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Reduction of nuclear moment of inertia due to pairing interaction
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The BCS theoretical values of the moments of inertia of even-even nuclei are systematically
smaller than the experimental ones by a factor of 10—40'%. This long-standing discrepancy disappears
in the particle-number-conserving treatment for the cranked shell model, in which the blocking
effects are taken into account exactly. The calculated moments of inertia satisfactorily reproduce
the experimental data covering a large number of rare-earth even-even nuclei, whose deformations
and single-particle states are well characterized (Lund systematics). The pairing interaction strength
G is unambiguously determined by the even-odd mass difference. The reduction of the moment of
inertia due to the antialignment effect of pairing interaction is discussed and no systematic excessive
reduction is found.

PACS nuinber(s): 21.1Q.Re, 21.6Q. —n, 2?.7Q.+q

I. INTRODUCTION

It is well known that the calculated moments of in-
ertia in the cranked shell model (CSM) [1,2], neglecting
the residual interaction, are near the rigid-body value,
which is much larger than the observed ones [3]. Bohr,
Mottelson, and Pines [4] suggested that the pairing in-
teraction may be responsible for the observed reduction
of the moments of inertia compared to that of a rigid
rotor. Soon after, the BCS method and the concept of
quasiparticle of superconductivity were used to treat the
nuclear pairing correlation [5,6] and a significant reduc-
tion of the moments of inertia was successfully confirmed.
However, the BCS theoretical moments of inertia of the
ground bands in rare-earth and actinide even-even nuclei
are systematically smaller than the experimental ones by
a factor of 10—40%; i.e., a systematic excessive reduction
of the nuclear moments of inertia was found [7—9]. Many
efforts to reduce the discrepancy between theory and ex-
periment have not been successful. The use of a more
realistic mean field such as that of Woods and Saxon
combined with a pairing strength depending on the level

density near the Fermi surface [10] and the use of Nils-
son's mean Geld with a pairing strength depending on
the isospin and deformation [11,12] cannot reduce this
discrepancy. General considerations show that the BCS
theory is very suitable for a system of a large number of
particles. However, the number of nucleons in a nucleus

( 10 ), particularly the number of valence nucleons

( 10) which dominate the behavior of low-lying excited
states, is very limited. To overcome the defect of parti-
cle number nonconservation in the BCS approximation,
there have been developed various methods, including the

Mailing address.

generator coordinate method [13,14] and various types of
particle number projection methods [15—21], and consid-
erably improved agreement with experiment compared
to the BCS approach was obtained. By using Bayman's
wave function [15] generated from the BCS wave func-
tion, Rich [22] evaluated the moments of inertia of five
rare-earth nuclei and obtained an improved agreement
with experiment. This method allows the approximate
cancellation of the major fluctuations in the number of
particles. Later, by cancellation of the fluctuation in the
number of particles, Frauendorf [23] demonstrated that
only a particle-number-conserving description of pairing
is able to provide a reliable estimate at which angular
momentum the transition kom the superfluid to the nor-
mal state takes place. Recently. Allah and Fellah [24]
investigated the effects of nonconservation of the parti-
cle number in the BCS wave function on the moments
of inertia and concluded that the problem of systematic
excessive reduction of the calculated moments of inertia
is due to the number-nonconservation effects of the BCS
treatment. However, a completely different conclusion
was drawn by the calculation of Hasegawa and Tazaki
[25]. Therefore this long-standing puzzling problem still
remains and presents a serious challenge to the mean-field

(BCS) theory for nuclear pairing correlation.
It has been emphasized [26] that while the defect of

particle number nonconservation of the BCS treatment
for nuclear pairing may be partly remedied by various
types of particle number projection, the most fatal weak-
ness of the BCS approximation is that it cannot prop-
erly treat blocking effects, which are responsible for vari-
ous even-odd differences in nuclear properties. Rowe [27]
pointed out that while the blocking efFects are straight-
forward, it is very diKcult to treat them in the BCS
formalism because they introduce difFerent quasiparticle
bases for different blocked levels. Usually, in the BCS
calculation of the moments of inertia, the gap parame-
ter A is set equal to the observed even-odd mass differ-
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ence. However, because of the blocking effect, the gap
parameter for odd-A nuclei b, (ve) (vs being the blocked
Nilsson level) may be quite difFerent from (smaller than)
the b, 's of neighboring even-even nuclei [26]. In fact,
b, (ve) depends sensitively on the location of the level vo
and the level distribution in the vicinity of Fermi sur-
face. Therefore there exist some ambiguities regarding
the relation between the gap parameter and the even-odd
mass difference. This may be why the BCS calculations
overestimate the reduction of the nuclear moment of in-
ertia compared to that of a rigid rotor. In this paper
the nuclear moments of inertia are calculated by means
of a particle-number-conserving (PNC) treatment for the
CSM, in which the blocking effects are taken into account
exactly.

As usual, the CSM Hamiltonian of an axially symmet-
ric nucleus in the rotating frame is expressed as

HcsM —Ho + Hs'

Hsp+ Hc+ H

where Hsp is the single-particle Hamiltonian (e.g. ,

Hsp = HN;i, the Nilsson Haxniltonian), Hc = —uJ is
the Coriolis interaction with cranking frequency ~ about
the x axis perpendicular to the symmetry z axis, and
H~ is the pairing interaction with strength G. Usually,
it is thought that it would be very cumbersome and im-
practical to treat the eigenvalue problem of Hcs~ using
a PNC formalism. In fact, actual calculations show this
is not the case. Considering the fact that the realistic
pairing strength t is smaller than the average spacing of
the Nilsson level 6 (G/b ( 2i), the inHuence of the pair-
ing interaction on nuclear properties is mainly concen-
trated in a very limited region around the Fermi surface.
If we are interested in the yrast and low-lying excited
states, the number of important many-particle configura-
tions (MPC's) involved (say, with weight ) 10 s) is very
limited; i.e., the effective MPC space is not too large. In
Ref. [28] a MPC truncation scheme was suggested and the
advantage of the MPC truncation over the conventional
single-particle level (SPL) truncation has been discussed
thoroughly [29]. Calculation shows that it is practical
to obtain very accurate solutions to the low-lying eigen-
states of Hcs~ by diagonalizing Hps~ in a suKciently
large MPC space.

To reveal clearly the influence of pairing interactions
on the moment of inertia, in this paper we shall adopt
an improved PNC approach to the eigenvalue problem
of H~sNI, i.e., first, we diagonalize exactly the one-
body part of HcsM& Ho = Hsp + Hc& to obtain the
cranked Nilsson orbitals and then diagonalize Hcs~ in
a sufIIciently large cranked many-particle configuration
(CMPC) space to obtain accurate solutions of the low-
lying excited eigenstates of H~s~. This will be described
in Sec. II. In Sec. III the moments of inertia of the ground

bands of well-deformed even-even rare-earth nuclei at
low spin are calculated and compared with experimental
ones. The mechanism of the reduction of the moments
of inertia due to the antialignment effect of the pairing
interaction is discussed in detail.

II. FORMALISM

A. Cranked ¹ilsson orbitals

First, considering the Coriolis interaction being a one-
body operator, it is not difBcult to diagonalize exactly the
one-body part of HcsM~ Ho = HNii ur J = P; &0(i), the
cranked Nilsson (CN) Hamiltonian. Usually, the eigen-
states of HN;i (Nilsson orbitals) [30] are characterized by

(parity) and 0 (eigenvalue of j„the z component of
angular momentum) and are conventionally denoted by
the asymptotic quantum numbers [Nn, AZ]A (=A + Z).
Each Nilsson level is twofold degenerate (+0). In the CN
model, j, is no longer conservative and the degeneracy
is removed (signature splitting). However, the R (n.) in-
variance (rotation of vr around the x axis) still remains.
It can be easily shown that though [j„R (vr)] P 0, we
have [j2, R (z)] = 0, and we can construct the simul-
taneous eigenstates of R (vr) and j2. As in Ref. [30], let
]NlAZ) be the simultaneous eigenstates of h „(spherical
harmonic oscillation), I2, l„and s„and denote

i()—:[Ngt(AgZg), Ot = Ag+ Z( ) 0,

i
—()= ]N(l( —At —Zg),

(2)

which are also the eigenstates of j, with eigenvalues +Op.
In terms of

l
+ () we can construct

(3)

It is easy to be verified that ](o.) is the eigenstate of R (vr)
and j2,

R (n) i(a) = e ' i(o.),

and

j, i(a)= A~i(a).

Now we diagonalize ho ——hN;i —~j in the ]pa) space.
The matrix elements of ho ——hN;~ —~j can be calculated
as

(6)
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The eigenstate of ho can be expressed as

[pn) = ) C„t.(n)[(n) [C„t(cr) real],

which is characterized by the energy e„, parity vr, and
signature o. = k2. Hereafter, ~pa) is sometimes briefly
denoted by [p).

Correspondingly, the cranked many-particle configura-
tion of an n-particle system can be expressed as

[Vipz p ) = b'„, b'„, t~t„~0),

p, q, p2, . . . , p„being the occupied CN orbitals. Each con-
figuration, simply labeled by [i), is characterized by E;
(configuratio energy), parity, and signature. The angu-
lar momentum alignment of the CMPC ~i) is

(ilJ. li) = ). (c [i*le) = ).(I li*lv)&*~

mentum alignment from all the occupied orbitals. The
kinematic inoment of inertia is given by J; = (i[1 [i)/w.
Calculation shows that the calculated moments of inertia
using the CN model (pairing interaction being neglected)
are much larger than the experimental ones.

B. Influence of pairing interaction
on the moment of inertia

Now we take the pairing interaction into account. The
pairing interaction is usually expressed as

III = —G ) a&a&a„-a„t t

(n

= —G) (—1)("~ &ia a a „a„,
(n

p. (occ)

1 if [p) is occupied in i[),
0 otherwise, (10)

where ( (rI) labels the time-reversed state of ( (q). In the
[(n) representation [see Eq. (3)]

1
P&+

—— [a& + (—1) ~a
&] for n = +z, (12)

2

which is the sum of the contributions to angular mo- Hp can be expressed as

TABLE 1. The deformations e2 and c4 taken from the Lund systematics [31] are given in the
second and third columns. The fourth and sixth columns give the measured proton and neutron
even-odd mass differences [32] P„and P„, respectively, determined by Eq. (20). The corresponding
pairing strengths G~ and G„are listed in the fifth and seventh columns, respectively.

Nuclei
160D
162D
164D

6'2) 6'4

0.248, —0.016
0.261,—0.007
0.267,0.003

P~ (MeV)
0.807
0.684
0.548

G~ (keV)
315.8
304.9
268.4

P„(MeV)
0.872
0.694
0.664

G (keV)
285.3
273.9
283.8

162Er
164E
166E
168E
170E

0.245, —0.009
0.258,0.001
0.267,0.012
0.273,0.023
0.276,0.034

0.930
0.835
0.705
0.604
0.473

289.8
298.1
296.3
282.6
260.2

0.973
0.913
0.668
0.628
0.578

305.2
304.2
255.3
238.8
243.4

166Yb
168Yb1"Yb
»2Yb

74Yb
»6Yb

0.246,0.004
0.255,0.014
0.265,0.025
0.269,0.036
0.266,0.048
0.263,0.058

0.935
0.776
0.747
0.668
0.594
0.579

308.9
278.3
262.1
234.6
215.5
224.6

0.990
0.801
0.703
0.548
0.523
0.607

306.3
273.9
248.9
230.6
225.4
249.4

'72Hf
174Hf
176Hf
178Hf
180Hf
182Hf

0.245,0.014
0.254,0.023
0.258,0.034
0.256,0.043
0.251,0.056
0.241,0.062
0.228,0.069

1.020
0.785
0.775
0.780
0.681
0.577
0.588

318.0
269.5
265.3
276.6
251.1
226.4
235.8

0.830
0.830
0.728
0.659
0.644
0.512
0.497

274.7
282.0
257.9
260.0
267.2
244.6
209.6

176~
178~
180~
182~
184~
186~

0.242,0.031
0.240,0.040
0.232,0.048
0.225,0.057
0.215,0.060
0.198,0.060

0.880
0.780
0.566
0.440
0.533
0.606

309.7
298.1
251.0
227.3
245.1
268.9

0.835
0.742
0.690
0.611
0.721
0.684

258.7
f76.6
271.9
240.3
237.4
212.9
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b', + =) C~~(+)~,'+ [C~t(~) «»j (14)

In the space spanned by the CN orbitals iycr) [see Eq.
(7)]

90

I
80

70

60

50

t
I

I I I i
I

I I I

Yb

we have

Hp —G——) f„'„f„„bt+bt b b~+-,
PP VV

20

10

160
I I I I I I I I I I

170 A 180 190

f', = ) e' C t(+)C g (—1),

f„„=) e ' " C„„(+)C„~(—1).

FIG. 1. Moments of inertia of the ground bands of
even-even rare-earth nuclei (160& A & 186). The experi-
mental results for each isotope chain are connected by solid
lines, and the corresponding calculated ones are connected by
dashed lines.

TABLE II. Comparison of the calculated and experimental moments of inertia of the ground
bands of even-even rare-earth nuclei (160& A & 186) at low spin. Columns 2, 3, snd 4 present
the calculated results for G„= G = 0. The corresponding calculated results with the pairing
interaction being taken into account are given in columns 5 (proton), 6 (neutron), snd 7 (total),
respectively. Column 8 gives the experimental moments of inertia J,„pt ——5 /2A, where A is
determined by Stting the observed three lowest levels [33] by the usual rotational spectrum formula

E(I) = AI(I + 1) + BI (I + 1) .

2J, i, (5 MeV ')
Rotational

band
15OD

162D
164D

Proton
61.26
59.46
59.42

Gp, G„=0
Neutron
126.32
101.14
95.38

Total
187.58
160.60
154.80

Proton
28.98
29.66
30.80

G~, G„g 0
Neutron

39.70
41.56
45.88

Total
68.68
71.22
76.68

2Jexpt
(5 Mev ')

68.6
74.0
81.4

162E
164E
166E
168E
170E

47.06
44.16
42.10
40.62
39.58

135.40
106.74
99.22
77.34
81.38

182.46
150.90
141.32
117.96
120.96

22.66
23.82
24.97
24.24
25.46

38.46
42.32
49.55
45.18
47.44

61.12
66.14
74.50
69.42
72.90

58.0
65.2
74.0
75.0
76.1

166Yb
168Yb
i70Yb
»2Yb
i74Yb
»6Yb

46.18
43.90
41.66
40.40
39.96
39.74

114.90
106.04
80.26
84.34
81.48
72.94

161.08
149.94
121.92
124.74
121.44
112.68

25.80
26.64
25.46
28.06
28.28
26.66

40.66
46.80
43.74
47.58
47.46
37.90

66.46
73.44
69.20
75.64
75.74
64.56

57.9
67.8
70.8
75.9
78.2
72.8

170Hf
172Hf
174Hf
176Hf
178Hf
180Hf
182Hf

176yy
178~
180yy
182~
184~
186~

39.48
37.86
36.80
36.64
25.20
25.30
25.48

22.46
22.08
21.80
21.46
21.78
22.74

111.80
84.08
88.46
84.96
76.86
53.36
61.56

94.90
91.06
83.28
56.80
65.36
54.60

151.28
121.94
125.26
121.60
102.06
78.66
87.04

117.36
113.14
105.08
78.26
87.14
77.34

18.74
21.70
19.92
18.82
19.82
21.26
20.44

16.20
17.12
16.56
17.60
15.36
16.52

44.10
41.92
44.86
46.60
36.08
39.10
37.46

39.98
38.90
34.26
39.04
35.74
31.20

62.84
63.62
64.78
65.42
55.90
60.36
57.90

55.18
56.02
50.82
56.64
51.10
47.72

58.5
62.3
65.4
67.5
64.1
64.1
61.0

54.2
55.8
57.4
59.6
53.5
48.5
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We can diagonalize II~sM in the CMPC space [see Eq.
(8)]. Considering the pairing interaction strength G be-

ing smaller than the average spacing of Nilsson levels,
the number of important CMPC's mixed into the yrast
and low-lying excited states is rather limited. Therefore
we can diagonalize ASM in a sufficiently large CMPC
space (i.e. , all the CMPC's with energies E; —Eo & E,
are taken into account, Eo being the energy of the lowest
CMPC and E, a sufficiently large cutofF energy) to ob-
tain accurate solutions to the yrast and low-lying excited
states.

Assume that one eigenstate of Hc, sM is expressed as

the angular moinentum alignment of ~Q) is

Considering J being a one-body operator, the matrix
element (i~J

~j) for i g j is nonzero only when ~i) and

~j) difFer by one particle occupation. Suppose that after
a certain permutation of creation operators, ~i) and

~ j)
are brought into the forms

100,

PQ

I I I I I 1 I I
I

I l I I I I I I I
[

I I I

where the ellipsis stand for the same particle occupation
and (—1)M'» = kl, (—1)M&" = +1 according to whether
the permutation is even or odd. Therefore the kinematic
moment of inertia of the state ~g) is

(19)

p(v pv

1.0

Q. Q

I I I I I I l I I I I I I I I I I i 1 I I I I

200

(kev)

300

If the pairing interaction is missing, only one CMPC
appears in Eq. (16), and Eq. (19) is reduced to Eq. (9).
In this case all the interference terms vanish, J„=0,
and the calculated moments of inertia are much larger
than the experimental ones. However, when the pairing
interaction is taken into account, because of its antialign-
ment effect, the destructive interference (J„„&0) will

significantly reduce the moment of inertia, usually by a
factor of about 2i. The calculated moments of inertia of
the ground bands of rare-earth even-even nuclei are given
in the next section.

III. CALCULATED RESULTS AND
DISCUSSIONS

FIG. 2. (a) Variation with G of the moment of inertia (neu-
tron part) of the ground band of Yb at low spin. The diago-

nal part P J» is shown by the dashed line, the off-diagonal

part by the dotted line, and J by the solid line. (b) Oc-

cupation probability nof»each CN (neutron) orbital in the

ground bands of Yb at low spin.

Using the PNC formalism presented in Sec. II, we

have carried out numerical calculations for the moments

of inertia of the ground bands of 27 well-deformed even-

even nuclei in the rare-earth region (160& A & 186).
The Nilsson parameters (Ic, p, s2, c4, hcuo) are taken from
the Lund systematics [30,31], and no change to improve
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the calculated results is made. The pairing strengths G„
and G„are unambiguously determined by the measured
even-odd differences in binding energies [32],

P„= z[B(Z, N) + B(Z, N+ 2)] —B(Z, N+ 1)

= Es (Z, N + 1) —
2 [Es(Z, N) + Es (Z, N + 2)],

Pj, 2[B——(Z, N) + B(Z+ 2, N)] —B(Z+ 1,N) (20)

= Es(Z+ 1 N) —2[E's(Z N) + EQ(Z+ 2 N)]

(Z, N, even),

where E~ is the ground state energy of nucleus at u = 0.
In the PNC calculation of the ground state energy (at
u = 0) of an odd-A nucleus, the blocking effect is taken
into account exactly. The values of e2, e4, Pp Gp P„,
and G„are listed in Table I. In the PNC calculation the

CMPC's with energies E; —Eo & Ec = 0.85%so (trunca-
tion energy) are considered (e.g. , for oYb, hue„——6.966
MeV, Ruo„——7.837 MeV). Calculation shows that for the
yrast band at low spin the energies of important CMPC's
(weight ) 1%%) are all below 0.5huo and almost all the
CMPC's with weight & 10 are included in the cal-
culation; so the calculated results are very accurate. It
should be noted that in our calculation the one-body part
of HcsM (including the Coriolis interaction) has been
treated exactly. For treating the pairing interaction, if
different E, (truncation energy) is adopted, renormaliza-
tion of average pairing strength G should be made [26].
The calculated moments of inertia are given in Table II
and Fig. 1. It is seen that the observed moments of iner-
tia are reproduced very well (except for a few cases) and
no systematic excessive reduction of moments of inertia
compared to that of a rigid rotor is found.

It is seen that if the pairing interaction is missing
(G = 0), the theoretical values of the moments of in-
ertia in the CSM are much larger than the experimen-

TABLE III. Structure analysis of the contributions to the moments of inertia of three typical
rare-earth nuclei Er, Yb, and Hf. The proton part is shown in (a) and the neutron part
in (b). No contribution comes from the closed shells N = 0, 1, 2, and 3. Contributions to the
moments of inertia come mainly from the proton N = 4, 5 and neutron N = 5, 6 shells. Because of
the antialignment effect of the pairing interaction, the moments of inertia are reduced by a factor
of about —.J» and J„„are in units of 5 MeV

(a)

155
es Eres

7o Yb1oo170

7g Hf1o~
174

N=4
N=5
N=6

all shells
N=4
N=5
N=6

all shells
N=4
N=5
N=6

all shells

Gp ——0

2g J„„
15.53
26.57
0.00

42.11
15.39
26.27
0.00

41.65
10.16
26.66
0.00

36.82

2g J„„
15.49
31.65
1.45

48.59
14.44
27.55
3.12

45.12
12.05
25.62
5.57

43.23

G„g 0
2g J„

—4.37
—18.68
—0.57

—23.62
—3.36

—13.24
—3.06

—19.67
—2.81

—13.12
—7.38

—23.31

Total
11.12
12.97
0.88

24.97
11.08
14.32
0.06

25.46
9.24

12.50
—1.81
19.92

166
6s Ergs

170
7o Yb1op

72 Hf1oz174

N=4
N=5
N=6

all shells
N=4
N=5
N=6

all shells
N=4
N=5
N=6

all shells

G„=o
2g J„„

0.00
34.74
64.49
99.23
0.00

35.29
44.97
80.26
0.00

41.28
47.21
88.50

(b)

2g J„„
0.05

36.47
62.62
99.15
0.03

36.92
56.16
93.10
0.04

37.30
52.78
90.11

G„g 0
2g J„„

—0.01
—12.38
—37.20
—49.59

0.00
—13.32
—36.04
—49.36

0.00
—14.09
—31.16
—45.25

Total
0.04

24.09
25.42
49.55
0.03

23.60
20.12
43.74
0.04

23.21
21.62
44.86
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tal ones, as expected by general consideration [3). To
illustrate how the moments of inertia are significantly re-
duced (see Table II) due to the pairing correlation, let us
make a more detailed analysis of the calculated results

for three typical nuclei 68 Er, 70 Yb, and 7z Hf. Contri-
butions to the moments of inertia may be divided into
two parts [see Eq. (19)]. If the pairing interaction is
absent (G = 0), only one CMPC (say, ip) configuration

TABLE IV. The off-diagonal part P j„„ofthe contributions to the moments of inertia of
the ground bands of Er, Yb, and Hf at low spin. (a) is for the protons and (b) for the
neutrons.

(a)

166E
2J„„(h MeV ')

170Yb "4Hf
&=1

2
1

Ck = ——
2 O. = -'

2
1A =
2

IA = ——
2

[422]
[420]
[420]
[413]
[413]
[411]
[411]
[411]
[404]
[sso]
[541]
[s32]
[s32]
[514]
[s41]
[541]
[s32]
[s30]
[660]
[660]
[651]
[642]
Tota

1/2, [413]
1/2, [411]
1/2, [411]
5/2, [411]
5/2, [404]
3/2, [402]
1/2, [402]
1/2, [400]
?/2, [402]
1/2, [541]
3/2, [S32]
s/2, [s23]
7/2, [S14]
9/2, [sos]
1/2, [S32]
1/2, [S30]
3/2, [523]
1/2, [521]
1/2, [651]
1/2, [642]
3/2, [642]
S/2, [633]
1

S/2
1/2
3/2
3/2
7/2
5/2
3/2
1/2
5/2
3/2
S/2
7/2
9/2
11/2
3/2
1/2
S/2
3/2
3/2
5/2
S/2
7/2

—0.11
—0.20
—0.17
—0.03
—0.90
—0.64
—0.09
—0.07

—0.?6
—0.53
—2.71
—5.04
—0.17
—0.12
—0.09

—0.17

—23.63

—0.11
—0.18
—0.17
—0.03
—0.90
—0.64
—0.10

—0.57
—0.54
—2.71
—5.04
—0.17
—0.13
—0.11

—0.36

—0.06

—0.11
—0.05

—0.72
—0.50
—0.25

—0.03

—0.31
—0.92
—4.30
—0.30
—0.40
—0.04
—0.27

—0.91

—0.27

—19.67

—0.10
—0.05

—0.72
—0.50
—0.29

—0.03

—0.31
—0.92
—4.30
—0.30
—0.48
—0.08
—0.27

—1.61

—0.27

—0.05
—0.04

—0.49
—0.45
—0.20

—0.13

—0.34
—0.35
—3.63
—0.85
—0.76
—0.09
—0.16
—0.27
—0.79
—0.02
—1.34
—1.03

—23.31

—0.05
—0.04

—0.49
—0.45
—0.24

—0.13

—0.34
—0.35
—3.63
—0.85
—0.98
—0.11
—0.16
—0.26
—1.75
—0.10
—1.28
—1.04

514]
530]
S30]
S32]
S32]
5211
521]

11/2
3/2
1/2
S/2
1/2

sos]
521]
S21]
S23]
521]

9/2, [

1/2, [
1/2, [
3/2, [
3/2, [
3/2', [
3/2, [

523]5/2
512]5/2

[523]5/2, [514]7/2
[521]1/2,[510]1/2
[521]1/2, [512]3/2
[512]5/2, [514]7/2
[512]5/2, [503]7/2
[514]7/2, [505]9/2
[660]1/2, [651]3/2
[651]3/2,[642]5/2
[642]5/2, [633]7/2
[633]7/2, [624]9/2
[624]9/2, [615]11/2
Total

O. = -'
2

—0.24
—0.38
—0.32
—0.68
—0.31
—0.15
—1.95
—1.71
—0.18
—0.13

—0.10

—0.47
—2.37
—13.30
—2.07
—0.08

166K
1A = ——
2—0.24

—0.38
—0.25
—0.67
—0.37
—0.15
—1.95
—1.71
—0.15
—0.16

—0.10

—1.03
—2.36
—13.30
—2.07
—0.08

(b)

n=-'
2

—0.16
—0.29
—0.33
—0.42
—0.29
—0.09
—2.07
—1.72
—0.45
—0.31
—0.16
—0.25
—0.07
—0.69
—1.67
—7.94
—7.13
—0.29

2J„„(h MeV ')
i70Yb

1A =
2

—0.16
—0.34
—0.24
—0.42
—0.37
—0.09
—2.07
—1.72
—0.38
—0.38
—0.16
—0.25
—0.07
—1.24
—1.64
—7.94
—7.13
—0.29

—49.36

—0.09
—0.18
—0.23
—0.27
—0.18
—0.05
—1.88
—1.78
—0.71
—0.48
—0.50
—0.53
—0.16
—0.34
—1.11
—4.23
—8.88
—0.54

"4Hr
1
2

—0.09
—0.18
—0.14
—0.28
—0.26
—0.05
—1.88
—1.78
—0.61
—0.58
—0.50
—0.53
—0.16
—1.22
—1.10
—4.23
—8.88
—0.54
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is present (C; = b;;, ), the off-diagonal part vanishes. In
general, the diagonal part may be expressed as

(21)

where n„= P,. C2P;„ is the particle occupation prob-
ability of the CN orbital ]pn) [a being omitted in Eqs.
(19) and (21) for brevity]. Figure 2(a) shows that the
diagonal part P„J» of neutrons in ~re Yb (dashed line)
changes slowly with the pairing strength t „,which can
be understood &om the slight change in the particle oc-
cupation due to the pairing interaction. The change in
the occupation probability of CN neutron orbitals lp, o.)
due to the pairing interaction for the yrast band of Yb
at low spin is shown in Fig. 2(b).

Contrary to the diagonal part, the ofF-diagonal part
P„&„J„„[dottedline in Fig. 2(a)] drops rapidly with

the pairing strength G„, which results in a signi6cant re-
duction of the moments of inertia in realistic nuclei. The
reduction of the moments of inertia originates mainly
&om the destructive interference (P„&„J~„&0 [see
Fig. 2(a) and Tables III and IV] due to the antialign-
ment eKect of the pairing interaction. The interference
between various CMPC's [see Eq. (17)] can be viewed
&om the transitions of particles between various CN or-
bitals [see Eq.(19)]. The off-diagonal part g &„J„„de-
pends sensitively on the properties and level distribu-
tion of the CN orbitals near the Fermi surface. Each
J„(y, g v) depends on the energetic location of the
CN orbitals e„and e„and the magnitude of the ma-
trix element (plj lv), which is especially large for both
y, and v belonging to the high-j intruder orbitals (for
rare-earth nuclei, the h11y2 protons and i13y2 neutron or-
bitals). Needless to say, if p, or v is far away from the
Fermi surface, J„„would be negligibly small. There-
fore only when both p, and v are in the vicinity of Fermi
surface would J&„be of importance. The non-negligible
J„„'s (weight ) 10 ) for the ground bands of s~sMEr,

6.5—

[4oo]1/2
[4oz]3/2

[521]3/2

[sz3]s/2

[505]11/2
[530]1/2

[s32]3/2

[s41)1/2

10.7

[633]7/2

[642]s/2

[651]3/2
[660]1/2

6.0
C)

[4oz]s/2

[4O4]7/2

[411]1/2

[411]3/2

[413]5/2

[514]9/2

[s23]7/2

[s32]s/2

Z=70

FIG. 3. Proton Nilsson or-
bitals near the Fermi surface for

Yb (eq = 0.265, s4 = 0.025).
The width of each arrow in-
dicates the magnitude of the
matrix element l(lylj lv)l . In
this Sgure are not shown the
transitions with very small ma-
trix elements l(lpl j lv) l

and
the transitions for p or v being
far away from the Fermi sur-
face.

5.5

[420]1/2
[4O4]9/2
[422]3/2

8.07
[541]3/2

[550]1/2
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7 0
[50~]7/Z
[51Z]3/2

I510]1/2

[615]11/2

[651]1/2

[514)7/2
[624]9/2

[5]Z]5, Z

[5g l]1 ~P N= 100
[63']7/Z

[5 ~]5/Z

f 505]1 l /Z

(5Z1]z/&

107

[64']5/Z

[651]S/Z

[660]1/2

[53213/Z

FIG. 4. Same as Fig. 3, but for the neutron orbitals.

zt Yb, and 7& Hf are listed in Tables IV(a) (proton) and
IV(b) (neutron). It is seen that the transitions between
adjacent high-j intruder orbitals in the vicinity of the
Fermi surface play a decisive role in the contribution to

the moments of inertia (e.g. , proton [523]5/2-[514]7/2,
neutron [642]5/2-[633]7/2, [633]7/2-[624]9/2). The par-
ticle transitions which contribute greatly to the moment
of inertia are shown by arrows in Figs. 3 (proton) and 4
(neutron). The width of each arrow indicates the magni-
tude of [(p]j [v)[2.

It should be noted that the contribution to the mo-
ments of inertia from a closed harmonic oscillator ma-

jor shell is zero. Therefore no contribution comes from
N & 3 proton shells and N & 4 neutron shells, which are
closed for the ground bands of rare-earth nuclei at low

spin. Similarly, the contributions from the N & 6 pro-
ton shells and the N & 7 neutron shells are very small,
even when the pairing interaction is taken into account,
because these shells are completely vacant in the ground

configurations of rare-earth nuclei. Therefore almost all
the contributions to the moments of inertia of rare-earth
nuclei come from the N = 4,5 proton and X = 5,6 neu-
tron shells [see Tables III(a) and III(b)]. The contribu-
tion of neutrons is approximately twice as large as that
of protons, i.e. , J„/J s and J„/J s (see Table II),
which is easily understood, because the valence neutrons
occupy higher major shells (N = 5, 6) than the valence
protons (N = 4, 5 shells) and so are more strongly influ-
enced by the Coriolis interaction.

To summarize, the moments of inertia of the ground
bands of a large number of even-even rare-earth nuclei at
low spin have been calculated using the PNC treatment,
in which blocking effects are taken into account exactly.
The Nilsson parameters are taken from the Lund system-
atics, and the pairing strength is determined unambigu-
ously from the observed odd-even mass difI'erences. No
change of the parameters has been made to improve the
calculated results. Because of the antialignment eKect
of the pairing interaction, the moments of inertia are re-
duced by a factor of about 2. The experimental data are
reproduced very well, and no systematic excessive reduc-
tion of the moments of inertia is found.
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