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Shadowing, binding, and off-shell effects in nuclear deep-inelastic scattering
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We present a uni6ed description of nuclear deep-inelastic scattering (DIS) over the whole region
0 ( x ( 1 of the Bjorken variable. Our approach is based on a relativistically covariant formalism
which uses analytical properties of quark correlators. In the laboratory frame it naturally incor-
porates two mechanisms of DIS: (i) scattering from qusrks and antiqusrks in the target and (ii)
production of quark-antiquark pairs followed by interactions with the target. We first calculate
structure functions of the free nucleon and develop a model for the quark spectral functions. In this
model mechanism (ii) is responsible for the sea quark content of the nucleon while mechanism (i)
governs the valence part of the nucleon structure functions. We find that the coherent interaction of
qq pairs with nucleons in the nucleus leads to shadowing at small z and discuss this efFect in detail.
In the large x region DIS takes place mainly on a single nucleon. There we focus on the derivation
of the convolution model. We point out that the off-shell properties of the bound nucleon structure
function give rise to sizable nuclear efFects.

PACS number(s): 13.60.Hb, 24.10.—i, 24.85.+p, 25.30.—c

I. INTRODUCTION

Deep-inelastic lepton scattering (DIS) on nuclei is a
powerful tool to investigate the quark-gluon structure of
nucleons in a nuclear environment. The cross section
of this process is studied as a function of the Bjorken
variable z = Q2/2Mv and the squared four-momentum
transfer Q2 = —q, where M is the nucleon mass and v
is the photon energy in the laboratory frame. Accurate
experimental data [1—7] are now available for a number
of nuclear targets over a wide kinematical range, 5 x
10 & z & 0.8 and 0.03 GeV & Q2 & 200 GeV2. The
data show nontrivial nuclear eKects over the whole range
of Bjorken x. At x ( 0.1 one observes shadowing, i.e. ,

a systematic reduction of the nuclear structure function
Fz+ with respect to A times the &ee nucleon structure
function F2 . A small enhancement of the ratio R =
F2 /AF2 is seen at z = 0.2 and a pronounced dip occurs
in that ratio at x 0.5. Finally, for x ) 0.7 a large
enhancement of R is observed.

Numerous models have been proposed to explain these

effects (for recent reviews, see, e.g. , Refs. [8—10]). So far,
most theoretical models for nuclear DIS give separate
descriptions of the regions of small x ( 0.1 and large
x ) 0.2. The physical reason for such a division becomes
apparent in the space-time analysis of the DIS process. In
the laboratory kame the interaction of the virtual photon
with the target can proceed in two possible ways (see
Fig. 1):

(i) the photon is absorbed by a quark or antiquark
in the target which picks up the large energy and
momentum transfer;

(ii) the photon converts into a quark-antiquark pair
which subsequently interacts with the target.

An analysis of the contributions (i) and (ii) reveals that
the second mechanism dominates at small z « 0.1 (see,
e.g. , the discussion in [11—14]). For z ) 0.1 both pro-
cesses (i) and (ii) contribute. In order to understand
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the implications of this for nuclear targets let us con-

sider characteristic space-time scales. Mechanism (i) has
a characteristic scale which is determined by the size of
the nucleon and does not depend on x. For mechanism

(ii) the propagation length A of the qq (or hadronic)
fiuctuations of the photon in the laboratory frame is
A (Mz) ~. For z ( 0.1 this propagation length be-
comes larger than the average nucleon-nucleon distance
in nuclei. As a consequence deep-inelastic scattering from
nuclear targets at small x involves the coherent interac-
tion of the pair with several nucleons in the nucleus. This
leads to nuclear shadowing. Models of the shadowing ef-

fect in the laboratory frame [11—13,15—19] usually include
mechanism (ii) only.

At large x & 0.2 effects resulting &om coherent multi-

ple scattering in the nucleus are not important since the
space-time scales of both mechanisms (i) and (ii) are of
the order of the nucleon size. In this region of x the vir-
tual photon interacts incoherently with bound nucleons.
Model descriptions of nuclear structure functions in the
large z ) 0.2 region [21—31] (for a review see [8,32]) usu-

ally start out f'rom the impulse approximation in which
both mechanisms (i) and (ii) are taken into account by us-

ing a phenomenological nucleon structure function. Re-
sults of such calculations show that nuclear binding and
Fermi motion are responsible for the observed "old" EMC
efr'ect at large x.

The purpose of the present paper is to develop an ap-
proach to DIS which is based on a unified description
of processes (i) and (ii). In Sec. II we develop a rel-
ativistically covariant formalism which incorporates the
standard parton model but also permits us to include
nonperturbative features which turn out to be important
at small x. Our starting point is a general representa-
tion of structure functions in terms of dispersion integrals
over quark spectral densities (Sec. IIB). In Sec. III we

develop a model for the quark spectral densities which
separately reproduces the valence and sea quark parts of
the free-nucleon structure functions. In Sec. IV we dis-
cuss nuclear structure functions. We find that shadowing
at small z has a scaling contribution from mechanism (ii)
(independent of Q2) which turns out to be insufficient,
however, to reproduce the empirical A dependence. At
this point our results differ &om those of Ref. [16]. We
conclude that the propagation of strongly correlated qq
pairs through the nucleus, partly in the form of vector

mesons, is important to reproduce the observed shadow-

ing effect (Sec. IV A). For z & 0.2, where nuclear binding
and Fermi motion are relevant, we discuss the limitations
of the standard convolution model (Sec. IV B). We point
out that there is no reason to ignore, as is usually done,
the dependence of the structure functions on the invari-
ant mass of the nucleon, p2.

II. FRAMEWORK

According to the optical theorem, inclusive inelastic
scattering of an electron/muon on a nucleon or nucleus
can be described in terms of the forward scattering of
a virtual photon. The amplitude for forward Compton
scattering is

T„„(P,q) = —if d ge'e i(P(T(je((')j„(O)))P),

where q and P are the photon and target momenta, re-
spectively. The electromagnetic current is denoted by j„.
In what follows we shall discuss the scattering from an
unpolarized target and assume that the average is taken
over target polarization in Eq. (1). In this case there are
only two independent terms in the Compton amplitude,

(P, q) =Tl(z, Q ) l 2 5'ji l
+(q„q„lT2(z, Q2)

where Q2 = —q, I„=P„q„Pq/q—, and z = Q /2P q
is the Bjorken scaling variable [we use the normaliza-
tion (p]p') = (2z') 2pohi &(p —p') both for fermions and
bosons, so that the amplitudes Tq and T2 are dimension-
less]. The structure functions F) and F2 are given by the
imaginary parts of the scalar amplitudes in (2):

1
Fg 2(z, Q2) = ——Im Tg 2(z, Q ).2'

It is commonly assumed that in the region of high mo-
mentum transfer, Q2 )) M2, the main contribution to
the Compton amplitude comes &om the diagram, Fig. 2,
in which the virtual photon couples to the quark current.
Let us examine this contribution in detail. To leading or-
der in Q2 and in the axial gauge the Compton amplitude
reads

(4)

where the sum is taken over Havor and color degrees of
&eedom of the interacting quark which carries electric
charge e . For simplicity we have dropped the quark
mass in Eq. (4). Here b, (k, P) is the Fourier transform
of the correlator of the quark fields in the target,

FIG. 2. Compton amplitude to the leading order in Q .
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F2(x) = x ) e [q (x) + q (x)], (6)

The structure functions can easily be found &om Eq. (4)
by applying appropriate projection operators. Neglecting
terms of order 1/Q we find for the structure function F2,

d'k

(2~)' /2~k]

x a(k, o)u(k, cr)e*"'+bt(k, o)v(k, o)e '"'I,
(»)

where

q-(*) = f-(*)
q:(*) = -f-(-*)

(7a)

(7b)

where u(k, cr) is the Dirac spinor of a quark with momen-
tum k and polarization o, and v(k, o) is the correspond-
ing antiquark spinor. The operators a(k, o) and b(k, o)
acting on any physical state probe the momentum distri-
bution of quarks and antiquarks in that state:

and

d4k Tr($4 (k, P)) t' k q(
(2vr)4 2P q ( P q)

N(k) = ) (at(k, cr)a(k, cr)),

g(k) = ) (bt(k, cr)b(k, o.)).

(12a)

(12b)

The two terms in Eq. (6) correspond to the direct and
crossed terms of the Compton amplitude. It follows &om
Eq. (4) that the structure function Fi is not independent;
it is given by the Callan-Gross relation F2(z) = 2z Fi(x).

Using the commutation relations between a, at and b, bt

and the orthogonality properties of spinors u(k, cr) and

v(k, cr), we find &om Eqs. (9) and (10)

f(x) = q(*) —q(-*) (13)

A. Parton model

Equation (8) gives a Lorentz-covariant representation
of the quark distribution function which can be used
in any reference kame. Here we Brst demonstrate that
Eqs. (6) and (8) recover the familiar result of the par-
ton model. Let us choose a reference kame in which
the target moves with a large momentum ~P~ ~ oo. In
this frame the function q (z) can be identified with the
momentum distribution of quarks with flavor a in the
target, and q (x) is the corresponding antiquark distri-
bution. In order to see this we introduce a coordinate sys-
tem such that the momentum transfer is q = (0, 0i, Q)
(with Q = QQ2). The hadron moves with momen-
tum Ps ———Q/2x in the direction opposite the three-
momentum transfer q. Then Eq. (8) becomes

d k f ks ) dkp Tr(ps'(k, P))
(27r)' q Ps p 2~ 2P&

(9)

where q(x) and q(z) are the quark and antiquark dis-
tributions as functions of the target-momentum fraction,

( k. (

q(x) = b~ x ——
~

N(k),
(2 )' &

(14a)

q(x) = b~ x ——
~

N(k).
dk f ks)

(2~) & P. )
(14b)

The functions (14) have the usual simple interpretation:
they represent the probability distributions of quarks

[q(z)) or antiquarks [q(x)] which carry a &action x of
the target longitudinal momentum. It is known &om the
parton-model analysis [33] that the probability of finding
a parton moving backward (x ( 0) vanishes as ~P] -+ oo.
Also, momentum conservation does not permit partons
with x ) 1. Therefore the functions q(z) and q(z) vanish
outside the physical interval 0 & x & 1.

where we have suppressed quark flavor and color indices
for simplicity. It can be shown that ps/Ps = pp/Pp in
Eq. (9), up to terms of order M2z2/Q2. We perform the
kp integration by closing the integration contour in the
upper half plane and obtain

dko Tr(poA(k, P)) f ~ ~, ;„(,
2' 2Pp

x (gt(0, r')Q(0, r)). (10)

Here we have used translational invariance and intro-
duced an additional space integration. The brackets in

(1o) de»«(. ") = {PI "IP)/{PIP) The»ght-
hand side of Eq. (10) is, in fact, the momentum space
density of quarks in the target. In order to clarify this
connection further we expand the quark fields in terms
of plane-wave spinors,

B. Structure functions as dispersion integrals

Our primary task is to study deep-inelastic scattering
oK nuclei. In this case the simplicity of the parton model
is lost, because no reliable approach exists to deal with
nuclear systems in the infinite-momentum frame. For
this purpose the preferable kame of reference is the lab-
oratory system. In the present paper we describe the
distribution function f(x) using the analytical proper-
ties of the quark correlator (5). This method preserves
relativistic covariance and can therefore be used in any
frame.

Following Refs. [34,35] we assume that the quark
correlator A is an analytic function of the variables
s = (P —k)2, u = (P + k)2, and k2. For real s and
u the quark correlator has a right-hand cut in the vari-
able s, a left-hand cut in the variable u, and singularities
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k = nP+Pq'+ ki,

where q' = x P + q, and k~ is a two-dimensional vector
(with k&~ ( 0) perpendicular to both P and q.

The integration with respect to P can be done using
the analytic properties, just mentioned, of the quark cor-
relator. As a result one finds that the distribution func-
tion f(z) vanishes outside the physical interval ]z] & 1
as it should. For 0 & x & 1 the distribution function
f(z) [or q(z)] is given by a dispersion integral in the
variable 8 along the right-hand cut. For —1 & x & 0 the
u-channel cut is relevant. In order to represent the struc-
ture functions in this way we introduce functions pR l. for
the imaginary parts taken along the right-hand cut (R)
and left-hand cut (L) as follows:

Im~ Tr()b, (k, P))
pR s)k ~n

Imr, Tr()b, (k, P))

(16a)

(16b)

In terms of these functions the quark distribution q(z)
and the antiquark distribution q(z) are

1 ds d2k~
q(z) = pR(s, k, z),

—1 du d2k~
pL, (u, k, -z),

1 —x 227r 3q(z) =

(17a)

(17b)

where we have suppressed the flavor indices again. The
squared quark four-momentum k is

k =z/ +M( s,l k~2

qz —1 ) 1 —z

for k2 ) 0. In order to make use of these analytical
properties of b in the loop integral (8), it is convenient
to parametrize the loop moxaentum k in terms of the ex-
ternal momenta P and q (introducing the Sudakov vari-
ables):

—pl. (u, k, —n)= ) g (P —k)]g (P —k)2P q

xh(u —M ). (20)

Here M„and M are the invariant masses of the inter-
mediate states. Note that Eqs. (19) and (20) correspond
to two diferent time orderings of the quark operators in
(s).

The basic assumption is now that the spectral densities
vanish at large k2 so that integrals in Eqs. (17) are con-
vergent and dominated by the region of k m, where
m is a characteristic hadronic mass scale. It follows from
Eq. (18) that the behavior of the quark distributions at
x ~ 1 is given by the asymptotics of the spectral den-
sities at k2 ~ —oo. At small x the k is finite even for
large s m2/z. Therefore for small z the integral in Eqs.
(17) is sensitive to the high-energy parts of the spectral
densities. In the region of intermediate or large x ) 0.2
the region of finite 8 m is of major importance.

The spectral representation [(19) and (20)] offers a
convenient way to separate contributions &om mecha-
nisms (i) and (ii). To see this, consider the ampli-
tude Q„in the laboratory frame, with target momen-
tum P = (M, 0). The quark field operator acting on the
target state can either annihilate a quark in the target
or create an antiquark. In the former case the ampli-
tude @„oc(—k, n]a(k)~P) describes the absorption of
a virtual photon by quarks with momentum k. This
contribution corresponds to the mechanism (i). The
contribution from the antiquark part of the g opera-
tor, g„oc(—k, n~bt( —k)~P), corresponds to the mech-
anism (ii). This part of the amplitude Q„describes
the "external" antiquarks from qq fluctuations of the
virtual photon and their interaction with the target.
The amplitude g also has two parts: one associated
with coatributions from antiquarks bound to the target
[gt cc (—k, m~b(k)~P)], and the other one from "ex-
ternal" quarks coming &om the photon wave function,
[g~ oc (—k, m]at( —k)]P)]

in Eq. (17a), and an analogous expression holds with s
replaced by u for the antiquark distribution q(z) in Eq.
(17b).

The spectral densities (16) can be written in terms of
spectral sums over a complete set of intermediate states
inserted between the two quark field operators in Eq.
(S). In order to write the spectral representation in
a more explicit form we introduce matrix elements of
the quark field operator taken between the nucleon and
some intermediate state, @ (K) = (K, n]g(0) ~P) and

(K) = (P ~g(0) ]m, K). Intermediate states are labeled
by their total momentum K and other quantum numbers
denoted by n or m. In terms of the amplitudes @ and

the spectral densities (16) can then be expressed as
follows:

p~(s, k, n) = ) @„(P—k)g@„(P—k)2P.q

x b(s —M„),

III. QUARK SPECTRAL DENSITIES AND
NUCLEON STRUCTURE FUNCTIONS

Ia this section we construct nucleon structure functions
using a model for the quark spectral densities pl, and pR.
We further elaborate the concept, appropriate in the lab-
oratory frame, that the full quark spectral function can
be divided into two parts corresponding to mechanisms
(i) and (ii), as illustrated in Fig. 1.

The part of the spectral density that describes mecha-
nism (i) is proportional to the probability to find a quark
with four-momentum k in the nucleon. The characteris-
tic momenta of quarks bound in the nucleon are of the
order of the nucleon mass, k M. Therefore the main
contributions to the spectral densities from mechanism
(i) come Rom the region ~k ] M and s M . This
kinematical region determines the behavior of structure
functions at x ) 0.2.

On the other hand, contributions to the quark spec-



1158 S. A. KULAGIN, G. PILLER, AND %.WEISE 50

tral densities from mechanism (ii) rise with s (or u). In
fact, the matrix element (k, n~bt(k) ~P) describes scatter-
ing of an antiquark with momentum k &om the nucleon,
with transition of the system to the final state ~n, k).
The possible antiquark momenta k are determined by
the wave function of the photon and can be as large as
the photon momentum q. Therefore, the invariant mass
of the antiquark-nucleon system is large, s » M . Due
to unitarity, the sum over all states n in Eq. (19) will
be proportional to the antiquark-nucleon forward elas-
tic scattering amplitude. It is known &om Regge theory
that imaginary parts of amplitudes rise with energy ass, where o.p is the intercept of the Pomeron. Therefore
contributions to the spectral density from mechanism (ii)
grow with energy and dominate at large s. This mecha-
nism determines the small z part of structure functions.

A. Model for quark spectral densities

With this discussion in mind we now develop the fol-
lowing simple model for the quark spectral densities. We
introduce a parameter sp which separates the full spec-
trum into a low-energy (s ( so) part and a high-energy
(s ) so) part. We assume furthermore that the low-

energy part of the spectrum is dominated by mechanism

(i), while the high-energy part is given by mechanism (ii)
(for illustration see Fig. 3):

p(s, k ) = p~' (s, k )8(sp —8)+ p (s, k )8(s —Bo).

(21)

Ic „(s,x)
q

' (x) = dk' 4(k'),
16vr2

(23)

where k (s, x) is the maximum value of the squared
quark four-momentum for given values of s and x,

In order to describe the region of large s ) sp we in-
troduce the quark-nucleon forward-scattering amplitude
T(k, P) as follows:

A(k, P) = . T(k, P)
g —m~+te g —m~+te (25)

The quantity relevant for the calculation of the quark
spectral densities (16) is Tr(p„D). In terms of the am-
plitude T this trace can be written as follows:

Tr(p„h(k,P)) = (k' —m')

x ~4k„T+(m —k ) Tr(&„T), (26)

where T = 2Tr[(g + m~)T(k, P)j is the amplitude av-

eraged over the quark spin. When examining the Dirac
structure of T, we find that only a scalar term and a term
proportional to the p matrix contribute to (26). One can
neglect the scalar term because its contribution to the
amplitude T is proportional to the quark mass m~. The
leading contribution to the amplitude T, the one which
rises with s, comes &om the term proportional to p . P.
Based on these arguments we write the amplitude T as

For the low-energy part of the spectrum (s ( so) we make
the following ansatz: T(k, P) = C(s, u, k )P, (27)

p~'l(s, k') = C(k')b(s —a), (22)

together with pL,
——0 in this region, which implies that we

neglect contributions to spectral densities coming &om
antiquarks in the nucleon. This choice can be motivated
within a constituent quark picture of the nucleon. In
this case +s = 2sM is an average mass of the residual
two-quark intermediate state, and 4(kz) is the squared
momentum space wave function of the constituent quark.
Here we will not confine ourselves to some particular
model, but rather choose the spectral density at small
values of s in such a way that we reproduce the mea-
sured valence quark distribution. The contribution &om
Eq. (22) to the deep-inelastic structure function is

where C is a Lorentz-invariant function of s, u, and k,
which is related to the spin-averaged amplitude T as fol-
lows:

T(s, u, k ) = —(u —s)C(s, u, k ).
2

(28)

We emphasize here that the amplitude T(s, u, k2) de-
scribes both the qN- and the qN-scattering channels. In
the s channel T(s, u, k ) coincides with the antiquark-
nucleon scattering amplitude T~~(s, k ), while in the
u channel T(s, u, k2) gives the quark-nucleon amplitude
TqN (u, k2).

We are now prepared to calculate the contribution from
mechanism (ii) to the quark spectral densities (16) and to
the quark and antiquark distributions (17). Using Eqs.
(26), (2?), and (28) we obtain

p(s)

Sp

FIG. 3. A schematic picture of the quark spectral function.

As compared to the spinless case discussed in [16], the spin
1/2 distributions have a generic factor of 2 which re8ects the
number of spin degrees of freedom, and the term in brackets
under the integral replaced the factor x.
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] max(
q~ "i(x) = da

(27r) s

oo k „(uz)
q&"l(x) = du

(27r)s u —M2 —k2) '

ImT ~(a, k') ( m, —k
dp2 q & + q

(k2 —m2)2 ( a —M2 —k2] '

2 ImT~~(u, k2)

(k2 —m2)2

(29a)

(29b)

where we have introduced an integration over the squared
quark four-momentum k2 instead of integration over
transverse momentum k~.

In what follows we shall consider the structure function
F2 of an isoscalar nucleon, F2 ——2(F2 + F2"). Isospin

symmetry implies that I"2 is proportional to the fiavor
singlet combination of quark and antiquark distributions,

F"( ) = —*):[q( )+q ( )]. (30)

(Here we have assumed that the difFerence between
strange and charmed sea is negligibly small. ) In our
model the quark and antiquark distributions are given

by

):[q-(*) + q=(*)]

= q
' (x) + NyN, q~" (x) + q~"l (z), (31)

F ( ) = q
' (*)+ NyN, q

"~(*)—q
" (*) (32)

This structure function is normalized to the number of
valence quarks in the nucleon.

B. Quark-nucleon amplitude

In order to specify q~"l and q~"l we note that the am-
plitudes Tq~ and TqN can be connected to observable
proton-proton and antiproton-proton forward-scattering
amplitudes. We recall the well-known phenomenological
fact that total hadronic cross sections at high energies
are proportional to the number of constituent quarks in
hadrons [33]. Hence the forward proton-proton ampli-
tude can be written in terms of the quark-proton ampli-
tude in the laboratory frame as

Tm(S) &~~(yS k')
(33)

where q&'l is given by Eq. (23) and represents the sum of
quark distributions of different fiavors due to the mecha-
nism (i). The quantities q~"l and q&"& are the quark and
antiquark distributions related to mechanism (ii), aver-

aged over flavor and color. They are given by Eqs. (29),
where TqN and TqN are quark-nucleon amplitudes aver-
aged over quark spin, flavor, and color. We have Ny = 4
and N, =3.

The valence quark distribution is measured in neutrino
scattering in terms of the structure function Fs(x). In our
model it is given by

Here 8 is the squared proton-proton center-of-mass en-

ergy, k is the four-momentum of a constituent quark
in the target, and y is the fraction of the target light-
cone momentum carried by the constituent quark. A
similar equation relates the antiquark-proton amplitude

Tqz to the antiproton-proton forward-scattering ampli-
tude T„p. In -the laboratory frame y = (ko + ks)/M,
ko ——M —gm&2 + k2, where m~ is the mass of the spec-
tator system. The averaging in Eq. (33) is performed
over the spectral function of the constituent quarks in
the proton target. In order to estimate typical values
of y and k we assume mR 3M. This gives average

values y
—0.3 and k2 = (ks2 —k2) = —0.1 GeV~.

The constituent quark-nucleon scattering amplitudes
in (33) might, in principle, be difFerent from the quark-
nucleon amplitudes entering in Eqs. (29). However, at
small values of x, the quark-nucleon center-of-mass en-

ergy a in Eq. (29) will be of the order of a 1GeV2/x.
As a consequence the typical formation time of a con-
stituent quark will be 7 p [ko ~/m2 a/2m2M 1/Mz.
This is comparable to the propagation length A 1/Mx
of the qq pair in the photon wave function. We can there-
fore assume that at small x the quark-nucleon amplitudes
which enter in the quark distribution functions can be ap-
proximated by the constituent quark-nucleon amplitudes
determined by hadron-nucleon scattering.

Through Eq. (33) the a dependence of the quark-
nucleon and antiquark-nucleon amplitudes TqN and Tq~
is fixed. Above the resonance region the pp and pp ampli-
tudes are well reproduced by Pomeron exchange with an
intercept o.~ ——1+e, and by exchange of two Regge tra-
jectories corresponding to the ur and the f mesons with
intercepts a = ay = o.~ = 1/2. The forward-scattering
amplitudes can then be written as [36]

T~~(S) =St 8 (i+tatt —
)

(. Rg + Ra cos 7rcxg l
Sin 7I Cl~ )

T (S)= RpS (i -+ tan—
2„,f . Ra + R~ cos 7I o.R )
sin vrnR

(34a)

(34b)

e = 0.0808)
nR ——0.5475,

Rp = 21.70mb/GeV ',
R~ = 56.08mb GeV(1-.R)

R~ —98.39mb Ge+(

where R~ is the residue of the Pomeron, while Bg and.
R~ stand for the sum and the difFerence of residues of
the f and ur trajectories. In the following we shall use
the best fit parameters of Ref. [37]:
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The amplitudes Tq~ and TqN should depend not only
on 8, but also on the squared quark four-momentum k .
%e assume that the k behavior of the Pomeron and
Reggeon parts of the amplitudes is given as

O,k coHsw
Ci4 Hattison etal.

Tq~(s, k ) = gp(k )Tq~(s, 0) + gR(k )T~~(s, 0), (35)

with functions g~ ir(k ) for which we chose the following
ansatz:

0.5

gi R(k ) = (1 —k /AJ, „) (36)

with momentum-space cutoffs A~, A~ and exponents nI
and AR. 0.25 0.5 0.75

C. Nucleon structure functions at large Qs

In this section we determine g~(k ) and gg(k2) and
other remaining parameters such that we reproduce the
measured structure functions in the scaling region. This
involves the antiquark distributions q(z) [Eq. (29) in our
model] together with the structure functions FP (z) and
FP(z) [Eqs. (30) and (32)].

The valence quark distribution is mainly given in terms
of the momentum distribution Ci(k2) in Eq. (22), which
still needs to be specified. We use the ansatz

and neutrino data [41,42] for FP(z), xFs (x), and q(z)
at average momentum transfer Q2 = 5 —10GeV2. Our
result shown in Fig. 4 uses

A~ ——1.2 GeV,
A~ ——2.5 GeV,
AR ——4.0 GeV,

(39)

FIG. 4. The nucleon structure functions F2 (z), F3 (x),
and the antiquark distribution q(z). Experimental data for
the F~ (z) (circles) are from Ref. [40], for Fs (z) (squares)
and q(z) (triangles) from Refs. [41,42].

C(k') = e(0) (1 —k'/A' )-" (37)
together with

with a suitable cutoff parameter Av and a characteristic
exponent nv The no.rmalization constant C(0) is de-
termined through the number of valence quarks in the
target.

From Eqs. (17) and (18) it follows that the asymptotic
behavior of the quark spectral functions at k ~ —oo
determines the structure functions at z —+ 1. Indeed, our
model gives

10

10

&0'

q('l (z m 1) oc (1 —z)"

q("l (z -+ 1) oc (1 —z)"~ R+ (38b)

10'

10 4 a ~ s I ~ c a ~ I g ~ & a 1 i ~ ~

0 0,25 0.5 0.75 1

The quark counting rule [33,38,39] for the valence dis-
tribution requires q('l(z -+ 1) oc (1 —z)s, which fixes
n~ ——4. Furthermore, the sea quark distribution should
approach zero at z + 1 with a high power in (1 —z).
We find that the Pomeron and Reggeon exponents nI ——

nR = 4, which correspond to a (1 —x) behavior at large
z, give a good fit to q(z).

The Regge parameters of the quark-nucleon and
antiquark-nucleon amplitude in Eqs. (29) are already
fixed at an averaged squared momentum [k [

0.1 GeV
by employing Eq. (33). Note that the overall magni-
tudes of the type (ii) quark and antiquark distributions
(29) are set by the qN and qN cross sections. Using
Eq. (33) we find o4~ = o~iv = so~r = 13mb at high
energy. The remaining scales enter through the cutoffs
in gJ ii(k ) and C'(k ), together with s and so, which
separates high and low energy parts of the quark spec-
tral density (21,22). These parameters are determined
by fits to the nucleon structure functions at large Q .
In our analysis we use recent NMC data [40] for F2(z)

(s)

0.5

p
i

)p-3 s ~p &
& s ~p ~

FIG. 5. The nucleon structure functions F~ (x), Fz (x),
and q(x) at large (a) and small (b) values of the Bjorken
variable x.
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Sp = 28 = 4GeV (40) 0.6

The global view in Fig. 4 is supplemented by more de-
tailed comparisons with data at large z [Fig. 5(a)] and at
small z [Fig. 5(b)]. In particular, Fig. 5(a) demonstrates
that the exponents n~ ——nI ——n~ ——4 are properly cho-
sen to reproduce tails of the distribution functions, while

Fig. 5(b) focuses on the behavior at z & 0.1 where sea
quarks begin to dominate F2N.

A remark concerning the value of 8 is in order. This
parameter roughly corresponds to the average squared
mass of the residual quark-gluon system, with one quark
removed &om the nucleon. The value of s depends on
the scale at which we study the system. For exam-
ple, in the bag model (or in a constituent quark model)
~s sM, where M is the nucleon mass. This cor-
responds to the quark distributions at a low resolution
scale Q2 & 1 GeV2, which thea has to be evolved to the
momentxxm transfer Q2 at which the experimental data
are takea (e.g. , [43]). In terms of the quark spectral den-
sities [(19) and (20)] the Q2-evolution effect modifies the
spectrum of iatermediate states by adding radiative cor-
rections which generate gluons and qq pairs. This shifts
the quark spectra to larger values of s. In our approach
we fit to the measured structure functions at large Q2

and efFectively incorporate the Q2-evolution effect in the
parameter s, averaged over the Q2 range of the experi-
mental data.

D. Structure function at small Qz and small z

So far, we have only discussed the scaling region, Q )
5GeV2. New phenomena enter at small Q2 and small
x. This is also where shadowing e6ects show up in the
nuclear structure functions F2, so that special attention
is assigned to this region.

At small Q2 & 1 GeV the scaling behavior is violated.
Furthermore, conservation of the electromagnetic current
requires that F2 must vanish as Q2 goes to zero. We
therefore need a model which provides a smooth tran-
sition from the scaliag to nonscaling regions. Here we
discuss a model based on the generalized vector-meson
domiaance (GVMD) ideas [11].In the GVMD approach
the structure function F2 at small x ( 0.1 is expressed
in terxns of a dimensionless spectral function II(p2) of
hadronic states which couple to the photon:

Q 2 &II(&)
F2 (z, Q ) = d& 2 2 2 o~(p, S). (41)

7r p p +
Here oxv(p, , S) is the cross section for scattering of
a hadronic state with mass p from the nucleon, and
S = M2+ Q2(1/z —1) is the total squared center-of-xnass

F&(x,Q~)-

O.e

0.2

0 I

10' 2 10' & 10"
a' [ueV2)

FIG. 6. The Q behavior of F2 (z, Q ) at small z. The
data points are from Ref. [40] at z = 0.008 (circles) and
z = 0.0175 (squares). The contribution from vector mesons

(43) is shown by the dashed line. The solid curve is the
full result using Eq. (44). The dotted line is the result for
F2 (z = 0.01,Q ) using an empirical parametrization of the
NMC data [40].

energy of the virtual photon-nucleon system. The dis-
tribution II represents the spectrum of correlated quark-
antiquark pairs and multimeson states with spin and par-
ity J = 1 . It separates into a low-mass part dominated
by the vector mesons and a high-mass continuum part II,:

m2 iII(p)= ) ~ 2 ~ b(p —mv)

+11 (v )0(& po) (42)

where the continuum starts at pp & 1GeV, just above
the +meson mass. For the vector-meson masses mv,
their coupling constants gy and cross sections ovN we
use standard values summarized in Table I.

The vector-meson part is then

FN, vM
2

2 m2)2 1
2

g gv & I, mzv+ Q2p

2 +

It dominates the structure function at small Q
1 GeV . On the other hand, at large momentum transfer
Q2 )) mzv the vector-xneson contribution (43) vanishes
as m2v/Q2. In this region large masses p2 Q2 in the
II, part of the spectral function (42) take over. At large

Q )) yp2 this piece leads to a structure function with
proper scaling behavior.

With this consideration in mind, we make the following
ansatz in order to interpolate between the regions of small
and large Q at z & 0.1:2

TABLE I. Vector-meson masses mv [44], coupling con-
stants gv [45], and cross sections o'vN [46].

For the asymptotic part F2 ' '(z) of the structure func-

mv (MeV)
768.3
782.0
1019.4

gv/4~
2.38
18.4
13.8

o'vN (mb)
27
27
12 Equation (44) is similar to a structure function model dis-

cussed in [47].
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tion we use our model as described in the previous sec-
tion. The parameter Q() is expected to be of order ps 1
GeV . Scaling occurs for Q )) Q().

In Fig. 6 we show the characteristic behavior of
FP (z, Q2) at a small value of the Bjorken variable (x =
0.01) as a function of Q . We find that Q02 ——2GeV2 gives
a good description of the data. One observes that vector
mesons dominate at Q (( 1GeV, whereas the scatter-
ing of uncorrelated qq pairs governs FP for Q2 ) 2 GeV2.
At Q2 = 1GeV, roughly one third of F2 at z = 0.01
is due to vector mesons; at Q2 = 5GeV2 they still con-
tribute about 10%. This is in agreement with results
obtained within the kamework of the generalized vector-
meson dominance model [11].

IV. NUCLEAR STRUCTURE FUNCTIONS

We now turn to our main theme, namely DIS on nu-
clear targets and the structure function Fz+(z, Q2).

Let us first discuss the region of small z. We have
pointed out that deep-inelastic scattering at small z (as
seen &om the target rest &arne) proceeds dominantly via
the mechanism (ii), and we now investigate nuclear effects
based on this observation. As we already mentioned, for
z ( 0.1 the propagation length A (Mz) i of qq fiuc-
tuations in the photon wave function exceeds the aver-
age distance d 1e8fm between bound nucleons in the
nucleus. The propagating qq pair can then interact co-
herently with several nucleons. This multiple scattering
effect becomes significant when A is larger than the quark
mean free path I = (per~~) i, where p is the average nu-

clear density. In terms of the x variable the last condition
reads x ( per~~/M. The nuclear effects due to multiple
scattering of the qq pair will saturate for z ( (MR~)
i.e. , when the propagation length A exceeds the nuclear
radius R~. In this case the virtual photon converts into
a qq pair already outside the nucleus. This pair inter-
acts with nucleons at the nuclear surface which absorbs
part of the incoming Aux and thereby screens the inner
nucleons. This is the shadowing effect which we study in
detail in the next section.

On the other hand, coherent multiple scattering effects
are not important at large z where A ( d and the qq
Huctuation has no time to scatter more than once. In
this region the DIS process takes place mainly on a single
nucleon in the nucleus. Effects due to nuclear binding
and Fermi motion are now important. We discuss these
in detail in Sec. IVB.

A. The sxnall x region: Shadowing

As in our previous discussion of the free-nucleon struc-
ture function I"2, we use the following ansatz for the
nuclear structure function:

+ o

and discuss the asymptotic (scaling) and vector-meson

contributions to I"2 separately.
Consider first the scaling part F2 ' '(x). It is formally

obtained &om FP(z) in our model through the replace-
ment of the quark-nucleon and antiquark-nucleon ampli-
tudes Tqiv and Tq~ in Eqs. (29) by corresponding nuclear
amplitudes, Tq& and T~2i. For the type (i) distributions

in Eq. (31) we simply use q& (x) = Aq~ (x); the validity
of this approximation will be discussed in the next sec-
tion. We use Glauber multiple scattering theory [48] to
express the nuclear amplitudes T~ in terms of the TN.

T~(s, t)

= —2is d be'~' A exp i y b —b —lA.
2

Here the averaging is performed over the nuclear wave
function and the sum runs over all bound nucleons lo-
cated at positions r~ = (b~. , z~) in the nuclear c.m. frame;
q' is the momentum transfer, t = —q' . The eikonal
phase y(b) is related to the nucleon amplitude T~ as
follows:

7)s(s, 4) = —2is f 4 be'e '

(exp[42(b)] —7). (47)

The Glauber analysis of high-energy hadron scattering
from nuclei indicates that the result for T~ is not sensi-
tive to NN correlations and other details of the nuclear
wave function [49]. We can therefore evaluate the nuclear
matrix element in Eq. (46) in a simple approximation as-
suming that the squared nuclear wave function is given
by the product of Gaussian one-particle densities:

A

~)I7~(ri, . . . , r~) ~' = (7rB') ' 'exp( —2,'/B'). (48)

The parameter R = 3R& is fixed by the nuclear-root

mean-square radius R~ ——1.12 A / fm as determined by
electron scattering data. Using this wave function one
can easily calculate T~ in terms of T~, with the result

(49)

The effective number n,g of terms which contribute to
the sum (49) can be estimated as the average number
of rescatterings of a classical particle moving along the
diameter of the nucleus: n, fr = 2R/I, where I is the quark
mean free path, and t —3 fm for a quark-nucleon cross
section o q~ —13 mb. Therefore the triple scat tering
term j = 3 practically saturates the multiple scattering
series for nuclei up to A 100. In the actual calculations
we keep four terms in Eq. (49).

The calculated ratios F2 ' '(x)/AF2 ' '(z) are shown
as dashed curves in Fig. 7 for several nuclei. Compar-
ing these results with the recent NMC data [2], we find
that roughly only half of the measured shadowing effect
can be explained in this way. In other words, mechanism

(ii) alone, with quark- and antiquark-nucleon interactions
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F2

AF

0.9-

0.8- 12C,

0.7
10-2 10'

(b)
FA

PFN

0.9-

constrained by high energy pp and pp data, cannot ac-
count for all of the observed nuclear shadowing.

We find this not surprising, for the following reason.
The experimental data at small x are taken at relatively
small values of Q, while the dashed curve in Fig. 7 corre-
sponds to large Q ) 5 GeV2. For example, at z = 0.01
the average momentum transfer is Q2 = 1.6GeV2. But
at these low Q it is not justifiable to consider only lead-

ing twist contributions to the structure function. The
multiple scattering of strongly correlated qq pairs on
the nuclear target now becomes important. This brings
in the vector-meson contribution F2 ' to the nuclearA,VM

structure function (45). Its form is analogous to that
of F2 ™for the free nucleon [see Eq. (43)], where now
the vector-meson-nucleon cross sections ovN are replaced

by corresponding nuclear cross sections ovA. The latter
is related to the former via the Glauber- Gribov multi-

ple scattering series [50,11]. Together with the scaling

part F2 ' '(z), which includes the nuclear interaction of
uncorrelated qq pairs, we then calculate the full nuclear
structure function Fz+(z, Q2) according to Eq. (45).

In Fig. 7 we coinpare our results for R(z, Q )
F&+(z, Q2)/[AF2 (z, Q2)], including vector mesons, with
the data of the NMC collaboration [2]. For every z bin,
R(z, Q2) is calculated using the corresponding average
(Q2) as given in [2]. The result is shown by the solid line.
We see that if one includes vector mesons the measured
shadowing can be described quite well. As we already
discussed in Eqs. (44) and (45), the contribution of un-
correlated quark pairs to F2 and F2 decreases with de-
creasing Q2 ( Qz~ —2 GeV2. Consequently, their contri-
bution to the measured shadowing effect becomes smaller
with decreasing z(( 0.01) since there the experimental

(Q ) falls off rapidly.
In summary we find that the scaling contribution to

the nucleon structure function alone can account for only
about half of the measured shadowing effect. The other
half results from the interactions of strongly correlated

qq pairs, i.e., vector mesons, with the target. The fact
that the observed shadowing is only weakly Q2 depen-
dent [2] has now a plausible explanation: although the
vector-meson contributions vanish at large Q2 there is
still a sizable shadowing effect due to the interaction of
uncorrelated quarks or antiquarks with the nuclear tar-
get.

B. The large e region: Convolution model

(c)

0.8-
~ ~

0.7
10 2

"Ca

10 '

&g"(*) = f&w &w~a(v) +,"(~/v). (50)

In the region z & 0.2 nuclear structure functions are
commonly described within the impulse approximation
(see Fig. 8) ignoring final-state interaction of the nucleon
debris with the remaining nuclear system. The Feyn-
man diagram in Fig. 8 is usually written in the form of
a convolution (see, e.g. , [32]):

FA
2 1-

AF"

08-
~v

07—

oe
'

10-3 10 2

132
X

10'

Here the structure function F2N(z) is folded with the
(light-cone) momentum distribution DN~A(y) of nucleons
in the nucleus. Starting from the pioneer work [20) Eq.
(50) has frequently been applied in calculations of Fermi
motion and binding corrections [21—29]. The convolution
formalism is also used to evaluate meson cloud effects
[54], exchange currents corrections [25,55), etc. (for a
review see Ref. [8]).

However, as pointed out in a recent analysis [56], a
derivation of the convolution model (50) even within

FIG. 7. The shadowing efFect calculated for C (a),
Ca (b), and Xe (c) in comparison with the experi-

mental data [2,3]. The dashed curve corresponds to large
Q (Q ) 5GeV ) and represents the scaling part of the
nuclear shadowing. The solid curve is the result of the full
calculation including the vector mesons. For every x bin we
use averaged (Q ) given in [2].

An attempt to estimate the inBuence of 6nal-state interac-
tion on leading twist nuclear structure functions was made in
Refs. [51—53).
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there are only four independent terms which can be con-
structed kom the momenta p, q and the Dirac matrices:

k,
fN fs + fv 'Yfi + fT &cap (55)

PA

FIG. 8. Impulse approximation for the nuclear Compton
amplitude.

the impulse approximation implies several assumptions
which are generally not justified. In this section we re-
examine the derivation of Eq. (50) on the basis of our
covariant approach developed in Sec. II. It will turn out
that off-shell effects are important, so that the simple
convolution model is generally not a good approximation
for I'

We start from Eq. (8) which gives the nuclear light-
cone distribution function fA(zA) in terms of the quark
correlator b,A(k, PA) in the nucleus. Consider now the
diagram Fig. 8. It can be written as a convolution of the
quark correlator b, N(k, p) in the bound nucleon and the
nucleon propagator G(p, PA) in the nucleus:

d4p
i-)'A(kiPA) i

4 TrN +N(kip)G(pi PA) ~ (51)
2m. 4

with

2M'
fi

„

f2
2M2" +

2p. q

p fs p
2 Mp'q

(56a)

(56b)

(56c)

f (*) = l -T[(/+M)f (* p')l=f. +f +f'

We see that the tensor term in (55) does not contribute
to the unpolarized structure functions.

Substituting (55) into (53) one finds an equation which
connec)s the nuclear light-cone distribution with the
functions f, :

where o p = z[p, pp] and f; = f, (z, p2), i = 0, 1, 2, 3,
are dimensionless Lorentz-invariant functions. The coef-
ficients in Eq. (56) are chosen in such a way that the
on-mass-shell distribution function averaged over the nu-
cleon spin is given by

bN(k, p) = —TrN b,N(k, p)(p+ M) (52)

Substituting Eq. (51) into Eq. (8) we obtain for the
nuclear light-cone distribution

d'
fA(zA) = i 4TrN fN(x', p —) G(p, PA), (53)

with xA = Q2/2PA. q and

d4k Trq (/I AN (k, p)

(2.)
(, .q')

pq)
(54)

Here and in the following the "hat" on A~ and other
quantities indicates their matrix structure in nucleon
Dirac space, and the trace TrN is taken with respect to
nucleon variables. The four-momenta Pg, p, and k re-
fer to the nucleus, the bound nucleon, and the quark in
the nucleon, respectively. The quark propagator in the
on-mass-shell nucleon (5) averaged over nucleon polar-

izations is related to A~ as follows:

(58)

The functions C;(p, q) are given by traces of the nucleon
propagator G with the different Dirac matrices in Eq.
(55):

1
Cp

—— Tr G(p, PA),2M
1

C, = Tr [G(p, PA)P],

1
C2 —— Tr [G(p, PA) )],

J-q~
Cs —— Tr [G(p, PA) o p] .

2p- qM

(59a)

(59b)

(59c)

(59d)

We emphasize here that, in general, Eq. (58) does not
reduce to the simple convolution formula (50) with re-

spect to the light-cone momentum. There are two reasons
for this. First, terms with diferent Lorentz structures in
Eq. (55) are convoluted with correspondingly diferent
nuclear distribution functions. Secondly, the structure
functions in the off-shell region depend not only on the

Here the trace Try is taken with respect to quark vari-
ables and x' = Q /2p ~ q is the Bjorken variable of an
ofF-shell nucleon with four-Inomentum p.

Let us now examine the Lorentz structure of fN in the
nucleon Dirac space. In general, it can be expanded in
terms of a complete set of 16 Dirac matrices. However

We ignore possible terms proportional to pq and p pq which
do not contribute to the unpolarized structure functions.
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scaling variable x' but also on the off-shell mass p2 of
the bound nucleon. This will now be examined in more
detail.

In the following we shall consider the nuclear struc-
ture functions as functions of the "nucleon" Bjorken
variable x = Q2/2Mqo instead of the "nuclear" one,
xA = q /2MAqo. The structure function F2 as a func-
tion x reads

F2"(x) = x PA(x) —&A( x)]-
M (M

A )
(61)

One can easily see that the transformation (61) preserves
the normalization of the nuclear distribution function as
a function of z:

f
M~/M 1

"»A(x) = dxAfA(xA) = 3A.
—M~/M —1

(62)

+A(x) = dp DN/A(y, p')fN(x/y B ),
y)l l

y

fN(x, p') = V'p'/M'fo(x p')
+(p'/M')f (* p')+f. ( I'), (64)

DWA(»&') =,S(&')
I
1+

M I

xb
~

„—+
~

b'( 2 — '2).p+l
M) (65)

Equation (64) can be identified with the light-cone dis-
tribution function of the bound nucleon. In Eq. (65) we
have introduced the nuclear spectral function

S(p) = 2vr ) b(po —M —s„)i%'„(p)i (66)

where the sum includes all residual nuclear states with
A —1 nucleons which carry together the momentum —p.
All other quantum numbers are denoted as n. The nu-
cleon separation energy is defined as s„=Eo(A)—
E (A —1). Furthermore, @ (p) = ((A —1)„,—p~@(0)~A),
where )Ii(0) is the nonrelativistic nucleon Beld operator at
r = Q. The spectral function is normalized to the number
of nucleons in the nucleus,

d4p
S(p) = A, (67)

Equation (58) can be simplified if one assumes that the
nucleus is a nonrelativistic system. In this case, as
shown in the Appendix, As vanishes up to terms of order

~p~ /M if one uses the nonrelativistic form for the nu-
cleon propagator. Moreover, As ——0 for spinless nuclei.
In the same approximation the functions Ap, Ai, and A2
are proportional to each other [see Eqs. (A7) in the Ap-
pendix]. This allows us to introduce one unique nucleon
distribution function DN/~ which, however, depends also

on p . Using Eqs. (A7) in the Appendix we have,

which guarantees the correct normalization of the nu-
cleon distribution function in Eq. (65).

It is convenient to introduce also the distributions of
quarks, q(x, p ), and antiquarks, q(x, p2), in the bound
nucleon. These are expressed through fN(x, p2) by Eqs.
(7):

e(x p') = fN(* u')
e(x p') = fN—( *—p')

(68a)

(68b)

In terms of these distributions the structure functions of
the bound nucleon are given by the usual parton-model
formula [see Eq. (6)]. The relation between the nuclear
and the bound-nucleon structure functions then reads:

+2"(~) = f&v f~u'Dr~i(u n')+~ (*le u')'(69)

Let us examine this equation in more detail. The nucleon
distribution (65) is strongly peaked around p2 = Mz and

y = 1, with a characteristic width b,y yz/M, where pz
is the nucleon Fermi momentum. Expanding the bound-
nucleon structure function in Eq. (63) in a Taylor se-
ries around these points and integrating term by term,
one then obtains the following expression for the nuclear
structure function per nucleon [57]:

F,.(.)/A F, (.) ().F (.)+().,F (.)3M

+2 p, ( ) —(T) & .~F."(*;p') ~E»' ), =M
. (70)

N II
Here F2N (x) and F2N (x) are derivatives of the structure
function with respect to x, and (s) and (T) are the mean
separation and kinetic energies of the bound nucleon,

1 d4p
(&) =

A (2 ), S(S)~

1 d4p p2

(2.)"(")2M

Corrections to Eq. (70) are of higher order in (c)/M and
(T)/M One should . also note that Eq. (70) can safely
be used for 1 —x ) py/M 0.3. In this region the
condition x/y & 1 gives practically no restrictions on the
integration over the nucleon momentum p in Eqs. (71)
and (72).

The Brst three terms in Eq. (70) are identical to the re-
suh of [21,25] in their discussion of the EMC effect, while
the last one reflects the leading contribution &om the p
dependence of the bound-nucleon structure function. Let
us 6rst neglect the latter and discuss effects due to sepa-
ration and kinetic energies. These terms are of opposite
signs and the competition between them results in a be-
havior of the ratio B(x) = F2A/AF2N at x ) 0.3 similar to
that seen in the experiment. As it was 6rst pointed out
in Ref. [21] and discussed by many authors (see, e.g. , Ref.
[8] for a review), this may account for the EMC effect at
intermediate and large x. An important (and still open)
problem in this respect is a reliable calculation of (e)
and (T) [27]. In a simple nuclear shell model the removal
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energy is averaged over all occupied levels. One finds typ-
ical values (a) —(20—25) MeV and (T) = 18—20 MeV.
Correlations between nucleons change the simple mean-
field picture significantly and lead to high momentum

(p ) pR) components in the nuclear spectral function
(66). This in turn causes an increase of the average re-
moval energy (a). In order to demonstrate this let us
consider the Koltun sum rule [58], which is exact if only
two-body forces are present in the nuclear Hamiltonian:

(a) + (T) = 2pB.

Here p~ —8MeV is the nuclear binding energy per
nucleon. In particular, Eq. (73) tells that an increase
of (T) due to high momentum components implies also
an increase of i(a)[. We refer in this respect to a re-
cent calculation [59] of the spectral function of nuclear
matter based on a variational method. This calcula-
tion shows that there is a significant probability to find
nucleons with high momentum and large separation en-
ergies. Integration of the spectral function of Ref. [59]
gives (T) 38 MeV and (a) = —70 MeV. In order to
estimate these quantities for finite nuclei one usually as-
sumes [28] that the high momentum component of the
nucleon momentum distribution is about the same as in
nuclear matter, which gives (T) = 35 MeV for a wide
range of nuclei. The latter quantity together with Eq.
(73) leads to (a) = —50 MeV. It should be noted, how-
ever, that, even though a qualitative understanding of
the EMC effect can be obtained using such values for (a)
and (T), a quantitative description is still lacking.

I et us finally discuss nuclear efFects due to the ofF-

mass-shell properties of nucleons bound in nuclei. We
note in this respect that the analysis of Sec. II can be
applied also to Eq. (54), which describes the quark and
the antiquark distributions of the ofF-shell nucleon. We
parametrize the loop momentum in Eq. (54) in terms
of the Sudakov variables, k = np + Pq' + k~, where p
is the nucleon momentum in Eq. (51) and q' = q +
z'p. Assuming again that the quark correlator AN is an
analytic function of s = (p —k), u = (p + k), and k
we end up with equations similar to Eqs. (17) and (18),
where, however, the squared nucleon mass M is now
replaced by p2. In particular, for the quark distribution
q(z', p2) we have

itself via the p2 dependence of k
„

in Eq. (74).

Taking both into account we obtain from Eq. (74),

&q(z, p')
Op2

da zpR(s, k, z, p )16+2

2 OpR (s, k2, z, p2)

t9p
(75)

The first (positive) term in Eq. (75) arises from the p2

dependence of k2 „.Its contribution to Eq. (70) leads to
an enhancement of the nuclear binding efFect. However, if
only this "kinematical" p2 dependence would be present
the number of valence quarks in the nucleon would in-
crease with p . Therefore, to fix the normalization of the
valence quark distribution,

1

dz q(z, p ) —q(z, p ) = 0,
0

(76)

pR(s, k', z, p') = C (k', p')h(s —s). (77)

Vile assume that the k dependence of the function
4(k, p2) is the same as for the on-mass-shell nucleon,
Eq. (36), and that the p2 dependence comes from the
corresponding dependence of the cutofF parameter Av,
4(k2, p2) = 4(k2; Av (p2)). We fix the p2 dependence of
Av in such a way that Eq. (76) is satisfied. Solving this
equation we find BA~&/Bp2 = 0.15 at p2 =M2.

an explicit p2 dependence of the quark spectral density
is necessary. [Of course, cancelation of the "kinematical"
and the "dynamical" p~ dependences in the integral (76)
does not imply that Bq/Bp2 vanishes for a given value of
x.]

Let us now evaluate this effect using the model devel-
oped in Sec. III. We consider the region of large x & 0.2
where one can neglect the sea part of the quark distri-
butions. Therefore we keep contributions to the quark
spectral density pR only &om mechanism (i) which dom-
inates in the large z region. Recalling Eq. (22) we now
have

2
max

q(z', p ) = ds dk2 pR(s, k, x', p ), (74)
16Vr2

where k2 = x' [s/(x' —1)+p j [cf. Eq. (18)] and pR is
the quark spectral density given by an equation similar
to Eq. (16).

We conclude from Eq. (74) that the p2 dependence of
the structure functions has two primary sources:

F4 II

AFN T

0.9-
0.8-
0.7

0
I

0.25

Au,

I

0.5
I

0.75

(1) Explicit dependence of the quark correlator A~ in
Eq. (54) on p ("dynamical" p dependence). This
leads to a p dependence of parameters character-
izing the quark spectral density pR.

(2) Dependence of the invariant variables s and u on
p ("kinematical" p2 dependence). This manifests

FIG. 9. The ratio of the nuclear and nucleon structure
functions calculated using Eq. (70) with (a) = —50 MeV and

(T) = 20 MeV. The dashed curve is the result without correc-
tions due to the p dependence of the bound-nucleon structure
function. The solid line is the result of the full calculation.
The experimental data for Au are taken from [7].
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1.2

40(

small enhancement of Fz+ due to nuclear pion cloud ef-
fects [25,55) for 0.2 & z & 0.4, which are omitted in the
present calculations.

p
A

AF",

0.8 ;

0.7 I

0.25

I

0.5
I

0.75

FIG. 10. Result of the full calculation for Ca, including
shadowing, binding, and off-shell efFects.

The p dependence of A~ can be viewed as an efFect of
changing the bound nucleon size B~ 1/Av in nuclei.
In fact, BAi, /o)p & 0 implies a "swelling" of the nucleon
in the nuclear environment. For the relative change of
the radius of the bound nucleon, we obtain

bB~ 1 bAV BAv M(s —T)
R~ 2 A~~ Bp2 A2V

(78)

In this way we find a very small (0.8%) increase of the size
of a nucleon bound in the nucleus, indicating a remark-
able stability of the nucleon. s This result is compatible
with recent findings using quite a different approach [53].

In Fig. 9 we show a typical result for R(z)
Fz+(z)/AFz (z) calculated using Eq. (70). The dashed
curve corresponds to the impulse approximation neglect-
ing any p~ dependence. The solid curve is the result of
the full calculation including Eq. (75). The "kineinati-
cal" and the "dynamical" p dependence tend to cancel
each other partly at small x & 0.3. At x 0.5—0.6 the ef-
fect of the p2 dependence of the bound-nucleon structure
function is clearly visible and leads to an enhancement
of the nuclear binding effect.

For z & 0.7 one should keep in mind that Eq. (70)
cannot be applied in this region. Instead, one should use
Eq. (69) to which Eq. (70) is an approximation. Also,
the ratio Fz+/AFz~ becomes sensitive to uncertainties in
the shape and magnitude of the &ee-nucleon structure
function at large x.

A result (for 4oCa) of the unified description which
incorporates both the shadowing efFect at small x and
the binding, Fermi motion, and off-shell corrections at
large x is shown in Fig. 10. While the overall pattern of
the data is quite well reproduced, we see that once the
ofF-shell p dependence of the bound-nucleon structure
function is included, there is some room for a possible

V. SUMMARY AND CONCLUSIONS

We have presented a unified description of deep-
inelastic scattering on nuclear targets which covers the
whole region 10 s & z & 1 of the Bjorken variable. Our
starting point is a relativistic, covariant formalism which
makes use of the analytic properties of quark correlators.
In the infinite momentum frame we recover the usual
parton model. In the laboratory system, which is the ap-
propriate frame in which to investigate nuclear structure
functions, this approach naturally incorporates two basic
mechanisms, namely, (i) scattering from quarks and an-
tiquarks in the target and (ii) photon conversion into a
quark-antiquark pair and subsequent interactions of this
pair with target constituents.

For small x, say, below x & 0.1, the second one of
these processes dominates and produces shadowing. At
the momentum transfers, Q2, typical of the current ex-
periments we find that only about half of the observed
shadowing comes &om the coherent interaction of un-
correlated qq pairs with target nucleons, the mechanism
discussed in Ref. [16]. The other half comes from the co-
herent scattering of strongly correlated pairs, i.e., vector
mesons.

At larger values of the Bjorken variable (z & 0.2), scat-
tering &om the quarks of a single bound nucleon domi-
nates. The leading nuclear effects are now binding and
Fermi motion, as pointed out already in previous stud-
ies. However, we find that the naive convolution formal-
ism needs to be generalized to incorporate off-shell efFects
characteristic of bound nucleons. These off-shell effects
are by no means small. They reduce Fz+(z)/A with re-
spect to the free-nucleon structure function F2 (z) and
effectively enhance the binding correction.

ACKNOWLEDGMENTS

We thank W. Melnitchouk and A. W. Thomas for dis-
cussions and comments. S.K. thanks also C. Ciofi degli
Atti, A. Rinat, and G. West for useful discussions. This
work was supported in part by BMFT Grant No. 06 OR
735 and by the Alexander von Humboldt Foundation.

APPENDIX: NONRELATIVISTIC REDUCTION
OF MATRIX ELEMENTS

In Ref. [317 the EMC effect is attributed to a 10% increase of
the nucleon radius in the nucleus. We emphasize here that in
our study of nuclear binding and off-shell effects this increase
of size is reduced by an order of magnitude.

Consider Eq. (58) written for the distribution function
XA(z). For the following it is convenient to multiply it
by x. We have

(A1)
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where Ao ———+ Tr G(p),

Ai —— +
Tr[G(p)P],

Az ——Tr [G(p)p+],
u q~

As —— Tr G(p)cr p
Mqp

(A2a)

(A2b)

(A2c)

(A2d)

Equations (A2) are written in the laboratory frame where
Pdt = (Mdi, O), q = (qo, OT, —[q[), p+ ——po + ps, and
p+ ——po + ps. We have used the fact that z/2. " = p+/M.
Also we have introduced G(p) = G(p, P~)/2M~, where
the factor 2M~ ensures that G is independent of the nor-
malization of the nuclear state.

Consider a nonrelativistic reduction of matrix elements
(A2). We start from the nucleon propagator which can
be written as follows:

G(p) = —t f dt e'e' tT ttt(p, t)ttt(p, 0) ), (A3)

N(»t) =&
I p ~@
f 4'(p, t) &

E 2M P' )
(A4)

We have introduced a two-component nonrelativistic nu-
cleon field %. The normalization constant C is fixed by

where N(p, t) = f dsr exp( —ip r) N(r, t) is the nucleon
field operator in a mixed (p, t) representation and the
brackets denote the averaging over the nuclear ground
state, ( ) = (A[ [A)/(A[A) (see also Sec. II).

We apply a 1/c-expansion technique to obtain an ap-
proximate solution of the Dirac equation for the nucleon
field N in the nonrelativistic limit [p[/M ~ 0. Up to
terms of order 1/cs the nucleon field N can be written
as follows:

the charge (particle number) conservation condition,

(A5)

which gives C = 1 —p2/8M2.
Now we are prepared to calculate traces (A2). We

write the nucleon four-momentum as p = (M + e, p).
The squared four-momentum is p M + 2M(e' —T),
where T = p /2M is the nonrelativistic kinetic energy.
We also introduce the nonrelativistic nucleon propagator

g(p) = ,f dte-' "(T P(p, t)P (p, 0) ). (A6)

Using Eqs. (A4) and (A6) we have

M ("M)""'
2"~P~ =

M* ('+ td) ""'
&t(p) = (t+ M) «g(p),

.2E' —T
As(P) = t

2M2
tr [g(&) (& x n)s]

(A7a)

(A7b)

(A7c)

(A7d)

where the trace is taken with respect to spin. Corrections
to Eqs. (A7) are of order 1/cs. From the last equation we
see that As appears only in the order [p[ /M and can
therefore be neglected at the present level of accuracy.
Moreover, this term vanishes identically for spinless nu-
clei, where tr ger = 0. Substituting Eqs. (A7) into Eq.
(Al) and closing the integration contour in the upper half
of the complex po plane we arrive at Eq. (63).
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