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The differences between the deformed-potential and folding-model descriptions of inelastic nuclear

scattering, attention to which has been called recently by Beene, Horeu, and Satchler [Phys. Rev.
C 48, 3128 (1993)], were pointed out already some time ago by contrasting the rules of equal
deformation lengths and equal normalized multipole moments for the optical potential and the
underlying nucleon distribution of the excited nucleus.
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Recently, Beene, Horen, and Satchler [1] (see also [2])
have compared the standard description of inelastic nu-

clear scattering, which uses deformed phenomenological
optical potentials, with that of the folding model [3], in
which an effective nucleon-nucleon interaction is folded
with a deformed nucleon distribution of the nucleus ex-
cited in the scattering. They have shown that, with
the exception of the unphysical case of a dipole defor-
mation, these two descriptions are essentially different,
and criticized the fact that this is usually overlooked in
the analyses of inelastic-scattering data. They have also
suggested that, because of this difference, the nuclear
deformation lengths are extracted incorrectly from the
inelastic-scattering data, in particular for multipolarities
l & 2, when the deformed-potential procedure is followed.

The purpose of this Comment is to point out that sim-
ilar conclusions (but note one difFerence below), using
similar methods, were reached already some time ago [4].
It was shown in Ref. [4] that when the rule of equal nor-
malized multipole moments of the optical potential and
the deformed nucleon distribution [5], which follows from
the folding model, is imposed on a phenomenological po-
tential that is deformed according to the standard pre-
scription [6]

U(r) -+ U(r) —) bi(U) Yio(8)
dU(r)

and on a similarly deformed underlying nucleon distribu-
tion, the relation

(2)

is obtained between the deformation lengths bi and ra-
dial moments (r' i) of the optical potential U and the
nucleon distribution p. For the most commonly used
%oods-Saxon shape with halfway radius B and diffuse-
ness a, the radial moment (ri i) is to second order in
a R

(r' ')ws =

Thus, Eq. (2) demands that the deformation length bi(U)
of the optical potential be smaller than the deformation
length bi(p) of the nucleon distribution, and that by a
margin that grows rapidly with an increasing multipo-
larity / ) 2, as (r' i)& can be, especially for heavy ions,
considerably greater than (ri i)~ It als. o follows imme-
diately from Eq. (2) that an exception to this is the case
of dipole deformation, j = 1, as the radial moment (r' i)
with l = 1 always equals unity; however, for inelastic
scattering to low-lying excited states, the l = 1 case is
unphysical, as it corresponds to a spurious shift of the
center of mass of the nucleus. The l = 1 exception to
the above difference between the deformed-potential and
nucleon-distribution deformation lengths has been em-
phasized in Refs. [1,2].

Notwithstanding Eq. (2), the empirical rule of equal
deformation lengths

bi(U) = bi(p) (4)

appears to be borne rather well by the analyses of light
and heavy-ion inelastic-scattering data that employ de-
formed phenomenological potentials [7], including the
analyses of inelastic scattering of heavy ions from de-
formed nuclei under the critical conditions of strong
Coulomb-nuclear interference where the inelastic scatter-
ing is sensitive to possible differences between the defor-
mation of the optical potential and the well-known de-
formation of the nuclear charge distribution [8]. Admit-
tedly, these analyses deal with only relatively low mul-
tipolarities l, but according to Eq. (2), for heavy ious
there should be an appreciable difference between the
deformed-potential and nucleon-distribution deformation
lengths already in the quadrupole case l = 2.

A conclusion somewhat difFerent to that of Refs. [1,2]
is then drawn that the rule of equal normalized multipole
moments is not universal, in the sense of being valid for
all optical potentials, because it is derived &om nonspher-
ical folded potentials, whose deformation results &om the
deformation of the underlying nucleon distribution but
is of an essentially different kind than that which results
from the standard prescription (1) used with phenomeno-
logical potentials [9]. The folding model, however, with
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its unambiguous connection between the deformations of
the optical potential and the underlying nucleon distri-
bution, is to be preferred as a more physical description
of inelastic scattering than that provided by deformed

phenomenological potentials, where the rule of equal de-
formation lengths has only an empirical justification, pre-
sumably limited to low multipolarities l only.
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