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Nuclear-Matter Calculations Using a Realistic Nucleon-Nucleon Potential
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A realistic nucleon-nucleon potential is used to formulate a simple Thomas-Fermi method

for nuclear-structure calculations. The potential-energy density has only one free parameter,
which is found by fitting with Bhargava and Sprung's calculation. The short-range repulsion
is absorbed in the term containing the free parameter. The compressibility comes out to be
good. We illustrate our method in nuclear matter only with S and 'S states, although the
method is applicable in the general case.

Since Bethe' developed his Thomas-Fermi theo-
ry, several papers' have been published on the
Thomas-Fermi approximation (TFA). But while
Bethe and his collaborators started with realistic
nucleon-nucleon interactions, most other authors'
have used different types of effective interactions
for their calculations, probably because the use of
realistic two-body potentials is cumbersome even
in a TFA calculation. To simplify matters, some'
of them have assumed, following Bethe, that the
interaction can be split up into an attractive long-
range part and a repulsive short-range 5-function
part (both density-dependent and -independent).
The parameters of these interactions are deter-
mined by the nuclear-matter properties and/or
binding energy and r.m. s. radius of, for example,
an a particle, though these interactions may not
fit the two-nucleon scattering data.

In this note we give a TFA for use in nuclear-
structure calculations in which we start with
Reid's' hard-core potential. Our aim is to use a
realistic two-nucleon potential and obtain a TFA
which is simple for the purpose of actual calcula-
tions. To illustrate the method we shall consider
the 'S and 'S states of Reid's potential and use
them in the nuclear-matter case. We shall con-
sider the contributions due to all the states for
calculations in finite nuclei in future papers.

We start with the standard energy expression

(E „) =P P,'(r, )P,'(r, )G(r„r, ; r,', r,')

x P,. (r|)p,.(r2)d r, d r2d r,' d r2,

where G is the Bethe-Brueckner reaction matrix.
We write Eq. (1) in terms of center of mass and

relative coordinates

R = —,'(r, + r, ) and
(2)

r=r~ —r2

and expand around R as was done by Kumar, Le
Couteur, and Roy.~

Now, keeping terms up to the fourth order in-
stead of terms up to the second4 order in powers
of r for the potential-energy density, we obtain an
expression in terms of density and its derivatives:

E = -a,p'+ a,p' ' —ap" '+ derivative terms .

For simplicity we have put p„=pp =-,'p in Eq. (3).
The extension to the case p„4p~ is quite easy.

Here,

(4b)

Enm = -Q~p +Q2p —0 p3

= -(nl+ n', )p'+ (n2+ nl)p"'+ (nl+ nl)p'"' (S)

a, = -16 Gdr dr', (4a)
4

a2= 128 x4.Sx0.6 Gr'drdr',

g3 ———' Gy ~d r d r (4c)

and coefficients of the derivative terms are given
through a, and a, in a somewhat complicated man-
ner.

As mentioned above, in this note we consider
the case of nuclear matter with equal numbers of
neutrons and protons with the Coulomb interaction
switched off. Also, only contributions from 'S and
'S states are considered which contribute most to
the binding energy. Then the potential-energy den-
sity may be written as
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TABLE I. Different values of A, g and A', B', as
suggested by Sprung and Bhargava and Dahlblom, are
listed in this table, where R =v ( S)/v ( S) =A -Bkz, or
R = v( S)/v(S) =A' -B'k& ~

A B A' J3'

(a) 1.85 0.67
(b) 2.56 0.96
(c)

Dahlblom
Sprung and Bhargava

1.46 0.28 Dahlblom

where a,', a,', a,' may be obtained from 'S and a,', a,',
and a', from 'S states.

To find the values of the quantities a'„a,', a,'the
Moszkowski-Scott' (MS) separation method is used
in which the two-nucleon interaction v is divided
into a short-range and a long-range part v= v, +v,
at a separation distance d. a'„a2, and a3 are now
found from the integrals (4a), (4b), and (4c),
where the limits of integration are from d to ~.
We follow MS and Bethe in taking d =1 fm. We can
now write the 'S part of Eq. (5) a,s

(E ) = -a'p'+ a'p'/'(1 —ap'/') . {6)

using the Reid potential we have a', = 178.3 MeVfm'
and a,'= 444. 7 MeVfm. '

We take n as a free parameter and fix it by
means of Bhargava and Sprung's' calculated val-
ues. Since in expanding Eq. (1) we had kept up to
the fourth-order terms, n will naturally have a
value somewhat different than it would have if we
had taken the full series. Also, the short-range
repulsive term may be considered to have been
absorbed by the term containing n. In view of the
above limitations the reasonable thing to do is to
fix the parameter n by adjusting its value so that
one may reproduce the Sprung results.

It is seen that putting a =1.05, Eq. (6) gives val-

B = v('S)/v('S) =A Bkz, - (7a)

or

ft = v('S)/v('S) =A' B'kr'-,

where A, B or A', B' are taken from Bhargava and
Sprung's' and Dahlblom's' calculations. It is easy
to calculate the 'S-state contribution using our
method. We have considered all three sets of val-
ues mentioned by Bethe to see which one is most
suitable. These are given in Table I.

Considering the contribution from both 'S and 'S
states we have for the potential-energy density

E. =(E. )„+(E. )„
= [ -«[p'+ al p"'(I - ap"')] (I +&)

= [ —a', p'+a,' p8/'(I-op'/')] (I +A Bkz)-
[ a p2 ~ a p8/3( 1 ap2/3)] (ga)

ues of (E„), which are in fairly good agreement
with the Sprung results especially for values of
kz from 1.2 to 1.5 fm ' (Table II). A calculation
of compressibility (mentioned below) also gives a
reasonable value. We could have increased n to
1.1, to have still closer agreement of values of

(E„), around kz = 1.36. But in that case (E„),
has a larger value at kF = 1.6, which makes the
values of {E„), and the total energy unreason-
ably high. This is due to the fact that the increase
in the value of (E„), is much steeper for values
of k~ around 1.6, and this naturally makes the val-
ue of compressibility very low. We therefore
chose +=1.05 as a better value.

To calculate the contribution due to the 'S state
we make use of Bethe's suggestion that the ratio
of 'S to 'S contribution be written as

TABLE II. Values of (E„)/p, the potential energy per particle, for 'S, S, and 'S+ S states at different' with dif-
ferent ratios R =v ( S)/v( S) (viz. Table I) and corresponding compressibility atk+ ——1.36 fm '.

Value of
kF

(fm-')
(E ) ( /p

(MeV)

R = 2.56 —0.96k~
(E„~)3 /p (E „)/p

(MeV (MeV)

R = 1.46 —0.28kF2

(E„).„/p (E„)/p
(Me V) (Me V)

R = 1.85 —0.67kF
{E„)~/p {E„)/p

(MeV) (MeV)

Values given by
Sprung and Bhargava
(E„)qe/p (E„)q /p

(MeV) (MeV

0.8
1.0
1.2
1.36
1.43
1.5
1.6

—4.63
-7.94

—11.53
—14.58
—16.04
—17.56
—20.38

—8.30
-12.70
-16.23
—18.28
—19.04
-19.67
—20.87

—12.93
—20.64
—27.76
—32.86
-35.08

37 y23
—41.25

—5.93
-9.36

—12.18
-13.73
-14.23
—14.57
-15.15

-10.56
—17.30
—23.71
-28.31
—30.27
—32.13
-35.53

—6.09
—9.36

—12.06
-13.69
-14.31
—14.84
-15.86

-10.72
—17.30
-23.59
-28.27
—30.35
—32.50
—36.24

—11.76
—14.96
—16.28
—17.74
—19.60

-16.27
—18 .62
—19.47
—20.34
—20.85

Value of
compressibility &
atkz ——1.36 fm ~ 55

{Total &- 145)
72

(Total ~ - 160)
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E„=[-a', p'+a', p"'{1—np"')] (I +A' -8'kz')
We then calculate the nuclear-matter compress-

ibility using the standard expression

= [-a,p' + a, p"'(1 —op"')] . (8b)
d WK=r ' nm

dy p

Taking the usual TF expression for kinetic en-

ergy, we write the total energy density as

=E„„,+K.E.
=Cp'i' —a p'+a p'i'(I —~'i') (9)

where C = 3.6(h '/2M) .
Putting the three sets of values (a), (b), and (c)

given in Table I in Eqs. (8a) and (8b) we get the

contribution to the potential-energy density from
'S and 'S states. We find that for R =2.56-0.96k~

[ (b) in Table I] very good agreement with Sprung's
values is obtained; while for (a} and (c) the agree-
ment is not at all good. (See Table II.)

It is worthwhile to mention here that we tried to
choose A, B or A', B' by fitting with energy values
given by Sprung's calculations around kF = 1.36. In
that ease we found A = 2.24, B = 0.73 and A' = 1.72,
B' =0.26. But the agreement for E„ for kF =1.2
to 1.6 fm ' and compressibility is not at all satis-
factory.

where ro is equal to 1.524/k~.
We find that we get reasonably good values of K

for R given by parameters {b) and {c)(Table I),
but not for (a). The values obtained (Table II) are
quite good in view of the fact that only 'S and 'S
states have been considered. A rough check shows
that if we include the contributions from the other
states, K comes out to be about 145 for the case
(b) and about 160 for (c}at kz = 1.36 fm '. This is
what we expect from a calculation with a realistic
potential.

Table II indicates that an A =2.56 -0.96k~ for
the 'S and 'S contribution is the best one to use for
Re id' s har d -core potential.
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