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The reaction pp -+ hard is studied in a relativistic meson rescattering model. For 1.3 & T„& 2.4

GeV the difFerential cross section and the asymmetry are calculated and compared to experiment.
The model introduces simple form factors for the leading vrN partial waves which depend on the
virtuality of the exchanged mesons, vr and p. All remaining input is derived from experimental
constraints. The data can be described by energy-independent form factors. The asymmetries are
sensitive to pp distortion factors and further details of the model.

PACS number(s): 13.?5.Cs, 13.85.Fb, 25.10.+s, 25.40.Qa

I. INTRODUCTION

We are studying the reaction pp ~ a+d in the energy
range 1.3 ( T„& 2.4 GeV where good data on cross
sections and asymmetries have become available recently

[1]. Pion production has been studied earlier in the b,
energy range where an almost complete set of spin ob-
servables has been determined experimentally. Extensive
calculations in the &arne of coupled channel formalisms

[2] and in relativistic effective perturbation theory [3,4]
have been con&onted with the data. The description is in

general good, with the exception of notoriously sensitive
quantities like the asymmetry A„o and the vector polar-
ization i t~q. At 6 energies pion rescattering is the dom-

inating physical mechanism as is visible &om the energy
dependence of the cross section, which clearly displays
the resonance. Single nucleon exchange is fairly small in
the 6 resonance regime and entirely negligible for the
multi-GeV range considered here.

We shall extend the relativistic rescattering model of
[3] to the GeV range. At these energies many n N reso-
nances exist as re8ected by the well-measured total and
differential mN cross sections. The two body nature of
the reaction pp ~ vr+d forces medium large-momentum
transfers onto the deuteron vertex and requires fairly
large virtualities of the exchanged meson and nucleon. In
[3,4] a Rarita-Schwinger formalism has been used off the
mass shell for the 6 resonance. For the higher AN par-
tial waves a simple off-shell recipe consisted of continuing
the projectors and equating the partial wave amplitudes
ofF and on the mass shell. At the higher energies which
are considered here a special 6eld theoretic description of
each of the many xN resonances is not feasible. In this
paper we shall introduce simple effective off-shell form
factors for the dominating partial waves with parameters
derived &om data.

In Sec. II we describe the model and the sources of
input. Section III gives the results of the basic model and
some of its variations while Sec. IV contains a summary.

II. THE MODEL

A. Helicity amplitudes from meson rescattering

The pion rescattering diagram of Fig. 1 corresponds to the amplitudes [3,4]

M"""""'=
4 d rim(p2) A2)ps 2 2 V~N~ 2 2

[lt'Ga + (rl s)Gb]2x' ' p2-9'-m-' 9'-m'
x („, , (A+ QB)u(pi, Ai),g—g+m

d —n' —m'

where A~, Aq, A2 are the deuteron and proton helicities
and the four vectors are de6ned in Fig. 1. The pion and
nucleon masses are denoted by m and m, respectively.
The mN invariant amplitudes A and B, the pion vertex
function V ~~ and the deuteron vertex functions t

are described below. The relation to the c.m. cross sec-
tion is

P)

/

P2 l=qE
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/

da ( m ) k1
dO q 4~~a) p 4 (2) FIG. 1. The meson rescattering diagram.
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TABLE I. Kinematic ranges at T~ = 0.578 GeV for s ~ (GeV ), t ~ (GeV ), z, and z~ (dimensionless) in the coplanar
approximation as a function of the loop three-momentum

IVIII and the external angle e. See Eqs. (4)—(11). Note that s N and
z~ are independent of 8 in the coplanar approximation. The cutoff loop momentum Irt,„,l

= 0.367 GeV is defined preceding
Eq. (4).

0.0
I~..tl/2
ln..a I

&N

0.969
0.983
0.853

Indep. of 8
SmN

1.459
1.383
1.162

—13.9
—5.5
—1.1

—0.529
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-0.100

—13.9
—16.0
—22.1

—0.303
—0.252
—0.257

—13.9
—26.5
—43.0

—0.077
—0.218
—0.413

where C. The invariant mN amplitudes oF the mass she11

) IM„', „,„,
gg, A1, Ag

and the amplitude M&+„& & is symmetrized in the pro-
ton labels. The momenta k and p are defined in Eq. (5)
below. For the spin observables and further details see
[3].

The energy integration in Eq. (1) is discussed in [3].
The propagator singularities lead to three contributions.
The first one corresponds to the spectator contribution
where the nucleon g is on shell, the relativistic impulae
approximation. The pion propagator and the second nu-
cleon propagator lead to antiparticle contributions which
have been evaluated in [3] and found to be small. In this
paper, as in [4], we shall retain only the relativistic im-
pulse approximation. The remaining three-dimensional
integral is calculated numerically using the following in-
put.

B. The deuteron vertex functions

For the deuteron vertex functions we use the invariant
expansion &om the formalism in [5]. In [6] the 8-state
and D-state form factors have been fitted separately to
modern electron scattering data on the deuteron for mo-
mentum transfers up to 2.5 (GeV/c)2. The vertex func-
tions &om [6] are therefore rather directly constrained
by accurate data. In these fits certain relativistic correc-
tions [7] and additional vertex functions arising when the
second nucleon is off-mass shell [8] are not included ex-
plicitly. The vertex functions deduced therefore include
these effects effectively.

The mN invariant amplitudes A and B are constructed
&om the Karlsruhe-Helsinki partial waves [9 . It will be
necessary to define an off-mass shell extrapolation. It is
important to note that the virtualities imposed by the
two body kinematics are large. Table I shows the vir-
tualities for the meson, z = q&2/m2, and the nucleon,
z~ = p&/m, for the 6 resonance regime, while Table
II shows the kinematics at T„= 2.0 GeV. In defining
the transition operator in Eq. (1) we have chosen the
explicit form A+ gB for the operator representing the
xN amplitudes, which ignores additional operators oc-
curring when one nucleon and one pion are off the mass
shell. Replacing the usual definition (q + q@)/2 by q
is equivalent for on-shell mN scattering. The choice in
Eq. (1) has proven successful for the analysis of contin-
uum pion production in pp scattering [10], which tests
the dependence on the virtuality of the exchanged pion.
Since the nucleon p~ is not far &om its mass shell (see
Tables I and II), we shall discard additional operators as
in [3,4]. As in the case of the deuteron vertex functions
of Sec. IIB the AN oH'-shell form factors introduced fur-
ther below must therefore be considered as effective form
factors. The integral in Eq. (1) converges well due to the
presence of the vertex functions. However, when doing
the loop integration over IVIII we shall restrict the three
momenta further to 0 & IrII & Ig«tl, corresponding to
(+s —m) ) s ~ ) (m+ m ) . Note that large loop
momenta correspond to deeply unphysical AN energies.
Subthreshold xN contributions have been discussed and
evaluated in [3] for the b, energy range and found to be of
order 20% in the leading amplitudes. Even at resonance
the extrapolation of the xN amplitude to subthreshold
energies on the scales required becomes unreliable very
quickly [9). Avoiding ill-defined input we therefore re-

TABLE II. Kinematic ranges for s |v, t ~, z, and z~ at T~ = 2.0 GeV and Irt,„,l
= 0.895 GeV/c. See Table I for further

notation.
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strict the integration to physical vrN energies as in [4]
where at least the on-shell amplitudes are known reliably.
The explicit kinematic dependence of the mK variables
can be seen &om

2
x = = (m —Eilp + p]g] cos 8)

m~ m
s N = (pi + qz)' = (2E —gp)' —g', (4)

and

the virtualities of the meson and nucleon are simplified
to

ii N = (pi —q) = m +m —2EE +2kpcos8, (5) AI"
&N—

m2 (mg + m —2Egrjp + 2lr7lk) .

tsN (Pl PA) (6)

z =, =, (m +ri —2Erip —2p]glcos8„)

and

2 2
2

zN = —— [m~+ il —2Egripm2 m2

—2 ]g l
k (sin 8 sin 8„cosP„+cos 8 cos 8„)], (8)

respectively. Recall that g = m in the impulse approxi-
mation. In Tables I and II we have &ozen the loop angles
for the purpose of illustration in the coplanar approxima-
tion

which has been shown to be a good approximation for the
integral at the 6 resonance [3]. In this approximation,

I

Note that tip ——gg 2 + m2 in the impulse approximation.
We work in the overall c.m. with total energy 2E and
external pion scattering angle 8. The three momenta of
the external pion and proton are k and p, respectively.
The virtualities of the meson and nucleon are

In the actual evaluation we shall not make any such ap-
proximation. In [3,4] analytic techniques and a factoriza-
tion approximation reduced the evaluation of the ampli-
tudes to one-dimensional numerical integration. Modern
computers allow one to do the three-dimensional inte-
gral over g completely numerically. At the same time
the Dirac algebra corresponding to Eq. (1) has now been
done on the computer. The results of [3] for the ampli-
tudes have been reproduced to better than 5% for the
same input. For the present code a set of amplitudes for
six scattering angles at one energy takes 2 min of CPU
time on a VAX6630. We thus have an eKcient basis for
studying variation of the input. In particular the present
paper extensively explores diH'erent prescriptions for the
ofF-shell behavior of the meson rescattering amplitudes.
We work with explicit spinors on the level of helicity am-
plitudes as in [3], which is by far the most efFective way
for calculating any desired spin observables.

For the GeV range the following procedure has been
implemented to define the off-mass-shell extrapolations
for all partial waves (contrary to [3] where the 1+ and
2 waves have been treated difFerently). The projectors
in the 7r N partial wave expansion for the invariant ampli-
tudes are calculated with full ofF-shell kinematics while
the partial waves Ti~(s N) are identified off and on the
mass shell with s N f'rom Eq. (4)

~(snN~tmNi»zN) = 4x ) Tp~ Fi+ (z, x N ) [ (Eg + m) (gs—sN —m) P& (cos 8) —(Ez —m) (QS„N + m) Pi+i (cos 8)]
~c.m.

4x ) Ti "Fi (z, zN ) [(Eg + m) (gssN —m) P~ (cos 8) + (E~ —m) (QS~N + m) Pi i(cos 8)],
c.m. ))a (12)
4~ - an I

B(s~N, t N, z, zN ) = — ) Tp+ Fi+ (z, zN ) [(Eg + m) Pi (cos 8) —(Eg —m) P&+i (cos 8)]
~c.m. ))0

) Ti' Fi (x, zN)[(E~ + m)P, (cos 8) —(E~ —m)P, , (cos 8)],
~c.m- l)1

(13)

where q, is the modulus of the finaP state three-
momentum lpf] in nN c.m. ; see Eq. (15) below. E~ =
gq2 + p2& is the c.m. energy of the final nucleon cal-

culated from the virtual mass gp2& and 8 is the c.m. off-
(s N+ m —qg)

IP'I m
4smN

(14)

I

shell AN scattering angle. The kinematical variables in
the oK-shell c.m. of mN are

The definitions of t N and u iv in [3] have to be
interchanged.

In the calculation [3] the final state momentum has been
used as well, contrary to the text in its Appendix.

(s-N + p~ —m')'
IPfI 4s ~ JA ~

2EN(/s~N —E ) + t N —mN —pg
)cos8 = 16

2]p;Ilx pl
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where E~ = g[p;]2+m and E = /[pe] +m .
In the approach of [3] the ofF-shell definition of the

invariant amplitudes A and B was completed by setting
E~~ (x, xiv) = 1 for waves higher than 2 while the 1+ and

2 waves were calculated from the Rarita-Schwinger for-

malism. In the present paper we introduce a Lorentzian
form factor for each partial wave. In the simplest version

E~~ will depend only on the meson virtuality x and not
on the nucleon virtuality x~

25 Tp = 1.3 GeV

s 20

158

~ ~ f I t ~ ~ I ~ $ ~ I \ 0 i I 1 I ~ t 0 ~ ~ I t ~ ~ ~ I $ I ~ ~ ~ $ I I s I t I I I I30

(17)
0 10 20 30 40 50 60 70 80 90

g, (asS)

This form guarantees damping for large x and allows ris-

ing or falling form factors for z & 1. The lowest four
partial waves get separate form factors while a common
factor is used for partial waves higher than 2

At the pion absorption vertex, a Ferrari-Selleri form
factor with range parameter u is introduced,

FIG. 2. Elastic pp di8'erential cross section at T„= 1.3
GeV. The dashed line is from the coupled channels calculation
[15]and the solid line is from the VPI phase shift analysis [16].
Experimental data are taken from the VPI compilation [16).

(18)

with g2/4x = 14.28. The range parameter will be fitted.
It is the parameter which essentially controls the size of
the cross section.

D. Distortion factors

To complete the description of the model we briefiy de-
scribe the Sopkovich distortion factors [ll] which repre-
sent higher order rescattering diagrams [12]. The helicity
amplitudes of Eq. (1) are replaced by

gies 1.7 GeV and higher, the forward pp cross sections
for the theoretical phases corresponding to [15] are too
big. However, since the inelasticities in the two sets of

pp phases are comparable, no significant changes are ob-
served in the pp ~ z'd cross sections (compare Fig. 3).
Even for the asymmetries pp distortion is not as impor-
tant as one could expect. We have also calculated all the
other spin observables (not shown) and found a sensitiv-
ity similar to that of the asymmetry. For the asymmetries
in pp -+ z'd the phases calculated from coupled channels

[15] do slightly better; see Fig. 3.

III. RESULTS

M —+ SJM S&~ . A. Energy-independent St

For each J an I-S decomposition is implicit; for de-
tails see the Appendix of [3]. For J ( 7 the projections
M are calculated numerically. Higher waves remain un-

changed. At resonance [3) pion distortion is the dominant
efFect. As the elastic zd cross section falls steeply with
energy, z d distortion gets correspondingly less important
in the GeV region. For our energies we have calculated
n d phases from the full spin relativistic impulse approxi-
mation developed in [13]. At T = 300 MeV these phases
match the Faddeev calculations from [14]; compare also
[2]. The pp distortion reduces the size of the pp ~ md

cross section considerably at the energies considered here.
The shapes of the pp m md cross section and asymme-
try are less sensitive. The information on pp amplitudes
and phases is far from complete in the T~ range of 1 to
3 GeV. To test the sensitivity we have used two rather
difFerent sets of pp amplitudes. In one set we have cal-
culated pp phases ourselves from the coupled channels
formalism [15]. In the second set the phases are taken
from the direct VPI phase shift analysis [16]. For the
purpose of illustration the pp cross section at T„= 1.3
GeV for these two sets are shown in Fig. 2. For ener-

In this section we show a fit to the data at six en-
ergies using energy independent form factors. Figure 3
shows the fit for cross sections and asymmetries. Ta-
ble III shows the parameters for the form factors I'(z),
Eq. (17), where u = 0.57 GeVs. The four lowest waves
have been fitted separately; the higher waves (h) Rom the
2+ wave up have been fitted with a common form fac-
tor. The fit requires only a weak z dependence for these
higher waves. Including the vertex range parameter ~ in
Eq. (18), the total number of parameters is ll. A MINUIT

search in this parameter space converges in about 2 h of
CPU time. The meson M in Fig. 1 stands not only for
z+ and zo exchange, but also for p exchange since the
leading operator in the nonrelativistic limit differs only
by a sign. The form factors Eqs. (17) and (18) represent
these meson exchange diagrams effectively. Overall, the
calculated cross sections of Fig. 3 describe the data quite
well. At 1.88 and 2.1 GeV the calculation shows slightly
too much forward dipping, while at 1.3 GeV the cross
section is too flat with respect to modern data [1]. These
deviations may be due to the presence of fairly strong
resonances at these energies which are not well described
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Tp ——1.88 GeV PIC. 3. Energy independent analysis:
(a) The c.m. differential cross section for

pp ~ vrd as a function of the proton kinetic
lab energy T~. (b) The asymmetry parame-
ter. The data from the recent Saclay mea-
surement [1] are indicated by solid triangles
while previous measurements at nearby en-

ergies [19,20] are indicated by open circles.
The dashed curves are for the pp distortion
factors from the coupled channel model [15]
while the the solid curves are the results for
the pp phase shifts from VPI [16]. See Table
III for the parameters of the fit.
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by average form factors; compare Sec. III D below.
The asymmetries are also described surprisingly well.

Note that the calculation is including distortion factors
for the initial pp and final Ird states (see Sec. IID). In the
GeV range 7rd distortion is not important (in contrast to
the 6 resonance range). The pp distortion affects mostly
the overall size of the cross section. Remaining sensitiv-
ities are illustrated by the solid and dashed lines. The
solid lines contain pp phases from [16], while the dashed
lines use pp phase shifts which have been calculated &om
the coupled channel formalism [15] for the present pur-
pose. The backward peak seen in the asymmetries at
medium energies does not seem to be related to ambigu-
ities in the distortion factors.

B. Energy-dependent analysis

Using the procedure described above we have also 6t-
ted the form factors Eq. (17) for each energy separately.
The 6t for cross section and asymmetry is shown in Fig.
4. The parameters in Table IV show a fair degree of sta-
bility. No simple solution has been found which describes
the backward peaks for the asymmetries. The cross sec-
tion at 1.3 GeV is well described by a moderate change
for the 1+ wave and by a fairly fiat form factor (large
width b,s) for the higher 1rJV partial waves.

0+
0.64
7.7

1
0.73
31.4

1+
—0.47

3.0

2
0.74
14.5

h

0.4
25

TABLE III. The parameters of the Lorentzian form factors
Eq. (17) for the m N partial waves &om the energy independent
analysis. Note a and E are dimensionless.

C. Alternative parametrizations of form factors

At resonance the Rarita-Schwinger form factors of [3]
used for the dominant 1+ mN wave amount to practically
linear form factors both in x and x~, as we have checked.
The 1+ contribution to the invariant xN amplitudes A
and B can thus be approximated by



50 OFF-SHELL Eei'ACTS FOR THE REACTION pp ~md AT HIGH. . . 1305

30 I I I I I

- T& ——2.4 GeV
20-

10

0 I

- T&
——2.1 GeV

20—

~ ~ I I I I ~ I I ~ I I ~ \ I ~ I] 0~~
T& ——2.4 GeV

k~
a.0.0 i——I/ % ~ I+

Q ~ a I ~ ~ I I ~ I I ~ I ~ a I a a
I I I I ~ I I I I ~ ~ I ~ ~ I ~ I

T& ——2.1 GeV

10

0 I
I ~

- T~ = 1.88GeV
20- '

0.0 I

-] Q I I ~ ~ I I I I ~

Tp ——1.88 GeV

~ I
~ I

s ~ I ~

~ ~ I I ~

a 10

0
- Tp ——1.7 GeV

~ ~20- p~~
xo ~&
0 I I I I I

- T& ——1.6 GeV
20-

10'

Qa0 ~ ssas

%ha

w -1.0 ~ s I I ~

I ~

I I s I ~ I I s ~ I ~

I I I I I I I ~ I ~

Tp ——1.7 GeV

Q I I I a I I I a I ~ I I I s I I a

~ I I ~ ~ I 1 I I ~ I I I I I I I

T& ——1.6 GeV
04

4

0 0
04 0~~~V sss~0.0 ~

FIG. 4. Energy dependent analysis. See
Fig. 3 for notation and Table IV for the pa-
rameters of the St.
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Tl+ [ (EA + m) (v—t's N —m)P&(cos 8)Fo(z, zN) —(EA —m)(gs~N + m)P2(cos 8)FI(z, zN)j,
~c.m.

Ty+~[(EA + m)Pl(cos8)FO(z, zN) —(EA m)P2(cos8)F1(zs zN)j
~c.m.

(20)

(21)

where
I

are linear (i = 0, 1):

F.(*,*N) = f.(z)f."(zN) (22) f; (z) = a; + (1 —a;)z, (23)

with a similar expression for Ft(z, zN). The functions f;
f, (zN) = a; + (1 —a; )zN. (24)

TABLE IV. The parameters of the Lorentzian form factors
Eq. (17) for the mN partial waves from the energy dependent
analysis. Note a and A are dimensionless.

The same form factors are used for A and B.
The presence of the meson and deuteron vertex func-

tions guarantees convergence of the integral even without

(GeV )
CLp+

Ap+
Gy

G1+
+1+

1.3
0.65

—0.052
5.0

1.53
10.4
—5.0
4.6

—4.9
100

1.6
0.6

1.05
5.1

1.08
15.2

—0.034
4.0

1.11
5.0

T„(GeV)
1.7 1.88
0.6 0.6

0.23 1.22
14.4 6.64
0.98 0.97
16.8 16.2

—0.23 0.41
4.0 4.0

1.43 1.36
5.0 5.0

2.1 2.4
0.82 0.6
0.89 —1.07
8.97 28.8
0.66 0.77
22.1 20.8
0.30 0.38
4.0 4.0

0.94 0.34
8.03 22.0

Rarita-Schwinger
Fit

ap
1.004
0.948

CLy

1.04
1.06

N

—1.0
—1.68

N

—0.5
—1.35

TABLE V. Parameters for the linear form factors at
T„= 0.578 GeV used in Fig. 5. Both the fit and the lin-
ear approximation to the Rarita-Schwinger formalism [3] for
the 4 resonance contribution are shown. See Sec. IIIC for
more details.
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FIG. 5. Differential cross section and
asymmetry for pp m md at T„=0.578 GeV
with linear form factors. Experimental data
are from [21,22]. See Sec. III C.

any cutoff in [q[. The resulting observables from a mini-
mization of the linear approximation at T„=0.578 GeV
are shown in Fig. 5. The corresponding parameters for
the linear form factors are shown in Table V for the &ee
fit where also the linear approximation for the Rarita-
Schwinger expression in [3] is shown.

Since the linear approximation reproduces the results
of [3] at T~ = 0.578 GeV very accurately we have ex-
tended this procedure to T„= 1.5 GeV. In this case we
use a product of linear vertex functions for all j = l+
waves simultaneously and we use the same form factors
also for the j = t, waves, —generalizing Eqs. (20)—(24).
The result from fitting the parameters in Eq. (22) to the
cross section and asymmetry at 1.5 GeV are shown in
Fig. 6, the corresponding form factors in Table VI. The
fit is not convincing. Attempting simultaneous minimiza-
tion of the remaining energies in the GeV region does not
lead to good fits with stable parameters either. We have
therefore abandoned this approach. It could of course be
too restrictive to use the same form factors for the j = t+
and j = l —waves.

We mentioned in the Introduction that many spin ob-
servables have been measured in the 4 resonance regime,
in particular the Cartesian spin parameters A;~. In [17]
a procedure has been formulated which is capable of ex-
plaining the finer details of the spin observables. It con-
sists in extrapolating the spin-flip and spia-aonflip parts
of the vrN amplitudes differently. A difFerence of 13'%%uo for
z —10 where the iategraad peaks, is enough to obtain
a very good fit to the data at resonance. This amounts to
introducing separate form factors for the invariant am-
plitudes A and B.

Since the only spin observable measured in the GeV
range is the asymmetry we have not introduced this pro-
cedure here. Not surprisingly, preliminary tests ia the
GeV range have shown a fair amount of sensitivity to
this degree of &eedom.

D. The role of strong local mN resonances

We already noticed the undesirable forward dip in the
global fit to the cross sections at T~ = 2.1 and 1.88 GeV
in Fig. 3 at least in comparison with the recent data from

[1]. We have therefore explored the possible role of sev-
eral xN resonances for the energy T~ = 2.1 GeV. We
found that the N(1680) Fis resonance in particular can
affect the cross section significantly. Figure 7 shows the
corresponding cross section. For the figure we have re-
placed in the isospin-I/2 channel the overall form factor
Fs in Eqs. (12) and (13) with two separate form fac-

tors which multiply the terms containing Pz and Ps. On
the amplitude level the modification of the forward cross
section shown amounts to 50% increase in the P2 term
and 50'%%uo decrease in the Ps term. The result seems to
confirm the importance of local resonance effects. In the
absence of coavinciag constraints for all these resonance
form factors we rekain, however, &om introducing these
new parameters into the fit. We must also remember that
with increasing energy the mN resonances couple to vr~N
states with increasing strength. This is particularly true
for b, (1600)Pss, b, (1620) Ssi, b, (1700) D33, A(1905) F35,
A(1910) Psi, b, (1950)Fsr, N(1440) Pii, N(1520) Di3,
N(1675) Di5, N(1680) Fi5, N(1720) Pis, N(2190) Gi7
[18]. Note that the 7rxN and other decay channels are
of course reflected in the total mN cross section on shell

by the unitarity relation and are thus already partly con-
tained in the normalization of our calculation at each en-

ergy. Two-meson exchange diagrams could be introduced
into our model explicitly for the price of a coasiderable
number of new parameters. We think this is presently
neither practical nor warranted. It is however clear that
the form factors of Tables III aad IV effectively also rep-
resent these effects.
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FIG. 6. Differential cross section and
asymmetry for pp + vrd at T„= 1.5 GeV
with linear form factors. Data are from

[20,23]. See Sec. III C.
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TABLE VI. Parameters for the form factors at T„= 1.5
GeV from the fit. Compare Sec. III C and Fig. 6.

ao
0.974

Gy

0.911

N

—0.30

N

—1.65 s 10

IV. SUMMARY AND CONCLUSION

Our model calculation has shown that meson rescatter-
ing is capable of describing the elementary pp ~ xd re-
action also in the GeV range. One of the most important
physics ingredients is the off-mass shell behavior of the
exchanged mesons. Fairly simple energy-independent ef-
fective form factors for the leading meson-nucleon partial
waves are able to describe cross sections and asymmetries
in a semiquantitative way. The simplest model leading to
a global fit contains no explicit form factors for the vir-
tual nucleon. These would represent corrections to the
deuteron vertex function and additional off-shell effects
for the meson-nucleon amplitude. The deuteron vertex
corrections are included efFectively in the parametriza-
tion used (see Sec. IIB) but the importance of the nu-
cleon virtuality xN in the meson-nucleon amplitude is
not known. The spectral function in the nucleon mass
variable starts at m+ m and is generally considered to
be weak. Moreover, for our process pp ~ xd the range
of xIv is fairly restricted (see Tables I and II). At the b,
resonance (see Sec. III C) a fit to the data requires some
x~ dependence, however. Despite that, we believe that

0
0 30 60

(«s)
90

FIG. 7. Differential cross section for pp -1 md at T„=2.1
GeV with resonance effect shown in dashed line. The solid
line is the energy independent St shown in Fig. 3 with VPI
pp phases. Data &om [1].

the remaining discrepancies in the GeV range considered
in this paper are most likely due to the effects of local
resonances and the exchange of several pions and further
meson resonances beyond the level already present im-
plicitly in our calculation. We also expect that the finer
details of the spin observables in the GeV range, which
are not measured yet, will require separate extrapolations
for the invariant n N amplitudes A and B, as was shown
to be necessary [17j in b, resonance range.
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