
PHYSICAL REVIEW C VOLUME 50, NUMBER 3 SEPTEMBER 1994

Microscopic investigation of nuclear structure with dynamic Bose-Fermi symmetry
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We have described a seniority conserving mapping procedure from the shell model space to
the boson-quasifermion space for odd nuclei within the framework of the Otsuka-Arima-Iachello
mapping which is suitable in regions where seniority is a good quantum number. We show that,
when a number of levels are allowed to the odd fermion in the interacting boson-fermion model
(IBFM), one can use the dynamic symmetry, if present, to unambiguously find out the parameters
in the IBFM Hamiltonian. As a simple example of the technique, we have discussed the case of Ni
where an approximate Usi+F (5) x SU» (2) is known to exist.

PACS number(s): 21.60.Fw, 21.10.Pc, 27.50.+e

I. INTRODUCTION

The interacting boson model (IBM) and the interact-
ing boson-fermion model (IBFM) have enjoyed consider-
able success in describing the collective behavior of nuclei
since their inception about twenty years ago. Though the
IBM is considered a purely phenomenological model, the
IBFM is treated as a semimicroscopic extension of it on
the basis of its derivation &om the shell model.

The usual boson-fermion interaction in the IBFM con-
sists of three terms, the monopole-monopole term, the
quadrupole-quadrupole term, and the exchange term.
The microscopic justification of such an interaction can
be traced &om the mapping of a shell model Hamiltonian,
consisting of monopole-pairing, quadrupole-pairing, and
quadrupole-quadrupole interactions, on to a boson-
quasifermion basis. However, in regions where the shell
model Hamiltonian is not well represented by these in-
teractions mentioned above, the usual boson-fermion in-
teraction should not be expected to provide a good de-
scription of the nucleus and one has to consider more
terxns. Such a case arises in singly closed shell nuclei
when the number of valence nucleons is not large. Be-
sides, in the dynamical symmetry limit of the IBFM the
simple boson-fermion interaction is clearly insufficient to
explain the presence of the symmetry. Few microscopic
investigations have been conducted in this direction [1].

II. THEORY

used the OAI mapping to map the fermion Hamiltonian
on the boson-quasifermion space directly and estixnate
the values of the different parameters.

In the present work we have performed OAI mapping
of the shell model Hamiltonian. This is ideally suited for
our purpose as we have chosen the vibrational limit of
the IBFM where this mapping works well. The collective
subspace of the full shell model space is separated and
mapped onto the boson-quasiferxnion space. This is es-
sentially a Marumori mapping [7] and the mapped Hamil-
tonian contains an infinite number of terms. The trunca-
tion of this infinite Hamiltonian is achieved in three steps.
For coxnparison with the IBFM, all three- or higher-body
terms are dropped. Since in the IBFM the number of
quasiferxnions for the low-lying states of odd nuclei is 1,
all two-body fermion terms are dropped. Finally, since
in the IBM the collective behavior is explained in terms
of the s (J = 0) and d (J = 2) bosons only, all terms
involving collective degrees of &eedoxn other than s and
d are neglected. The different parameters in the IBFM
Hamiltonian are now estimated by imposing the condi-
tion that the matrix elements of the shell model Hamil-
tonian between the different collective states are equal
to the matrix elements of the mapped Hamiltonian be-
tween the corresponding states in the boson-quasifermion
space.

We assume that the boson states represent fermion
states built up of coherent pairs with angular momentum
J = 0 and J = 2. We also assume that the structures of
the collective pairs do not vary &om the even-even core
to the odd-A nucleus. The collective fermion states

The various mapping procedures &om the shell model
space to the boson-quasifermion space are discussed in
a review article by Klein and Marshalek [2]. One ap-
proach [3] is to apply the mapping technique of Otsuka,
Arima, and Iachello (OAI) [4] to the single-fermion op-
erator, giving an approximate boson-quasifermion map-
ping. The maps of generators of the shell model algebra
are obtained by coupling the products of fermion maps.
In another approach [5,6) Van Egmond and Allaart have

i
J = 0, v = 0),

(1b)

where v is the generalized seniority, can be found in a
number of ways, like broken pair calculation, number-
projected BCS method, etc. Once this part has been
carried out one can map these states on the
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boson states, respectively. In our notation
~ ) [~ )] denotes

a fermion [boson-quasifermion] state. For the odd-A nu-
clei the basis states can be obtained by coupling the odd
fermion to the collective states de6ned earlier. However,
this cannot simply be mapped on the boson-quasifermion
basis. The reasons for this can be understood from the
following argument A fermionic single-particle opera-
tor ct operating on a fermionic state with v = 2 gives a

2.
combination of states with v = 1 and 3. So the states
obtained by coupling a single-fermion operator ct to the

2
collective states (la) and (1b) in the fermion space are
not orthogonal. However, the quasifermion operator a .

operating on the state (2b) will only raise the seniority
to v = 3 and so is orthogonal to the state obtained by
coupling at to (2a). One may, following Ref. [5], map the

state [ct x ~la)] on the state [a~t x ~2a)] after suitable nor-

malization, take the part of the wave function [ct x ~lb)]

orthogonal to it, and map it on the state [at x ~2b)] af-
ter normalization. However, it seems more natural to
map the state with a particular seniority in the fermion
space on the state with the same seniority in the boson-
quasifermion space. We would like to map the fermion
states

has to orthogonalize them. The simple mapping from
fermion to boson-quasifermion system is lost as a result.

However, there is a particular situation where the sim-
ple mapping may still be restored. This occurs in the dy-
namical symmetry limit when the boson core obeys U(5)
symmetry. In this case, the wave function for a particu-
lar state with seniority 3, written in the basis [a. x ~2b)],
does not depend on the parameters of the IBFM Hamil-
tonian. We therefore impose the condition on the orthog-
onalization of (3b) that the wave function for a partic-
ular state, calculated with the shell model Hamiltonian
in the orthogonalized basis, should exactly correspond to
the IBFM wave function. Imposing this condition on the
lowest-lying states one can orthogonalize the states (3b)
uniquely and map them on the boson-quasifermion basis.

After the collective subspace of the shell model has
been identified and mapped on the boson-quasifermion
basis, one can calculate the values of the difFerent param-
eters in the IBFM Hamiltonian. The difFerent restrictions
on the values of the parameters, for a dynamical symme-
try to exist, can then be tested and microscopic justi6-
cation of the existence of the symmetry can be sought.
Alternately, one can calculate the difFerent parameters
in a dynamically symmetric Hamiltonian and compare
them with the phenomenological results.

III. EXAMPLE

and

(c, ) = N(c, )[c, x )la)] (3a)

~c~d; J) = N(c~d; J)P[c x ~lb)] (3b)

on the corresponding boson-quasifermion states. Here P
is the operator which projects out the maximum seniority
part and N is the appropriate normalization factor. The
states (3a) and (3b) are now orthogonal. However, the
states ]czd; J) and ~cz d, J) are still nonorthogonal for j g
j' although the corresponding states in the boson-fermion
space are orthogonal. If the overlap between the states is
small, this can be neglected [5] but for large overlap one

As an illustration of the technique outline above we
discuss the case of a particular symmetry. To keep the
calculation as simple as possible, we choose a symme-
try where the number of fermion levels is 2. Such a
dynamical symmetry is given by the U~+~(5) limit of
U~(6) x U~(10) with the odd fermion occupying j =

2

and 2 orbits. The Ni isotopes obey the above Bose-Fermi
dynamic symmetry [8] and are suitable for calculation as
they have only a few valence neutrons outside the closed

Ni core. Once again, to keep the calculation as simple
as possible, we take the case of Ni which has only three
nucleons. The group chain and the quantum numbers
are given by

U~(6) xU~(10) «U~(5) xU~(5) x SU~(2) «U~+~(5) x SU@(2)
N (1) nd, nI" S [Ni, N2]

«Og+g(5) x SUg (2)«Og+~(3) x SU~(2) «SUg+~ (2).
7] g

'T2 L J

The dynamically symmetric Hamiltonian for excitation spectra is

H = AC& [Uz(5)] + A'C2[U(5)] + BC2[U&+s (5)] + DC&[Oa+s (5)]

+EC2[OB+F(3)]+ FC2 [SUg+~(2)], (5)
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where C [G] is the nth-order Casimir operator for the group G. All the other Casimir operators of the group chain
can be neglected for the excitation energy calculation.

The Hamiltonian in terms of quantum numbers is

H = Any + A'ng(ng + 4) + B[N1 (Nl + 4) + N2(N2 + 2)] + D['rl (rl + 3) + r2 (r2 + 1)] + EL(L + 1)] + FJ(J+ 1).

(6)

The wave function may be written in the form

N ] ( ) LJM) ) d~ F [ l~ 2] B F ( l~ 2j
VB ~ VF ( rl ~ 72) QBLB QFLF QL

(F)

&& [~N, nd vB &BLB) && ag] JM (7)

where the wave function is written in terms of the usual
isoscalar factors and 6j coefficients. The values of the
necessary isoscalar factors can be found in Ref. [9].

In our calculation, we have considered the valence shell
model space to consist of only two orbitals, j =

2 and
We have chosen the pairing plus surface tensor [10]

interaction as the residual interaction as it fits the lower
mass region of these isotopes rather well within this va-
lence space and has certain realistic features [11]~ Earlier
studies have shown the applicability of this interaction in
the 1f2p shell [11,12]. The interaction has the added ad-
vantage that one can make the interaction coincide with
monopole pairing and study the mapping procedure in
this limit. The interaction is given by

r
Ax/12 + B

~
l

b(rl —&p) b(r2 —&p) ~12
RQ )

I

assumption as for singly closed nuclei generalized senior-
ity mixing is known to be small . For each state with
seniority 3, we orthogonalize the states so that the wave
function mixing in the collective space for a particular
level corresponds to that given by (7). These orthogo-
nalized states together with the states (3a) are mapped
on the basis states in the boson-quasifermion space.

The boson-quasifermion Hamiltonian, after the trun-
cation procedure discussed earlier, can be written as

JIB + +F + VBF ) (9)

where HB is the boson part, HF is the fermion part of
the Hamiltonian, and VBF is the boson-fermion interac-
tion term. In this work we consider only the boson core
with U(5) symmetry and only those states which can be
obtained by coupling one quasifermion to a bosonic state
with np ——0 and 1. So the boson Hamiltonian is simply
writ ten as

where HB = Hp + eg[dtd]p, (9.)

~12 ((rl ' r)((r2 ' r) 2 ((rl ' (r2)r2

The form of the matrix elements can be found in Ref. [11]~

The two parameters used in the present calculation are
A = 0.225 keV and B = 0.335 keV and are obtained from
a best fit calculation in this region. The single-particle
energy values are taken from the energy level data of Ni
[13]. The experimental energy values are from Ref. [14].

Our next task is separating the collective subspace.
Since the basis is not large, to calculate (la) and (lb) we

diagonalize the shell model Hamiltonian within the basis
of all the states with the required generalized seniority
and angular momentum for the particular nucleus and
identify the lowest v = 0, J = 0 state as (la) and the
lowest v = 2, J = 2 state as (lb). The basis states
(3a) and (3b) are found by coupling a single fermion to
these states. However for orthogonalization of (3b), we
have to neglect that part of the Hamiltonian which mixes
states with diH'erent seniority. This is not too drastic an

where d = (—1) d ~ The fermionic part is written as

HF = ) ej [a a~]p,
t-

(9b)

where az ——(—1)~ a~ . The boson-fermion part is
written as

VBF = ) A~~ (s d+ d s)2(a.a~ )2

+ ) B , (dtd)1 (ataz, )I. (9c)

H = (1 ]HsMil ) (10a)

and

6d = (lb~HSM~ lb) —Hp (lob)

The parameters in (9a) can be calculated through the
equations
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FIG. 1. Experimental, shell model, microscopic IBFM and
phenomenological IBFM low-lying energy level schemes of

Ni. The quantum numbers are indicated in the 6gure.

Parameter

A+ 5A'

B
D

Phenomenological
(keV)
1962
—186

41
—21
56

Microscopic
(keV)
3036
—277

27
—23
3?

TABLE I. The phenomenological best fit parameters and
the parameters obtained from microscopic calculation for Eq.
(6).

e = (cs/2 IHsM les/2) —(c3/2 I
HsM

I c3/2) . (10c)

Here ~cz) is given by (3a).
The parameters A~~ and B, are calculated from the

relations

(c~d; 2'~HsM~c~. ) = —(2j'+ 1) / N / A~~, (10d)

(czd; J)HsM)c, d; 1)

where HsM is the shell model Hamiltonian. The parame-
ters have been calculated from the boson core as we have
assumed that the structure of the collective states does
not vary kom the even core to the odd nucleus.

All the other parameters are estimated from the odd-
A nucleus. Since we are interested in comparison with
parameters for the excitation spectrum, we find only the
value of e = (es/2 —e3/2):

requirement of Hermiticity for the mapped Hamiltonian
is automatically satisfied. After the calculation of the
parameters in (9), the spectra in the boson-quasifermion
space can now be calculated. The experimental energy
scheme is compared with the shell model calculation and
the IBFM level scheme obtained from the calculation de-
scribed above in the first three energy level schemes in

Fig. 1.
Ideally the lowest few states should be sufBcient to cal-

culate the best fit parameters of (6). However, since the
chosen microscopic interaction does not describe the ex-
perimental level scheme very well, we perform a best fit
calculation of the energy levels obtained in the IBFM cal-
culation and compare them with the phenomenological
best fit parameters (Table I). In the present example, A

and A' cannot be found separately from the experimen-
tal energy level schemes of Ni alone and the values of
A+ 5A' are tabulated. The fourth energy level spectrum
shows the results of the phenomenological fitting.

= ) I
—1) + '(2L+ 1) ( . , L )2B,,

-I(c, lHsMI; ) + e~j ~.. . (10e)

and

A, , =( 1)' 'A, , — (lla)

a,', , = ( 1)~ ~B,', —- (lib)

Equation (lib) is satisfied in the OAI mapping but (1la)
does not necessarily follow from it. Van Egmond and Al-

laart have checked the values of A~~ to test the validity
of (lla) and have concluded that the relation is approxi-
mately satisfied. In our case, since we have assumed the
seniority mixing part of the Hamiltonian to be absent, the

where N is the number of bosons.
The first part of (9c) mix states with diferent senior-

ity and are absent in the dynamical symmetry limit.
The contribution of these terms, calculated through the
method described above, is found to be small. So we have
assumed A~~~ = 0.

For (9) to be Hermitian, we must have

IV. CONCLUSION

The above mapping procedure from the shell model
space to the boson-quasifermion space for odd nuclei is
suitable in regions where seniority is a good quantum
number. However, these are the regions where mapping
from the shell model space to the boson-quasifermion
space shows reasonably good results. When a number
of levels are allowed to the odd fermion in the IBFM,
one can take advantage of the existence of a dynamic
symmetry to find the parameters in the IBFM Hamilto-
nian unambiguously. An obvious extension of the present
method can be made to include the case of supersymme-
try.
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