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Isospin sum rules for photonuclear reactions are derived; they relate the strengths of the
two isospin components of the giant resonance to the isoscalar, isovector, and isotensor radii
of the nucleus. The connection between these radii and both the number and correlations of
excess neutrons is discussed. A semiempirical formula for the fraction of the dipole strength
in the T + 1 giant resonance is derived and various experimental data are discussed in the
light of the results obtained using this equation.

I. INTRODUCTION

II. DERIVATION OF THE SUM RULES

The electric dipole operator in the long-wave-
length approximation can be expressed as

A

D'=P r, t;, .
i=1

(2.1)

where t',. has eigenvalues +,' (neutrons) and ---,'
(protons) and r,. is the center-of-mass coordinate
of the ith nucleon. This operator will induce elec-
tric dipole transitions in the target nucleus from
the ground state lTT, ) to the giant-resonance
states characterized by (TT, l and (T+ 1 T, l. Since
the ground states of stable nuclei have T = T,
= —,'(N- Z) and the giant-resonance excitations are
characterized by AT, =O, formal treatment of
these transitions takes on a special simplicity.
Here we consider the so-called bremsstrahlung-
weighted cross section which is proportional to the

Electric dipole isospin sum rules have already
been discussed in connection with photonuclear
physics by several authors. ' ' In the following,
we give a derivation of three sum rules, only two
of which are linearly independent. These sum
rules relate the strengths of the two isospin com-
ponents of the electric dipole giant resonance to
the isoscalar, isovector, and isotensor radii of
the nucleus.

Section III contains a discussion of the proper-
ties of the three radii and their connection with
the number of nucleons and their correlations.
In Sec. IV a semiempirical formula is derived that
gives the fraction of the dipole strength in the T+1
giant resonance taking into account center-of-mass
correlations. Finally, Sec. V contains a short
discussion of the connection between the present
work and the existing experimental data.

sum of the squares of the transition matrix ele-
ments:

4m' '-

Q I dE ~ 0 D k k D 0

where 0 and k represent the ground state and ex-
cited states, respectively. Performing all indi-
cated integrations and spin sums except those per-
taining to isospin, we can rewrite Eq. (2.2) as

o, = Qo, (T'),

where

o i(T') =4v'~l&T'TID'I TT&(' (2.3)

(Tll lD xD] ~" llT) = (2 p+ 1)'"(-1)'r"Q
1 1 v

T T T'

(2.4)

where D is a vector in isospin space, D =g,.r,.t,.
The index v is limited by the usual angular mo-
mentum coupling rules to the values 0, 1, or 2
corresponding to scalar, vector, and tensor

is the total electric dipole strength integrated over
energy and populating excited states having iso-
spin T'.

Three sum rules can be derived relating the in-
tegrals cr, (T) and o, (T+ 1) to the mean square
isoscalar, isovector, and isotensor radii. These
sum rules follow directly from the formula ex-
pressing the reduced matrix element of the tensor
product of two vector operators as an expansion in
products of reduced matrix elements of the indi-
vidual vector operators, e.g. , Eq. (15.15) of Fano
and Racah, ' or Eq. (7.1.1) of Edmonds. ' For our
problem it has the simple form
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vector, and isotensor radii as

&R~') = &TT, ~Q(r,. r,.)(t,. -t,.) ) TT,),
CJ

& TT, (Q r, 't;. ~

T. T, )
&R„')=

&TT, ~Q(r,. r, )(3f; I;.- t, t,.)~TT, )
Rr'

3 T, —T(T+ 1)

(2.i3)

= ~ v2a[&Rg ) + T(2T l)(Rr —)], (2.14b)

o,(T) + (2 T+ 3)o,(T+ 1)= -', v'o'. (&R~') —2 T(R„))~

(2.14c)

Equation (2.14a) is the sum rule of O' Connell.
The factor of 2 multiplying the right-hand side is
missing in his treatment because his operator,
7', has eigenvalues +1 and the summation in his
definition of &Rr') is restricted.

The Eqs. (2.14) are not linearly independent in
that the first two may be combined to obtain the
third. Another way of writing them is

4 2

+ ,'T(2T 1)(2T—+3)&R-r')],

4 2

o,(T+1)=
)

[k&R,') —T&R„')

,'T(2T- 1)(R,')].—

(2.15)

In fact, this is a convenient representation for dis-
cussing the relative magnitudes of the T and T+ i
transitions.

Since we are interested in the excitations of the
nuclear ground state, we set T, =T, and thus we
finally obtain

o,(T) —To, (T+ 1)

=-', v'o. [2T&R ')+ T(2T 1)&Rr-')],

(2.14a)

o, = o,(T) + o,(T+ 1)

nition, Eq. (2.1):

o, = z v'o. &D ) = z v'a. &TT, (g(r, r,.)t;. t; ~ TT,) .

Since

(r,. r,.)t;. f; = —,'(r.,. r,.)(t,. t,.)
+ (r,. r, )[t; t.; ..'(t,——t,.)],

o, =~a'o[s&R, ')+ kT(2T- 1)&R,'&],

(3.i)

(3.2)

(3.3)

which is Eq. (2.14b). In the following we discuss
some properties of &D ) and the radii.

Of these four quantities the isovector radius,
(R„'), is by far the simplest, since it involves
only a one-body operator. One has

A

2T,&Rr') =(TT,
~ g r, 'f;~ TT, ) = 2[N&R„') —

Z&R~ )],
(3.4)

where (R„') and &R~') are the mean square radii
of the neutron and proton distributions, respec-
tively. The proton-distribution radius can be mea-
sured by elastic electron scattering and p,-capture
experiments, ' while the neutron-distribution radius
can be inferred from optical-model analysis of nu-
cleon-nucleus scattering. ' Thus the isovector ra-
dius can be considered to be a known quantity. In
the approximation that &R„') = &R~'), the quantity
2T&Rr'), which appears in the sum rules of Eqs.
(2.14), is simply T&R~') In this s.ense it is pro-
portional to the number of excess neutrons and
the mean square nuclear-charge radius corrected
for finite proton size.

The remaining three quantities, &D'), &R~'), and
&Rr'), are much more complicated. They involve
the spatial correlations between pairs of nucleons,
g, , (r,. r, ) Three. separate factors affect this
term: the center of mass, the Pauli principle,
and the two-nucleon correlations resulting from
the nucleon-nucleon potential itself (especially the
repulsive core).

The center-of-mass correlations are small ex-
cept in the lightest nuclei. Their effect on the to-
tal o, may be seen by examining (D ), which may
be written as

III. DIPOLE OPERATOR AND THE RADII
&D') = &0 ~Q(r, F,)I;t; ~

0). .

(3.5)

&he Eqs. (2.13) define the isoscalar, isovector,
and isotensor radii as being proportional to the
reduced matrix elements of operators that trans-
form as a scalar, a vector, and a tensor in iso-
spin space. In addition, the ground-state expec-
tation value of the square of the dipole operator,
(D'), can be related to the weighted sum of (R~')
and (Rr ). This may be seen simply from its defi-

= —'&0( gr, '(0)+(0) g. (r,. r, )t;. t;)0), .

1 A

R.'=~&0IZr I0),
j=1

(D) = —,'AR '+&0~ Q (r,. r, )t; t;)0) . . .(3.7)

where j0) stands for the ground state. Defining
the mean square matter radius to be
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couplings. Making the substitutions:

(TIID II T'&&T'IID II» =(-1)"' ' l&T'IID II» I' (2 5)

we obtain

&Tll[D xD]" II T) =(2v+1)'~Q(-1)"' ',
I
&T'IID Ij T&l'. (2.6)

Inserting explicit formulas for the 6-j symbols, we obtain the three relationships:

&TII [D xD]"'ll »=,~ [I &T-1IIDII » I'+
I &T IIDII » I'+

I &T+1IID II T) I'],

(Tll[DxD]"'ll T) =
2 1 2 2 „.[(T+1)j(T-1IIDII»l'+ l&TIIDII T)l'- Tj&T+1IIDIIT&l'],

[6(2T—1)(2T)(2T+ 1)(2T+ 2)(2T+ 3)] '"

x[2(T+1)(2T+3)l&T- lllDIIT)l' —2(2T —1)(2T+3)I&TIIDIIT&I'+ T( T —1)I&T+1IIDIIT&j']

(2.7)

The bremsstrahlung- weighted cross sections,
o,(T'), may be expressed in terms of the reduced
matrix elements, (T'll D II T):

o,(T- 1) =0,

o- (T) = i v'~I &T IID II T& I'

o-,(T+1)=-', v'~ l(T+1IIDII » I'

The quantity o,(T- 1) vanishes because the vec-
tor-coupling coefficient multiplying (T —1 II D II T)
is zero. We therefore eliminate(T- 1 IID II T) from
each of the three separate pairs of equations in

Eq. (2.7), we replace &TIIDII T) and &T+1IIDII T&

by o,(T) and o,(T+ 1) using the relations de-
scribed in Eq. (2.8), and we substitute for the re-
duced matrix elements (Tll/D xD] ~"ill T) their re-
spective components (TT I [D xD]oi" lj TT):

(TTI [D xD]iolj TT) = (T II [D xD]iolll T)

Finally, we obtain

o,(T) —To, (T+ 1)= ,v'n(W&TT-I [D xD]io"
I TT&

—~&TTI [D xD]o~
I TT)) ~

g, (T)+o,(T+1)=-, v'n(v 3 (TTI [D xD]toll TT)

—v 6 (TTI [D xD]p'I TT)),

o,(T)+ (2T+3)o,(T+1)

' (W&TTI[DxD] jlTT)

—/2 &TT I [D & D]P'I TT&).

(2.10)

The components (TTI [D xD]i;ll TT) may be evalu-
ated through the use of Eq. (5.1.5) of Edmonds:

[DxD]~'l=~g(r-, r-,.)(t,. t,.),
ij

(TTI [D xD]0~'ll TT) [D x5]0' = ~Zr' (2.11}

(TTI [D xD]',"I TT)

T
[T(T+ 1)(2T+ 1)]'" '

(2.9)

[D xD],"i=~Q(r,. r,.}(t,. t~ —3t; t;). . .

4j
The phases appearing here stem from the use of
the contrastandard convention given by Eq. (5.15)
of Ref. 6 so that

=(TII [D xD]"'ll T)

2T(2T- 1)
[(2T—1)(2T)(2T+ 1)(2T+ 2)(2 T+ 3)]'" '

(2.12)

Next, we define the mean squared isoscalar, iso-
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From the definition of the center of mass one has the magnitude of the T+1 giant resonance. Com-
bining it with the identity

(Ol g r,. l0)'=0; (3.8) o,=o,(T) + a, (T+ 1), (4.1)

therefore, we can write
A

&0IZ(r; r, )lo) =&0IZ~ I0&+&0I Z (r; r;)Io&=o,

(3.9)

so that

we obtain

o,(T+ 1) 1 4v~a T&Rv2&
(~+1

(4 2)

&oI g (r, r, )lo&=-AR.'. (3.10} where

Now for the ls-shell nuclei, we can assume that
the wave function is spatially symmetric with re-
spect to all pairs of nucleons. Then the double
sum over the ~A(A —1) pairs gives

&oI g (r, r, ) I0) =A(A- 1)&01(r, r, ) Io& =-AR. '

Thus we have

(3.11)

&D) =-,'AR. '- R.'&0I g I;. t,'I0&

Z(Z- 1) + N(N- 1) —2NZ"
=-,'R ' A-

A —1

NZ
A —1

(3.12)

such that we obtain

4m'a NZ
R (3.13)

This is the result of Foldy. " Therefore, the in-
clusion of center-of-mass correlations makes a
correction of the order of 1/A with respect to the
expression" in which it is neglected:

(2 T 1)A'"-
3NZ (4 4)

This is a small correction never exceeding 5/o.
In order to evaluate g, (T+ I)/o „we need an

estimate for g, to insert in the right-hand side of
Eq. (4.2). To obtain this normalization factor we
take o,(T+1) for 'Pb to be zero; this is certain-
ly very nearly true. " Then

o, =-', v'oT&R ')(1 —q) . (4.5)

T(2T- 1)&Rr )
2T&R,')

The ratio o,(T+ 1)/o, is dominated by the geo-
metrical factor 1/(T+1). The expression in the
square brackets determines the amount by which
the upper giant resonance is decreased by dynami-
cal effects. The major part is proportional to the
number of excess neutrons and their mean square
radii, T&R„'&. Of lesser importance is the cor-
rection term (1 —q), which measures the strength
put back into the upper resonance as a result of
correlations. On the basis of the center-of-mass
correlations estimates of Fallieros and Goulard'
we find that &Rr'& is small and negative and that

g is given by

4m'a NZ
o ~= (3.14} Assuming that the mean square neutron- and pro-

ton-distribution radii are the same,
For nuclei beyond the 1s shell Fallieros and

Goulard' have estimated in an oscillator model
the magnitude of &Rr'& resulting from center-of-
mass correlations. We use their results in the
next section to compute the relative strength of
the T+1 giant resonance.

The contribution of Pauli correlations depends
on the number of pairs of excess neutrons moving
in orbits of opposite parity and differing by one
unit of angular momentum j. Since the real nuclei
have no such pairs, this effect is identically zero.
We ignore here the contribution from two-nucleon
force.

IV. NUMERICAL ESTIMATES

Since &Rz'& is difficult to interpret and &Rz, ) is
small, we turn to Eq. (2.14a) for an estimate of

2T(Rv ) T&Rq) (4.6)

We approximate the proton radius by the charge
radius of Hofstadter":

&R 2) ~~2 = 0.82 A~~3+ 0.58 fm (4.7)

For '~Pb (T= 22) Eq. (4.4) gives q =0.049 and we
find

0, = 299 mb = 0.244A'" mb . (4 8)

Here it has been assumed that g, is proportion-
al to A'". This dependence is a consequence of
the harmonic-oscillator model" and is consistent
with the experiments. An A'" dependence is also
consistent with the experiments for A &80, but
this difference is too small to affect any of the
arguments made in the following. Inserting the
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numerical value given in Eq. (4.8) and combining
all constants we finally obtain

o,(T+ 1) 1 1.97T(f42)
0'i T+1 A

In Fig. 1 we plot the experimental values of 0
as a function of A w'here the upper limit of the in-
tegration is 30 MeV. The data for A &40 are from
the total-absorption experiment of Wyckoff et al. ,

"
and data for the heavy elements are from the neu-
tron-production experiments performed at Liver-
more. " " Based on these data the constant of pro-
portionality lies between the extreme values of
0.15 to 0.20. However, it is well known that there
is electric dipole absorption at energies in excess
of 30 MeV; the somewhat larger value 0.244A'"
just obtained for '"Pb presumably reflects this
phenomenon.

Table I lists some numerical values obtained
from Eq. (4.9) for various nuclei often discussed
in the literature. These results show that the T+ 1
giant resonance is almost insignificant for nuclei
having A &100.

The results presented here reproduce the same
trend with A as that obtained in the computation of
Deague, Muirhead, and Spicer, "although our ac-
tual magnitudes are somewhat smaller. Approxi-
mate agreement also exists between our results
for the even isotopes of nickel and those derived
by Macfarlane" in a more detailed calculation.

Our estimates were obtained by assuming that
the mean squared radius of the excess neutrons
could be approximated by (A~'). Since the second
term in Eq. (4.9) depends on the ratio of (A~') for
the nucleus under consideration to that for ' 'Pb,
the error involved cannot be very large. Accord-
ing to the three-Quid model of Mohan, Danos, and
Biedenharn" the mean squared radius of the ex-

cess neutrons in 'MPb is 13% smaller than (ft~').
In that model our results would be in error by 1

or 2%.

V. APPLICATIONS

The T = 2 nuclei offer the greatest opportunity
for observing the isospin splitting of the giant
resonance. For these nuclei the geometric factor
actually favors the T+1 resonance. In addition,
the magnitude of the T+ 1 resonance is not affect-
ed by correlations. Thus, the two resonances have
comparable strength. Various particle-hole cal-
culations" "describing the giant-resonance T
splitting for T=-,', p-shell nuclei show that the
transitions which comprise the two giant reso-
nances are somewhat interlaced. We should, there-
fore, not expect to observe a spectacular separa-
tion, This is borne out by the existing experi-
ments on 'He, "B, ' C, and ' N.

The experiments' on 'He and "C are consistent
with the sum rule of Eq. (2.14a). A new measure-
ment" of the three-body breakup of 'He yields a
value extrapolated to high energies of 0, = 1.0 mb.
Calculating" the isovector and matter radii of 'He
from the electron scattering data, one can use Eqs.
(2.14a) and (2.14b) to compute o,(~) = 1.34 mb and

o, (—,')= 1.06 mb. Since only three-body breakup
can contribute to c,(~), the result of Berman,
Fultz, and Yergin is seen to exhaust the T=-,' sum;
i.e. , there is no T=-,' three-body breakup.

A new, high-resolution electron scattering ex-
periment" shows clearly the isospin splitting of
the "C giant resonance. The areas in the two en-
ergy regions of interest are again consistent with
the sum-rule prediction.

TABLE I. Numerical evaluation of Eq. (4.9). The
values given here for 3He and i C were obtained using
the actual radii (Ref. 30) instead of Eq. (4.7).
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0
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FIG. 1. The ratio J3 M (o./E)(dE/A+ ) as a function of
A. The data for the light elements come from the total-
photon-absorption experiment of Ref. 15. Those for the
heavy elements come from neutron-yield cross sections
measured at Livermore, Refs. 16-19.

Nucleus

3He
i3C

26Mg

48Ti
52( r
64Zn

'8Ni
«Ni
62Ni

64Ni

74Ge

"Zr
i08pd
ii2(
'"Sn
208 Pb

1
2

2

2

1
2

3
4
5
5
8
8

10
22

v i(T+1)/0 i

0.44
0.55
0.39
0.24
0.25
0.26
0.44
0.25
0.16
0.11
0.08
0.10
0.07
0.05
0.03
0

0-f (T + 1)/0-i (T)

0.79
1.22
0.64
0.32
0.33
0.35
0.79
0.33
0.19
0.12
0.09
0.11
0.08
0.05
0.03
0



CONSEQUENCES OF ISOSPIN SUM RULES. . . 85i

A recent experiment" on inelastic electron scat-
tering from the T =1 nucleus "Mg shows a spec-
tacular splitting of the giant resonance into two
bumps. This has been attributed to isospin split-
ting. Even though the idea is supported by the
photoneutron spectra, "this phenomenon cannot be
entirely an isospin effect; the higher-energy com-
ponent contains most of the strength, whereas the
upper limit for the ratio o, (T+ I)/o, predicted
here is only 0.39. Indeed, the appreciable (y, 2n)
cross section, which coincides almost exactly
with the upper resonance, can only proceed through
T = 1 states in "Mg up to an excitation energy of
28 MeV. Since the integrated cross section for
the upper resonance is twice that of the lower, it
is much more appealing to think that the splitting
results mainly from a large intrinsic deformation
of the nuclear ground state.

Various structures'"" on the high-energy side
of the giant resonances of the medium and heavy
nuclei have been observed and discussed. The
hydrodynamic model" predicts that the electric
quadrupole giant resonance should lie at 1.6 times
the energy of the electric dipole giant resonance
and that its integrated absorption cross section
should amount to 8% of that of the El giant reso-
nance. Positive support for E2 absorption comes
from the well-known fact that the high-energy pro-
tons resulting from photon absorption at these en-
ergies are peaked forward of 90', suggesting an
interference between E1 and E2 absorption. The
T+ 1 giant resonance, on the other hand, is ap-
parently~"" -60(T+ I)/A MeV above the main giant
resonance, and an estimate of its strength is
given in the present paper. Using these signatures
we look at the data for some medium and heavy
nuclei for evidence of the giant-resonance isospin
splitting.

A recent work on photon scattering, which re-
flects the total photon absorption cross section,
identifies a structure 3-5 MeV above the giant
resonance for a group of nuclei in the range 48
& A &120. The angular distribution of the scat-
tered radiation excludes the possibility that it is
electric quadrupole for A &100, and in every case
the observed intensity is consistent with the value
given in Table I. This is substantial evidence for
its being the T+ 1 giant resonance.

The scattering experiment certainly lends cre-
dence to earlier conjectures concerning bumps
observed in the neutron-production cross sections
of nickel, zirconium, and tin. Min ' has already
pointed out that the large difference in the magni-
tudes of the (y, n) cross sections of MNi and ' Ni
is certainly an isospin effect. It is tempting to
identify structures ' ' between 20 and 23 MeV in
the neutron-production cross sections, as well

as in the "Co(p, y, ) cross section" with the T+ 1

giant resonance, but it is not possible to make any
statement concerning the strength, since the (y, p)
cross section is surely very important.

The neutron-production cross sections" for the
nuclei near A = 90 contain a bump at 21 MeV which

may be the T+ 1 giant resonance. The "Y(P, y, )
cross section" also has a peak at this energy.
This is the appropriate energy for the T+1 reso-
nance and is too low to be the E2 giant resonance.
Including a contribution for the (y, p} process, Ber-
man et al."estimate that the T+ 1 component may
represent as much as 16% of the total integrated
cross section. Our result 10 x21/16-13% is con-
sistent with this.

In tin the energies of the T+1 giant resonance
and the E2 giant resonance actually coincide near
25 MeV. Because the experimental integrated
cross section" represented by the observed struc-
ture is -12% of the giant-resonance integrated
cross section, it must be predominantly an E2
phenomenon. The value of 3% for o,(T+ I)/o,
predicted by Eq. (4.9) corresponds to only -3% of
the integrated absorption cross section.

Cook, Morrison, and Schamber" have studied
the photodisintegration of "Zn and wish to identify
the (y, Pn) cross section with the T+ 1 giant reso-
nance. This cross section is 7.7 MeV above the
main giant resonance and has a strength that is
20~/p of the latter. If the T+1 giant resonances for
"Ti, "Cr, and "Ni and "Ni are really located
near 22 MeV, it would be surprising for the T+ 1
giant resonance for Zn to be at 25 MeV. Their
value of 0.2 for o,(T+ I)/o, (T) is probably not
inconsistent with the value 0.26 obtained here,
since the unmeasured (y, p) cross section must
make an appreciable contribution.

In conclusion, we repeat our remark from the
previous section: The T+ 1 giant resonance is
theoretically almost insignificant for all nuclei
having A & 100. In addition, we would like to
emphasize that by its very nature the giant-
resonance isospin splitting must remain specu-
lative, because there are so few instances in
which the isospin of the giant-resonance states
can be specified. Examples are the 'He(y, d)p
reaction, " the "B(p,y, }"C reaction, "the
"C(p, yo)"N reaction, "and the "Mg(y, 2n)' Mg
reaction" for E„&28 MeV. In almost all other
cases the isospin of the giant-resonance states
is inferred.
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