interaction that
is known to be particularly important, namely, U2
We construct this "nonanalog-route" (NAR) contribu-
tion theoretically from the SEQ mechanism of Ref. [5]
(see the Appendix). First, an isotensor potential U2
is formed from a model sequential scattering [5] built
up &om nonanalog excitations of the intermediate nu-
cleus, including the eHects of short-range nucleon-nucleon
correlations, the intermediate p meson, and finite-range
meson-nucleon form factors. Second, the contribution
AU of U2 arising &om the DCX transitions through
the analog intermediate states is subtracted out,
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UNAR UsEq I UAR (4)

This subtraction avoids a double counting with the AR
contribution discussed above. Later, in Sec. IV, we com-
pare AU2 with the analog-route calculations obtained
from Ref. [16] to examine the differences reflecting the
importance of medium modifications (second-order ef-

fects) in U~.

nuclear Hamiltonian, and V is given by Eq. (6). The
Moiler operator is expressed in terms of the Tv matrix
as

g(+) g + jPG(+)T(+)
V V

where G( ) is a &ee Green function,

G~+~(E) = (E —K —H~ 6 ih)

B. Two-potential formalism

Let us represent the optical potential Eq. (1) in the
form

and P = ~0)(0~ is a projection operator into the nuclear
isobar analog states (ground states).

For DCX scattering to DIAS we get

(vr; DIAS~7 ~sr+; g.s.) = Tv + QTp(2Tp —1)7~

where

U= V+R,

V = Up+ Ug(@ T),

R = Ug(Q T)

(5)

(7)

(14)

Here Tv is the contribution to DCX through the AR
transitions (at least two actions of the isovector poten-
tial). The second term in Eq. (14) is the distorted-wave
Born approximation (DWBA) for the isotensor ampli-
tude,

Since U2 « Uz « Up [16], the isotensor term U2 could
be considered as a perturbation to the elastic and SCX
channels. Therefore, within the framework of the two-
potential formalism [17], we obtain the following expres-
sion for the total scattering matrix:

where

=Av k) .(+) (+) (16)

72 = (Q~ (7r; DIAS~U2~gq+ (7r+; g.s.)), (15)

7 =Tv+Ov [R+Rgp R]A~+

where g& is a full Green function,

for the Hamiltonian

'M=K +H~+U.

(8)

(10)

From Eqs. (14) and (16), it follows that the procedure
of taking into account the pion distortion consists of (a)
taking the distorted-wave matrix element of U2, and (b)
adding the term T, which describes the contribution
to DCX through the AR transitions. This is to be con-
trasted to the expression for the DCX cross section in the
plane-wave Born approximation of U, which would give

72 = (x;DIASiU2ivr+; g.s.) .

Here T~ is the scattering matrix and 0& is a Moiler
operator for the Hamiltonian

W~ ——K +H~+ V,
where K is a pion kinetic-energy operator, H~ is the

C. Distortion factors

Introducing a complete set of intermediate pion-
nucleus plane-wave states, one can rewrite Eq. (15) in
the form

72 (E) = ) D: D&&s(ky, qz, E)(m, qq, DIAS~72 (E)~sr+, q2, g.s.)D + (q2, k, , E),

where the distortion factors D(+) are defined by

D + (k, q; E)= (k~ B~~ l (E) ~ q)

= (2m) h(k —q) +T~ (k, q;E)

The sum over qq and q2 is

dqz dq2

(2-) (2-)
0»9&

and E = E(ky) = E(k;) is the scattering energy. In
Eq. (17) we neglected the small contributions, which
might come from the single-isobaric analog intermediate

states. T& in Eq. (18) are the elastic pion scattering



50 EFFECT OF PION EXTERNAL DISTORTION ON LOW-ENERGY. . . 1427

amplitudes in the initial and final channels. For nuclei
such as C and 0, which have the isospin T0 ——1, one
may realize that, by ignoring the Coulomb potential, the
distortion factors of the initial and final states could be
identical and, therefore,

(ky, k;;on-shell) = [1+ikyF (ky)][1+ ik;F (k;)] .

(25)

Here F (k) is the vr-nucleus elastic scattering amplitude
given by

(+) (+)
,DIAS m, g.s. F (k) = ——T~+1 (k, k; E(k)), (26)

D. Partial-wave expansion where cu is the reduced pion-nucleus mass.

Let us decompose all of the quantities in Eq. (17) into
the partial-wave series

(k~O(E)~q) = 4~) y. (k)y. (q)O. (k, q), (20)

oo 2d oo ''( )27r2
yq'

0 0

x7P B"(q, q; E)D(+1(q, k;; E),

where the partial components of the distortion factors
are

27r2
D~+1(k, q; E) = 6(k —q)

'E —E(q) 6 i6 (22)

Note that for isoelastic scattering (ky = X;) there is the
identity

where a denotes the quantum numbers of a given partial
channel, e.g. , the orbital angular momentum (I), total
angular momentum (I), isospin (T), etc. To simplify
the formulation, we consider the case of spinless nuclei
having isospin To ——1. In this case a = (I, I), where I =
T0 6 1,T0. For the partial-wave components of T2
we obtain

yDWBA (E)

F. Off-shell distortion factors

The greatest difficulty comes from the problem of tak-
ing into account the efFects of the off-energy-shell pion
distortion, which is related to the principal value inte-
gration in Eq. (22). We use an approach based on ap-
proximating our optical potential by a separable interac-
tion. Here we use a rank-1 separable potential. Within
the framework of this model, the ofF-shell T matrix is
expressed in terms of the on-shell scattering matrix,

7 (qi, q2, E) = T (k, k; E(k))
~a

(27)

and

(ky, k;) = [1 —kyF~(ky)(~(ky)][1 —k;F~(k;)(~(k;)]

(29)

( (k)
1 q dq ga(q)

sr~A(k) s 2s2 g (k) E(k) —E(q) +i6

Here

Here, g(q) is the pion-nucleus form factor defined in Sec.
III. It is also natural to assume that the identical form
factor could be used for the ofF-shell behavior of the PW
amplitude in Eq. (21). Using Eq. (27) we obtain

yDwBA(k, k; E) &Dw(k, k )7r wBA
(k

(28)

where

D~ 1 (k, q;E) = D~+1(q, k;E) . (23)
e ~(k) = k /[2m dE(k)/dk] = kur/2s

E. On-shell distortion factor

If we neglect the oK-energy-shell part of the Green
function in Eq. (22), then by combining the on-energy-
shell part of Eq. (22) with Eq. (21) and integrating over
qq and q2 we get

7 (ky, k;; on- h 11)

(kg, k;)72 (ky, k;; E(k)), (24)

where the distortion factor p(ky, k;) is defined by

is the level density of the scattering states. For isoelastic
scattering, k,. = ky. If we neglect the principal value
part of the integral in Eq. (30), the distortion factor (29)
reduces to the on-shell result given by Eq. (25).

III. PION-NUCLEUS FORM FACTOR

In this section, we outline the procedure of determining
the vr-A form factor following the Bateman method [23].
The Bateman method consists of approximating a given
short-range interaction by a separable potential of rank
N,
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V, (k', k)= V,'"'(k', k)

N

= ) Vl, (k', s;)(d ),VL, (s. , k) .

Here, VL, (k', k) is the partial-wave component of a given
potential V(k', k),

V(k', k) = ) (2L+ l)PI, (k k')VL, (k, k') .
I,=o

(32)

V (k', k) = V~ (k', k) = 1
s-+0 Vl, (s, s)

There are a number of diferent optical potentials
that equally well describe the low-energy vr-A interaction
[18—21]. It has been shown [19] that all these potentials
are closely related to the Kisslinger potential. This glob-
ally parametrized potential is given by

—2(d (d

4' U(r) = b.sp(r) —c.sV p(r)V + c.g V'p(r),
2M

(34)

where ~ is the vr-A reduced mass, p(r) is the nuclear
density, and b,~ and c,g are complex, energy-dependent
parameters.

The vr-nucleus potential (34) in the momentum space
is of the form

V(k', k):———U(k', k)

= p(k', k)[aq + a2(k + k' ) + as(k' k)], (35)

where aq = b,rr, a2 = c,sw/2M, as = c,s(1 —Fu/2M),
and where

p() ', ) ) = f dr e~" "~'p(r) (36)

is the nuclear form factor. Expanding the potential (35)
into a partial-wave series, we obtain

The quantities d;z
——VL, (s, , sz) and s; specify values

of k and k' at which the approximate potential surface
Vz~ l(k', k) coincides with the initial surface Vl, (k', k).

We assume that at low energies vr-A elastic scattering
can be represented in terms of N = 1, i.e. , a separable
rank-1 potential. At any given partial wave, the rank-1
potential component is given by

VI. (k', k) = k' k VL, (k', k), (39)

and approximate VL, (k', k) in Eq. (39) according to Eq.
(33),

V, (k', k) = V,"'(k', k)

with jl.(z) a spherical Bessel function.
Equation (35) exhibits a well-known feature of the

Kisslinger-type optical potentials; namely, a divergence
of the diagonal matrix elements (k' = k) as k ~ oo.
Such a behavior is a consequence of using the zero-range
approximation for the p-wave pion-nucleon interaction.
This large-k structure complicates the solution of the
Klein-Gordon equation in the momentum space, but in
practice one can obtain a stable solution by artificially
introducing vcr form factors and letting a cutoK param-
eter characterizing its range become large [22). In our
application of the Bateman method, the large-k (small-
y) behavior of the optical potential likewise causes no
essential problem because the separable approximation
of this method expressed in Eq. (31) is applicable to any
short-range potential.

In Ref. [22], it was noted that the rate at which the
numerical results converge with the cutofF parameter was
correlated with the proximity to the so-called Kisslinger
singularity. Near this point, cross sections and wave func-
tions are strongly inQuenced by the far ofF-shell compo-
nents of the optical potential. The Kisslinger singularity,
which is a property of the lowest-order optical potential
at low energy, also causes an enhanced sensitivity of these
quantities to the cutofF parameter. It might be argued
from this that the Kisslinger potential is inappropriate for
applications to low-energy pion-nucleus scattering. How-
ever, the sensitivity to the cutofF parameter decreases if
higher-order corrections to the optical potential are taken
into account properly. For example, the pion-nucleus
wave function was studied in coordinate space in Ref.
[16], and it was shown here how the anomaly is reduced
if one includes the well-known I orentz-Lorenz —Ericson-
Ericson effect and other higher-order terms in the optical
potential. These are taken into account in our potential
through the values of the effective parameters appear-
ing in Eq. (34). For these reasons, the large-momentum
behavior of the optical potential in Eq. (34) should not
cause any special problem for our application of the Bate-
man method.

To apply the Bateman procedure to the partial-wave
component (37) of the optical potential, one should fac-
torize a trivial power dependence of momenta (kk') out
of each partial wave,

Vl, (k', k) = pl, (k', k)[a, + a2(k + k' )]

[Lpl, )(k', k)
a3kk'

2L, +1
+(L + 1)pl. +, (k', k)],

where

(37)

= lim Vl, (k', 8)vl, (s, k)/Vl, (s, s) . (4O)

This factorization has made it possible to use the same
value, s = 0, for all partial waves.

In our calculation we use a Gaussian-type nuclear den-
sity,

p(r) = p()(l+ wnr ) exp( —nr ), (41)
pL, (k', k) = 4z dr r p(r)j L, (k'r)j 1.(kr),

0
(38) of which the partial-wave component pl. (k', k) reads as
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2vr2 1
pL, (k', k) = pp, ,],DL, (k', k)2L+ 1

x 1+ 2a)
I I'

+~ [DL 1(k—k) + DL+1(k k)] ~ (42)4a

Here,

Dl, (k, k) = —exp—I 1

2A

(kk')
II.

4n (2np

VL, (k'k) = gl, (k')gL, (k)pl, , (44)

where the vr-nucleus form factors are of the form

gr, (k) = k exp( —z)[1 —Pgz —P2z ], z = k /4a . (45)

The strength parameter is given by

(2L+ 1)!!(2a)~+~ (a)
(46)

2L+3i t' 2L+ 1)
GI, —= po ax

~

1+ w
~
+ 2nasL

~

1+m
) 2

and the parameters Pq and P2 are

Pg ——(m(1+ Lri) —2eR[1+ m(L+ 2)])/DL, )

Taking into account that the modified Bessel function
Ir,+~~2(z) z + ~ as z ~ 0, we identify the momenta
(kk')~ in Eq. (39) to be factored from the partial-wave
potential Vg(k'k).

Now, using Eq. (40), we obtain the following approxi-
mation for the potential in Eq. (35):

reaction at pion kinetic energy T = 50 Mev. Specifi-
cally, we study the effect of pion external distortions on
the sequential mechanism. The isotensor potential U2+

[Eq. (4)] is formed from a model of sequential scatter-
ing [5] built up from nonanalog excitations of the in-
termediate nucleus, including the efFects of short-range
nucleon-nucleon correlations, the intermediate p meson,
and finite-range meson-nucleon form factors. The full
spin dependence of various contributions has been taken
into account. For our final results, we will take T& of
Eq. (14) from the numerical solution of the Klein-Gordon
equation with Uo and Uq as described in Secs. II A and
III. By virtue of our method of calculation, the internal
and external distortions are included in this term. The
efFects of medium modification corrections to the pion-
nucleon scattering amplitude for this contribution will
be shown also.

Our calculation of the contribution of nonanalog routes
to sequential scattering, included through U2 ——U& in
Eq. (14), will not be as complete as that of the analog
route, due to the absence of internal distortions and the
medium modifications to the pion-nucleon interaction in
the results of Ref. [5], from which we obtain this con-
tribution. We do not consider this to be a drawback, as
it is interesting to understand the separate effects of in-
ternal and external distortions on the DCX amplitude in
Eq. (14). Internal distortions involve a somewhat differ-
ent set of issues and require a separate theoretical study.
A comparison, including internal as well as external dis-
tortions, to all the data that exists for DIAS transitions
with a C target will be presented in a subsequent pub-
lication.

A. Distortion factors

According to Eqs. (25) and (29), we write the distor-
tion factors as a sum of two terms,

p2 = 2QJeR/Dl,

where

(47)
(ky, k;) = p (ky, k;; on-shell)

(ky, k;; ofF-shell), (48)

Dl, = 1+Lq+ ~(L+ -,')
~

1+, ( L(2L+1) &

2L+3
and

rI = 2(1 —e)R .

Here e = ~/M, M is the mass of the nucleon, aq, a2, and
a3 are the parameters of the optical potential given in
Eq. (35), R = ac,g/b, ~, and n and tu are the parameters
determining the nuclear density.

IV. NUMERICAL CALCULATIONS, RESULTS,
AND CONCLUSIONS

In this section, we present the results of the analy-
sis of the distortion efFects for the double-isobaric ana-
log transitions for ~4C, i.e., the C(s+, m )~ O(DIAS)

DW
[

DW~ i+ (49)

In Table I we present numerical results demonstrating
the contribution of the on- and ofF-energy-shell distortion
factors to the overall distortion effect.

The pion-nucleus scattering amplitudes are calculated
using the PIESDEX code, which is described in Ref. [16].
The parameters of the pion-nucleus optical potential [16]
and the parameters of the nuclear density [Eq. (41) for

C] are also taken from Ref. [16].
The pion-nucleus form factors are calculated for the

where the on-shell distortion factor is expressed in terms
of the elastic scattering amplitudes by Eq. (25). The ofF-
shell distortion factor, which is determined by the prin-
cipal value part of the integral in Eq. (30), depends, in
addition, on the pion-nucleus form factors.

To analyze the effect of distortions, it is convenient to
represent the distortion factors as
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TABLE I. Contribution of the on- and ofF-energy-shell distortion factors to the external
pion-distortion efFect for individual partial waves. The meaning of the de6nitions is given in Sec.
IV A.

L
0
1
2

3
4

6

On-shell

4- («g)
0.694 —23.33
0.727 23.07
0.908 14.21
0.992 2.50
0.999 0.26
1.000 0.02
1.000 0.001

OfF-shell

&- («g)
0.187 —61.28
0.575 60.08
0.951 34.98
0.549 12.91
0.266 6.25
0.134 3.84
0.071 —3.50

0.849
1.236
1.829
1.535
1.264
1.134
1.071

Full

4- («g)
—31.11

39.32
24.84
6.20
1.52
0.4?

—0.23

optical potential given in Eq. (34), the parameters of
which are taken to be

b,s (fm) = —0.074+ i0.018,

c,p (fm ) = 0.427+ i0.040 .
(50)

These values correspond to set E of the Michigan State
University (MSU) optical potential [18]; of the various
sets considered in this paper, this one provides the best
Bt to the 50 MeV elastic scattering data.

The 7r-nucleus form factors in Eq. (45) are complex due
to the fact that optical potential parameters Eq. (34)
are complex themselves. However, in our calculations,
we neglected the imaginary parts of the parameters b,fr
and c,p, i.e., we use for R in Eq. (47)

Ree,g

Reb, g

forward angles and decreasing it at large angles.
The same qualitative effect of the external distortion

seen in Fig. 1 has been obtained in [8] using the DWIA.
We take this as a confirmation of our approximation
scheme, concluding that one of our objectives has been
accomplished, namely, to develop a method for including
external distortions that is equivalent to the DWIA, but
simpler. Having confirmed our approximation, we turn
next to making a more complete theory.

C. Analog-route transition

The results based on the second Born approximation
using closure, such as those shown in Fig. 1, are incom-
plete for several reasons that have been discussed earlier.
One is that the pion wave, internal to Uz, has been

We have estimated the imaginary parts of the parameters
Pq 2 and found that these parts are negligible in the low-

energy region.
It is seen from Table I that the external distortion

strongly in6uences the angular distribution. The abso-
lute value of the distortion factors [see Eq. (49)] ~pD~~

reaches the value 2 for the D wave, then decreasing to
unity with increasing orbital angular momentum. The
phases P of the distortion factors also strongly change
the plane-wave results, especially for S and P waves. The
results presented in Table I also show that both the on-
and off-shell distortions are important, although the ma-
jor contribution comes Rom the on-shell piece.

(~
O

T3

"c(~',~ )"o T=50 MeV

EQ
"

I UII

d'w

~E-~ on —shel)

0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

B. Distortion efFect for SEQ

Before applying our results using Eq. (14), we consider
the effect of the external distortions to U2

q [see the dis-
cussion in connection with Eq. (4)]. In Fig. 1 we present
results of our calculations of the differential cross section
for DCX to DIAS for C using this amplitude. The PW
result is given by the dashed line. The on-shell external
distortion (short-dashed line) decreases the PW angular
distribution substantially over the entire range of scat-
tering angles. Turning on the off-shell distortion (solid
line) changes the PW result qualitatively, increasing it at

O 01 I I I I I l I I I I I I I I I I I I I I I I I l I I I I I l I I I I I

0 30 60 90 120 150 180

H, (degrees)

FIG. 1. Dilferential cross sections for DCX C(or+, 7r )' 0
to the DIAS at T = 50 MeV. Calculations have been done
for the sequential mechanism. The dashed line corresponds to
the PW results [5], the solid line is for the full result, and the
short-dashed line is for just on-shell external pion distortions.
The experimental data are taken from Ref. [4].



50 EFFECT OF PION EXTERNAL DISTORTION ON LOW-ENERGY. . . 1431

400 I I I I I I I I I I I I I I I I I i I I I I I I T I I I I I I I I I I

C(7r, w') N(IAS) T=50 MeV

taken as a plane wave in Ref. [5]. Another one, motivat-
ing us to introduce the isospin invariant model in Sec. II,
is that the AR contribution implicit in U2 is not real-
istic; this will be remedied below following the discussion
in Sec. IIA and IIB.

The analog-route transitions within the framework of
the isospin-invariant optical model (Sec. IIA) are cal-
culated by solving the Klein-Gordon equation with the
isoscalar (Uo) and isovector (Uq) potentials. For numer-
ical calculations we use PIESDEX [16] code. In our model
Uo and U~ contain not only a lowest-order piece built up
in the standard way &om the &ee pion-nucleon scatter-
ing amplitude, but also a second-order piece including
short-range and Pauli correlations. In any meaningful
discussion of DCX, it is crucial to con6rm that the cross
sections of elastic and SCX to isobaric analog states are
well reproduced by these ingredients &om which the ana-
log route are constructed.

Consider first SCX scattering to the IAS within the
framework of the isospin-invariant optical model. In Fig.
2 we show the results of the description of SCX to the
IAS for C(z'+, z' ) ~4N(E' = 2.3 MeV)(IAS) at 50 MeV.
The solid curve in this figure represents the full calcula-
tion in which the isovector potential Uq includes both the
isovector correlation term (ELIV, Lorentz-Lorentz isovec-
tor) and an imaginary second-order p-wave isovector term

[A(~ = (0 —i1.0) fm s]. The last term was introduced
phenomenologically in Ref. [5) to provide the best fit to
the data, and we use this potential in our calculations of
the AR amplitude for DCX to the DIAS, i.e., Tv

In Fig. 2, we also present the differential SCX cross
sections calculated with the lowest-order isovector opti-
cal potential when the medium modi6cation corrections
are turned on (solid curve) and turned ofF (short-dashed
curve), and in the PW approximation for the lowest-order
isovector potential (long-dashed curve). These calcula-
tions show the role of external pion distortions and the
medium modi6cation corrections.

The difference between the long-dashed and the short-
dashed curve shows the effect of the pion distortion on
SCX to the IAS, and the difference between the solid
and the short-dashed one shows the effect of the medium
corrections. The most dramatic efFect, as noted in [5],can
be seen in the forward direction, where the ELIV term
changes the maximum at 8 = 0' into a minimum. This
is clearly a strong medium modification effect. One can
also conclude, comparing the solid curve with the long-
dashed curve (the PW approximation), that the medium
modi6cation corrections tend to cancel the effect of the
pion distortion.

Consider next the contribution of the AR to DCX. The
calculation of it in second order using the lowest-order
isovector optical potential [see Eq. (A5) in the Appendix]
gives

7&(AR) = (@z (vr; DIAS) ~AU2 [gz (z+; g.s.)) .

The result, which is obtained following a procedure sim-
ilar to that used for the analog-route contribution of
U2 ~, is shown in Fig. 3. The dashed line shows the
PW approximation. The on-shell external distortions
(short-dashed line) decrease the PW angular distribution
substantially over the entire range of scattering angles.
Turning on the off-shell distortion (solid line) changes
the PW result qualitatively, increasing it at both small

300— \

OW
AR without MM

\

200—

10~ r i s i t s s r s s

14C( + —
) 14O T=50 MeV

b0
100

AR

0 I I I I I I t I I I I t I I I l I I I I I l I I L I I

b
o. &

30 60 90 1 20 150 180

8, (degrees)

FIG. 2. Calculations of ' C(s+, s ) N to the IAS at
T = 50 MeV. The solid curve shows the result of the full
calculation, including medium modification (MM) effects [via
the isovector correlation ELIV term and an imaginary sec-
ond-order p-@rave isovector term A&„~l ——(0 —i1.0) fm ].
The short-dashed curve is obtained when the MM corrections
are turned off. The long-dashed curve is obtained in the PW
approximation. The experimental data are from Ref. [25].

001 & ( t I I I i i i i t I i i i i i l & i i i g I i i i s i I

0 30 60 90 120 150 180

8, (degrees)

FIG. 3. Contribution of the analog route to the differential
cross sections of Fig. 1. The meaning of the curves is the
same as in Fig. 1.



1432 KHANKHASAYEV, SARAFIAN, JOHNSON, AND KURMANOV 50

and large angles, and decreasing at angles around 90 .
In Fig. 4 we compare the AR with external distortions

(short-dashed line) taken from Fig. 3 with the corre-
sponding AR calculation (dashed curve) taken from Ref.
[16] (calculated with the lowest-order optical potential

Uz ). This result includes the internal as well as ex-
ternal distortions of the pion, as it results from a full
optical potential calculation. We see that the internal
distortions, at least for the AR piece of the amplitude,
change the cross section drastically, increasing it by an
order of magnitude at forward angles.

The lowest-order optical potential does not contain the
isovector correlation term (ELIV), which strongly affects
the SCX (see Fig. 2) and DCX cross sections, as has been
demonstrated in Ref. [16] (see Figs. 3 and 4 therein).
The solid curve in Fig. 4 shows the result of the op-
tical model calculation including the full Uq (including
the isovector ELIV term and the second-order isovector
absoprtion-dispersion term of Ref. [16], needed to im-

prove the small-angle SCX cross section). We see by
comparing the dashed and solid curves that the second-
order isovector effects are very important corrections for
the AR.

D. Nonanalog route transition

]0 $ I I I I I I I I i I I I I I I I I r I I I I I I I I I I I I r I I 1 1

'l4C,
(

+ —)14O T=50 MeV

NAR
"

dw
NAR

0 0] I I I I 1 I I I i I I I I 4 I I I I i i I I I I I i I I r I i r I I i

0 30 60 90 &20 150 180

(degrees)

FIG. 5. Contribution of the nonanalog route to the differ-
ential cross sections of Fig. 1. The meaning of the curves
is the same as in Fig. 1. The sequential mechanism with
external distortions, given by the long-dashed curve, is also
reproduced.

]0 I I I I l I r f I I I I I I I I l I r r I I I r I I 'I I I I I I I I I I

I

14C( + —)14O T=50 MeV

AR( int+ext+U, )

o. ~ =

U

AR no ELlV

/

l

~, I

6AR full

In Fig. 5, we show the effect of external distortions on
U2 . The PW result is given by the dashed line. The
on-shell distortions (short-dashed line) decrease the PW
angular distribution substantially over the entire range
of scattering angles. Turning on the off-shell distortion

(solid line) changes the PW result qualitatively, increas-
ing it at forward angles and decreasing it at large angles.
The results are qualitatively, but of course not quanti-
tatively, similar to the results obtained for cases shown
in Fig. 1. The difference between the solid line and
the long-dashed line (the SEQ with external distortions,
taken &om Fig. 1) shows the AR contribution to the
SEQ amplitude.

As we said earlier, these results may be changed when
the internal distortions of the pion are considered in

U& . Some guidance for what to expect may be ob-
tained from examining Fig. 2, where it is seen that, while
distortions alone have a major effect on the SCX cross
section, once the medium modifications are included, the
result comes back close to the original PW result. It will
be interesting to see the extent to which the tendency
for the internal distortions to cancel the medium mod-
i6cations persists for U2 . For now, we will proceed
under the assumption that the cancellation is exact for
this term.

E. Combined results

I r I I I 1 I i r I I I i l i r I r I I I r I I I I I 1 I I I I

30 60 90 120

8, (degrees)

t50 180

FIG. 4. DCX difFerential cross sections for the analog route
C(7r+, 7r ) 0 to the DIAS at 50 MeV. The solid curve

represents the AR transitions calculated from the PIEsDEX
code [16] with the U~ contribution; the dashed curve is the
same but without the ELIV term of isovector potential; the
short-dashed curve corresponds to the solid curve of Fig. 3.

In Fig. 6, we show the analog-route contribution as
the short-dashed curve (as in Fig. 4) and the nonanalog-
route contribution as the dashed line (as in Fig. 5). The
combined amplitude of Eq. (14) is shown as the solid
line. We note that the combined result is comparable
to the experimental data throughout the entire angular
range.

From Fig. 6 it is seen that, though the AR contribution
to the SEQ-7r amplitude is moderately small, this am-
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FIG. 6.

Differentialcross

sections�fo

DCX' C(s+, s ) 0
to the DIAS at 50 MeV. The dashed curve represents the DW
NAR contribution; the short-dashed curve corresponds to the
solid curve of Fig. 4; the solid curve is a summary of the NAR
and AR mechanisms given above.

FIG. 7. Energy dependence of 8 = 0 DCX cross section.
The dashed curve is the PW result for the standard (SEQ-7r)
model. The solid curve shows the result of the full calcula-
tion when both the external DW NAR contribution and AR
transitions are taken into account.

plitude interferes constructively with the isotensor NAR
amplitude, giving a larger result that that obtained from
Us . It is not surprising that the AR amplitude in-
terferes constructively with the NAR SEQ-m amplitude,
which can be understood by comparing the lowest-order
AR amplitude AFAR determined by Eq. (A6) (see the
Appendix) with the NAR SEQ-s amplitude (see Ref.
[5]). The relative phase between these two amplitudes
is determined mainly by the pion propagators, which are
identical and determined by the same Hamiltonian [see
Eq. (14) in Sec. II 8].This is especially easy to see if the
NAR SEQ-vr amplitude is calculated using the closure
approximation [5].

We present the combined results for the excitation
function over the energy range from 20 to 80 MeV in Fig.
7. We dash the line between 20 and 30 MeV to indicate
that Coulomb effects, q-value effects, and possibly cor-
rections to the closure approximation that we have used
for the NAR part of the calculation might play a role
at these energies. The excitation function in this energy
region is compared to the PW approximation [5], shown
by the dashed curve in Fig. 7. In Fig. 8 we show the
angular distributions at 30 MeV and above. Prom Figs.
7 and 8, one can see that the results (except at very low
energies) are comparable to the data, just as at 50 MeV
(Fig. 6).

Taking into account that the medium modifications (in
particular the isovector LLEE, Lorentz-Lorentz —Ericson-
Ericson) tend to cancel the distortions (see Fig. 2 for
SCX), we expect that our results are realistic and see that
the standard sequential mechanism is able to explain the
DIAS double-charge-exchange scattering data. However,
it is premature to conclude from this that exotic mecha-

1000 I I I I I I I E I I I I I i I I I I I I [ I I I i I I 1 I I I I I I

100 =

20 MeV x 10

x 10

10 =

50 MeV

b

0.01

80 MeV x 10

I I I l I I I I I I I I i I I I I I I I I I I I i l I I I I I I I I I

Q Chil

0 30 60 90 120 150 180

8, (degrees)

FIG. 8. Differential cross sections for DCX C(7r+, s ) 0
to the DIAS at different energies. The meaning of the solid
curves is the same as in Fig. 6. The experimental data are
taken from Ref. [4].
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nisms, such as those discussed in the Introduction, do not
contribute to low-energy DCX. Before such a conclusion
can be drawn, it is necessary to include medium modi-
fication and internal distortions in U2 in a consistent
way.

F. Conclusion

In this paper, we proposed a simple but effective
method of taking into account the external distortion
effects based on a separable approximation to our op-
tical potential. We studied the role of external distor-
tions in the particular case of pion-nucleus DCX to the
DIAS at low energies. It should be stressed that this
method can also be applied to study the effects of ex-
ternal pion distortions in various other reactions, such
as photopion absorption and production reactions, pion
absorption processes, etc. , in which a pion appears in
the initial or final state. According to our method, the
DW amplitude for such a process is given as the product
of the corresponding PW amplitude and a distortion fac-
tor, which is expressed in terms of separable pion-nucleus
form factors.

As our erst application of this method, we studied the
external distortion effect on a particular sequential DCX
mechanism in which all intermediate states are summed
using closure [5]. By comparing to an earlier DWIA study
[9] using similar approximations, we have been able to
confirm our approximation: we found that the resulting
external distortion for the reaction on C at 50 MeV
strongly modifies the PW results, increasing the angular
distribution at forward angles and decreasing it at large
angles. We have shown explicitly here that both on- and
off-shell distortions are important.

Next, we isolated the contribution of the analog route
for DCX to the DIAS for C at 50 MeV using the frame-
work of the isospin-invariant optical model. The isoscalar
and isovector parts of the optical potential, which drive
the AR contribution, have been fitted to the SCX data
(see Fig. 2). It was shown that, although the AR contri-
bution to the SEQ-~ amplitude is moderately small (see
Figs. 6 and 7), this amplitude interferes constructively
with the isotensor NAR amplitude, giving a larger result
than that obtained from U

We also studied the effect of the internal distortion on
the AR transitions and showed that this effect strongly
changes the cross section calculated in the distorted-wave
approximation with only the external distortions taken
into account (see Fig. 4). This result indicates the im-
portance of conducting a separate study of the effect of
distortions on the virtual pion in the NAR part of the
SEQ-7r mechanism.

In a recent paper [24] by several of us, a method for
calculating the medium modification of pion propagation
between two nucleons in Gnite nuclei was developed. We
are presently using this work to determine the size of
the internal distortions for double charge exchange, and
the findings will be reported in a subsequent publication.
Preliminary results indicate a net sequential DCX ampli-
tude, including realistic internal distortions, about 30'Fo

larger than the solid curve in Fig. 6. Since these results

do not yet contain the LLIV eÃect, we anticipate a rel-
atively small correction to the results presented in this
paper.
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APPENDIX

In this paper, we have adopted the PW sequential DCX
amplitude TsEq = Uz

q described in Fig. 1(a) of Ref.
[5] as the basis of the isotensor interaction (short-range
repulsive correlations acting between the two nucleons
are implicit in the figure). This amplitude entails a sum
over all intermediate nuclear states, including a piece of
T R [our Eq. (14)], as taken from Ref. [16]. In order to
avoid double counting, we must remove the intermediate
analog-state contribution

aU "R = U,"'PG(Z)U,", (A1)

where Ui is the isovector part of the lowest-order optical
potential (1) corresponding to the pion-nucleon scatter-
ing amplitude employed in Ref. [5]. Therefore the DCX
scattering amplitude is determined now by Eq. (14),
where Eq. (15) is replaced by

7 Dw (y( )
(

—.DIAS) ~U'NAR]y(+) (
+.

) )

(A2)

and where the isotensor potential U2 is given by

UNAR USEQ ~UAR
2 = 2 2 (A3)

~y AR ~ ~UAR
2' (A4)

where u is the reduced mass of the pion-nucleus system.
To be consistent with the calculation of T, we take

the lowest-order optical potential in the following form

The analog-route contribution T+R in Eq. (14) is cal-
culated with the lowest-order isovector optical potential
following Ref. [16].

In this appendix we describe our procedure of calcu-
lating the analog-route contribution to U2 Q, which, in
terms of the scattering amplitude, reads as
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[compare with Eq. (34)]: Decomposing b,F into the partial-wave series [see
Eq. (20)] and using the rank-1 separable approximation
to the optical potential (A5) [see Eq. (44)] for a partial-
wave component we obtain

(A5)

where the parameters b,& and c,& are determined (see(i) (i)

Ref. [16]) as

2

AF (PW) = —
i

—
~

kUi~. i(ky, ky)

x U, .' (k;, k;)f('l (kf, k;),

where

(A7)

The parameters A, z and A„z are related to the single-(~) (i)

nucleon parameters bi and cq of the MSU optical poten-
tial [8] as

bg ——A, ',) (k /Srrpg)

and

where J)q
——(1+e)/(1+ e/A), e = ar /M~, ar is the

pion energy, and M~ is the nucleon mass. In the PW
approximation the expression for AF is

((x)(k k )
1 q dq g (q)

rre ~(k), 2n.2 g (kq)g (k;)

1

E(k;) —E(q) + ib
'

The partial-wave components U~(. ) of the optical poten-
tial (Al) and the corresponding pion-nucleus form factors
g (k) are determined by Eqs. (37) and (45), where the
parameters a; are related to the parameters b,& and c,z(i) (i)

as az ——b,&, crz ——c,& (u/2M), and as ——c,tr (1—u/2M).
To calculate the efFect of the external distortion of the

Pion wave, we use the same Procedure as for Uz
q (see

Secs. IIC—IIF). Using Eq. (28) we obtain

1

E(k) —E(q) + ib

x(kf]U~( ) ik;) . (A6)

b,F (kf)k;;DW) =P (kf, k;)b,F (kf)k;;PW) )

(A9)

where the distortion factors pD are determined in Eq.
(29).
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