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van der Waals forces in nonrelativistic quark models of the NW interaction
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The van der Waals force induced by color-dependent confining potentials in nonrelativistic quark
models of the NN interaction is investigated through a full resonating group calculation where the
NN channel is coupled to a channel of two orbitally polarized color octets. While exchange terms
can be neglected at low energies, they prove to be essential at higher energies, where the short and
intermediate ranges of the induced interaction are probed. The extent to which the latter can be
simulated by efFective local potentials is examined. Finally, the van der Waals force induced by a
strong enough con6ning potential is shown to give rise to unphysical bound states.

PACS number(s): 12.38.Aw, 12.39.—x, 13.75.Cs

In nonrelativistic quark models of the NN interaction,
a long-range van der Waals (vdW) force is induced when
the phenomenological confining potential is allowed to
admix CC configurations formed of two orbitally excited
color octets. For con6ning potentials in r or r2, this
force decreases as a low inverse power of the distance
and is, therefore, generally considered as a pathological
feature of the model. Nevertheless, it has been argued
[1] that the NN interaction is free from meson-exchange
eHects and dominated by residual qq forces at less than
about 2 fm, so that the vdW attraction is meaningful
and should be retained in that intermediate range, while
in a more realistic description it should be damped by qq
pair creation at larger distances.

Most of the resonating group (RG) calculations so far
[2] have shown no manifestation of such a force, since the
potentially troublesome con6gurations were neglected.
Whichever point of view one adopts with regard to this
force, one should obviously compute its efFects properly
once at least in order to know exactly what they are. In
earlier perturbative calculations [3,4], second-order en-
ergy shifts were usually computed as a function of the
intercluster distance; since the latter was assumed to be
large, exchange effects were neglected and the resulting
potential was local; various approximations were made
for the energy of the intermediate CC state. Clearly,
such a treatment is inadequate: the NN and CC con6g-
urations are strongly coupled and should be treated dy-
namically according to the coupled-channel RG formal-
ism. Moreover, exchange eKects should be fully taken
into account in order to determine the inQuence of the
polarized CC con6guration at short and intermediate
ranges, where it may be argued to make physical sense.
Maltman and Isgur [1] treated exchange eKects properly,
but unfortunately did not solve the coupled RG equa-
tions, since the configuration responsible for the vdW in-
teractions was introduced perturbatively. Moreover, the
wave functions describing the relative motion of the clus-
ters, in their variational calculation, were expressed as
finite sums of Gaussians. While this may be a reason-
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able description for the CC channel, it is not likely to
be so for the NN channel in the presence of an induced
long-range force. In their two-channel RG calculation,
Pfenninger and Faessler [5] neglected all exchange terms
and retained only the confining part of the qq interaction
when computing the kernels of the CC channel as well as
those connecting the NN and the CC channels. These
approximations are not expected to affect signi6cantly
the long-range eH'ects of the CC channel, but they are
likely to provide an inaccurate description in the short
and medium ranges.

This paper presents a full two-channel calculation in
the RG formalism. All exchange terms are retained and
the full qq Hamiltonian is used throughout the whole cal-
culation. The same channels are taken into account as in
Ref. [5]. Thus, the total wave function is

@sT = ) A([[g (1,2, 3)y (4, 5, 6)]i,sTg~(r)Yi(r)]1,

+[4 (1 2 3)& (4 5 6)]4»
xgc(r) Yi(r)]L,)~

where Q is the antisymmetrizing operator, while y is
the internal wave function for a three-quark cluster in
state o. = N or C. The relative motion of the clusters is
described by the RG amplitude g (r)—:Pi g (r)Yi(r), r
being the distance between their centers of mass. The
orbital angular momenta, spins, and isospins of the two
clusters are coupled to lp, S, and T, respectively, l is the
relative motion orbital angular momentum, and, 6nally,
L =/p+l, and 2 = L+S.

The internal wave function of a nucleon, y~, is the
product of a symmetric orbital wave function, @ ([3]),an
antisymmetric color singlet, Q' ([1 ]), and a symmetric
spin-isospin factor @'i ([3]) formed by combining two [21]
representations with s =

2 and t = 2. The symbol [f]
denotes the Young symmetry for the group S3. When the
confining part of the qq interaction is st independent, the
two octets of the simplest CC con6guration giving rise
to a vdW interaction are in the same st state as the
nucleon, while the two [21] symmetries of their orbital
and color parts are coupled to [ls]. The lowest [21]orbital
states are formed by promoting a quark &om a 1s to a 1p
orbit. The vanishing orbital angular momenta of the two
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f[s p(r, r') —siv p(r, r')]gp(r')dr' = 0,
/3

(2)

the overlap and energy kernels, N p(r, r') and H p(r, r'),

nucleons can only be coupled to lo ——0 in Eq. (1), while
lo can take the values 0, 1, or 2 for the two polarized
octets in p states. We study the NN system in the l = 0
partial wave only and neglect arbitrarily the coupling to
other values of t arising in the CC channel for tp g 0.
Thus, only the lo ——0 configuration will be retained in
the CC channel. Then, L = 0 and J = S. Obviously,
the six-quark wave function must be a color singlet.

The amplitudes g (r) are determined by the set of cou-
pled RG equations

being defined in the usual way. For the sake of computa-
tional convenience, the phenomenological qq interaction
of Ref. [6] was used,

V;,. = * —[Br;. +.Ae "~ + C

+ Do; . cr, 8(r; —r~)] .

A very elaborate code was written in MACSYMA (see
Ref. [7] for details), which computed completely all the
RG kernels, projected them on the t = 0 partial wave,
and, finally, transferred the resulting analytical expres-
sions directly to the code solving the system of integro-
differential equations. After projection, the latter be-
came

( d'

2p gdr2
l(l+ 1)l

Ec.m. & (&) + ) U'
p (r)up (&) + K~p (r, r')up(r')dr' = 0l l t i l

P=W, C- 0
(4)

where u' = rg' (r) and the channel indices N and C
stand for NN and CC, respectively. The reduced mass
p is 3m~/2 and E, = (h2/2p)k2 + 2E~ is the total
energy in the center of mass system, k being the rela-
tive momentum in the NN channel and E~ the internal
energy of a N cluster. Finally, U

&
and K'

&
are the pro-

jections on the lth partial wave of the local potential part
of Hop(r) and of the nonlocal part of Hop —E, ~ N p,
respectively.

We solved these equations by discretizing them at N
points over a finite range 0 & r & r „and imposing an
appropriate boundary condition at r = r „. The nu-
cleons are not free asymptotically, but subjected to the
attractive tail of the vdW potential, which behaves like

c/r2, as sho—wn below [Eq. (8)]. The interior solution
u~(r) should therefore be matched with a linear combi-
nation of two independent positive energy solutions Fi(r)
and G~(r) of the Schrodinger equation with V = c/r2. —
The value of the parameter Ki = 2pc/[h(l + 2)] de-
termines which pair of solutions should be used. For
Ki ( 1, Fj and G~ involve J„(kr) and N„(kr) with
v = (t + 2) gl —K~, while for Kt ) 1, v becomes imagi-
nary and it proves convenient to work with the real and
imaginary parts of J„in order to keep the system of equa-
tions real. Since all these Bessel functions tend towards
sines and cosines in the extreme asymptotic region, phase
shifts can be extracted easily [7]. Although for r „large
enough these trigonometric limits can be used directly in
the matching condition, it is highly advisable not to do
so if rm „ is to be kept as low as a few fm, so as to have
shorter computation times and greater numerical stabil-
ity.

Potentials l.a and l.d of Ref. [6] were used in the calcu-
lations, with mq ——362 MeV. They were chosen because
they yield values for c (53.8 and 8.1 MeV fm2) and K~
(6.0 and 0.90) that lead to different matching conditions.
The (S, T) = (1,0) phase shifts as calculated with these
two potentials are presented in Figs. 1 and. 2. Results for
the (S,T) = (0, 1) case are quite similar and are therefore
not presented.

Potential 1.a induces a much stronger vdW interaction
than potential 1.d. This is easily understood by look-
ing at the asymptotic behavior of the induced potential
given below [Eq. (7)]. Besides the fact that the first po-
tential has a larger confining part than the second one
(B = —621 and —215 MeVfin 2, respectively), the dif-
ference F~ —E~ between the masses of the C and N clus-
ters is smaller for potential l.a (785 MeV) than for poten-
tial 1.d (1151MeV). Long-range effects of the vdW inter-
action are particularly important at low energies, where
the short-range contribution coming from the exchange
terms is not probed. They are therefore well reproduced,
at such energies, by a truncated two-channel calculation
in which all exchange terms are dropped. At higher ener-
gies, however, the truncated calculation is seen to exag-
gerate the effect of the CC channel, and a full calculation
has to be performed in order to describe correctly all the
effects of this channel, and not only the vdW interaction
it induces.
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FIG. 1. Phase shifts for S-wave scattering in the
(S,T) = (1,0) channel, as calculated with potential l.a of
Ref. [6]. The solid line corresponds to the full two-cahnnel cal-

culation, the short-dashed line to the one-channel calculation,
and the long-dashed line to a truncated two-channel calcula-
tion where the exchange terms (including the local ones com-

ing from the 6-function part of the potential) were dropped
everywhere except in the NN channel.
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(6) will equally be dropped. We will call V'+ the poten-
tial thus obtained, with the full expressions for U&~c and
U&&. Further simpli6cation is achieved when the latter
are replaced by their asyinptotic limits, namely, ~6Bb2
for U~~c(r) and 2Ec —3C —3B(3b + r ) for Ucc(r)
This yields the asymptotic effective potential

6B'b4
Veff

2(Eiv —Ec) + 3C + 3B(362 + r2)

In the extreme asymptotic limit, the r2 term dominates
in U~~, and V&' reduces to

FIG. 2. Same as Fig. 1, but for potential 1.d of Ref. [6].

Most of the earlier discussions of the 1ong-range in-
duced vdW interaction were formulated in terms of ef-
fective local potentials. It may be interesting, therefore,
to compare our results with those yielded by such an ap-
proach. Of course, there is no unique prescription for
constructing an effective potential. What will be done
here is quite close to the spirit of earlier work, where, es-
sentially, second-order perturbation theory was used, or
an approximate effective potential like that of Feshbach
[8] was derived. In order to extract an approximate local
potential from Eqs. (4), one should first drop the non-
local kernels KN&, K&~, and K&&. The kernel K&&
will be kept, though, so as to exhibit how an efFective
potential taking implicitly the CC channel into account
modi6es the initial one-channel scattering problem. The
local exchange terms coming from the b'-function part of
the potential will be dropped in the CN, NC, and CC
kernels. Since the terms we neglect are short ranged,
the tail of the effective interaction is not affected by this
approximation. The only source of nonlocality that is
left appears upon elimination of the CC channel, as a
consequence of its kinetic energy operator. Dropping the
latter from Eq. (4) for the CC channel, on the ground
that it is likely to be relatively small as compared with
the con6ning potential at large distances, one gets, for
the l = 0 partial wave, after elimination of the amplitude
tie(r),

V: (r) = 2Bb4 c
r2 p2 ' (8)

which agrees with the expression derived by the Orsay
group [3],

Vo„(r) = —slaa (a —2a+ 3)(ri) r (9)

120 i

for the van der Waals interaction induced by a confining

qq potential V,
' = —aA; A~r; . In Eq. (9), (ri2) is the

mean value of r2& in a nucleon, rq being the position of
any quark relative to the center of mass of the nucleon.
With our orbital wave function Qo ([3]), (ri2) = b2

In Fig. 3, the phase shifts of the full two-channel cal-
culation are compared with those obtained from Eq. (5)
when V' is replaced by V'~, V&', or V&~. Up to relative
energies of the order of 100 MeV, V' and V&' reproduce
the phase shifts of the full calculation within less than 4'.
As the energy increases, they yield essentially identical
results, which overestimate more and more the attraction
induced by the CC channel. The simplest of the effec-
tive potentials, Vo+, is seen to overestimate this attrac-
tion considerably at all energies. The relative degree of
accuracy that can be achieved with the various effective
potentials seems to depend strongly on the choice of the
qq interaction, as can be seen &om Fig. 4, which shows

+ Uz N(r) + V' (r) —E. uN(r)
h~ d2

efF

2p, l&

90Q)

60

dr'KN~ r, r' uN r' = 0, g 30

where

I U~c(r) I'
52k2/2P + 2Eiv —Ucoc(r)

Beside making V + energy dependent, the k term in
the denominator can, when su8iciently large, cancel the
other two terms, thus yielding, for decreasing r, a very
strong short-range attraction followed by a strong repul-
sion of even shorter range. Phase shifts computed with
such a V' are completely pathological, and, since this
problem is not unrelated with our neglect of the kinetic
energy operator in the CC channel, the term iPk2/2p in
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FIG. 3. Comparison between the phase shifts obtained in
the full two-channel calculation and in the one-channel ap-
proximation, Eq. (5), with an effective potential. These
phase shifts were computed with the qq interaction 1.a of
Ref. [6] in the (8,T) = (1,0) channel. The solid line
corresponds to the full two-channel calculation, while the
dot-dashed, long-dashed, and short-dashed curves correspond
to the one-channel calculations performed with V', V&', and

Vo„, respectively.
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FIG. 4. Same as Fig. 3, but for potential 1.d of Ref. [6].

the same quantities as Fig. 3, but for the interaction 1.d.
While Vo„ is still too attractive at all energies, V' and
V&' now yield very different results, because V'~ devel-

ops at short range a strong attraction that does even
overtake momentarily that of Vo~, as a consequence of
the short-range terms in the numerator of (6). Thus V'~
provides the least reliable approximation for this qq inter-
action. One should therefore not expect V' to be nec-
essarily a better approximation than V&', just because
it retains some of the short-ranged terms: comparable or
even larger terms may have been dropped.

Asymptotically, Eq. (5) reduces to a Schrodinger equa-
tion with an r 2 potential. Then, the number of bound
solutions is finite or infinite [9] according as Ki is smaller
or larger than 1. Since both situations are realized in
the l = 0 partial wave with the two qq potentials we

use, for one at least of them our system must have some
bound states. In order to look for the latter, Eqs. (4)
were discretized, second derivatives being approximated
through second central differences. The resulting eigen-
value problem was not a standard one, because of the
overlap kernel that multiplies E. This was remedied in
the usual fashion, by multiplying all kernels &om the left
and &om the right by the square root of the inverse of the

FIG. 5. NN and CC components of the wave function of
the bound state occurring at —2.0 MeV in the (S,T) = (1,0)
channel for potential l.a of Ref. [6].

overlap kernel. The resulting matrix was diagonalized in
the (S,T) = (1,0) channel for potentials l.a and 1.d. Be-
cause of the long range of the induced vdW interaction,
we had to ascertain that the diagonalization was carried
out with a suKciently large value of r . No bound
state was found for potential 1.d, but one was easily ob-
tained for the other potential, at an energy E = —2.0
MeV, which became essentially stable for r & 50 fm.
Its wave function is shown in Fig. 5. Quite obviously,
this bound state is completely pathological and should

in no way be considered as approximating the deuteron
bound state. As the value of r „was further increased,
the lowest positive energy states kept moving steadily
towards zero, and it seems quite likely that more and
more bound states would have appeared had the calcu-
lation been performed for r „))100 fm. However, this
somewhat academic investigation was not pursued any
further, in view of the computer time involved.
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