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The E2 properties and excitation energies of low-lying states in Mg, 26Mg, OSi, and S
are calculated using the adiabatic model of a triaxially deformed rotor. The results are com-
pared with those of recent shell-model calculations and strong similarity is found for both

Mg and S with nearly the same deformation parameters in the adiabatic model. The
strength for isovector M1 excitation, pertinent to results of inelastic electron scattering,
is also calculated using the closure sum rule.

1. INTRODUCTION

Shell-model calculations have been carried out"
for up to six particles (or holes) in the complete
2sld space. For more particles one must trun-
cate the space in order to have a. feasible calcula-
tion." The results of these calculations agree
quite well with experimental observation.

The authors of Ref. 1 point out that for A. =18-22
the excitation energies and E2 properties for low-
lying states are quite similar to those of the rota-
tional bands arising from an adiabatic rotational
model. In this model, the quadrupole properties
are obtained from an intrinsic state with particles
in the lowest energy levels of an axially symme-
tric prolate deformed potential well (the Nilsson
model). It is also well known that this model can
be successfully applied to represent observations
in nuclei with A =23-25.

Even-even nuclei in the central part of the 2s-
1d shell exhibit level schemes that deviate from
what is expected for an axially symmetric rotor.
For "Mg and heavier nuclei, other states intrude
in the low-excitation region. The common appear-
ance of three additional states with angular mo-
mentumI' =2', 3', and 4' can be interpreted as
the effect of departure from axial symmetry in
the deformed field. The purpose of this paper is
to show that this modification extends the similari-
ty between the adiabatic model and the shell mod-
el and indicates some continuity in parameters in
going from nucleus to nucleus.

2. TRIAXIAL ADIABATIC CALCULATION

The single-particle wave functions are obtained
by diagona1. izing the matrix R in a 2s-1d repre-
sentation. Here R is the difference between the
total Hamiltonian and the spherical harmonic-os-
cillator Hamiltonian. That is,

R =-21 s+3q[-q '+(1.5)"'E(q '+q ')]
where q is the Nilsson parameter, ' and the quad-

rupole operators are given by

q
' = (3 2m)"'Pr'Y ' (2)

The harmonic-oscillator length parameter P is
given the same value as in the shell-model cal-
culations of the Oak Ridge group, namely P
=0.9886 "' fm '. The coefficient for nonsymme-
tric deformation can be expressed in terms of the
oscillator frequencies along the nuclear axes as

(3)

In a triaxial description there are equivalent pa-
rameter pairs (q, e) arising just from relabeling
the nuclear axes. For instance, c can be kept
positive, since interchanging the x and y axes
transforms e into -c and leaves g unchanged.
One can also restrict the magnitude of e to be (-,',
since exchange of the x and z axes by rotation
about the y axis leads to

q = --,'q, (1+3',),
e = (1 —e,)/(1+3&,),

(4)

2g

(5)

The moments of inertia are extracted from the in-
trinsic state X with the help of the Inglis cranking

where (q„e,) is the original parameter pair.
For even-even nuclei, the intrinsic state y is

formed by putting neutron and proton pairs into
the lowest single-particle levels in a manner con-
sistent with the exclusion principle. Intrinsic
quadrupole moments Q, and Q, are then calculated
as the expectation values of the sums of the single-
particle operators q, ' and q, '+q, ', respectively,
including added effective charges of 0.5e for both
neutrons and protons. The moments of inertia for
the triaxial rotor are needed to determine the co-
efficients a~ in the wave function of the adiabatic
model
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model, ' in which the expression is

1& I &.1»1'

fk

(6)

3. ENERGY LEVELS AND E2 PROPERTIES

This section presents the excitation energies
(see Fig. 1) and E2 properties for the first five
states of the triaxial model (I =0, 2, 2, 2, 4) for the
even-even nuclei with 4=24, 26, 30, and 32. Ta-
ble I compares them with experiment' "and with
the much more extensive shell-model calcula-

The states 0 are occupied in X, while the states i
are not.

This procedure is commonly used with Hartree-
Fock calculations' for the single-particle states.
The main difference between the present calcula-
tion and the Hartree-Fock calculations is that the

latter produce a large energy gap between the oc-
cupied and unoccupied single-particle levels.
This affects the resulting moments of inertia even
if the single-particle orbitals of the two calcula-
tions are alike, since the energy differences ap-
pear in the denominator of Eq. (6). In the present
calculation the effect on the moments of inertia
was tested by arbitrarily increasing the energy

gap between occupied and unoccupied levels. The
dominant effect is to produce a single multiplica-
tive factor for all three moments of inertia and

thus determine the energy scale, leaving the wave

functions unchanged. The E2 properties and ener-
gy ratios are therefore not noticeably affected by
the gap variation unless the original gap is quite
small, as will be discussed in the examples.

tions."""The triaxial model is admittedly
very incomplete, since other states are known to
exist in the region of 4-MeV excitation energy
where the 3' and 4' levels are found, and these
can usually be accounted for by the shell-model
treatments. Nevertheless, the results of the adia-
batic models are of interest because the similari-
ty with the shell-model treatment occurs for a
very limited region of parameter values, around

(q =+4, e =0.20). The single-particle energies
and wave functions for this case are given in Ta-
ble II. No comprehensive parameter search was
made for all four nuclei, but this is the best pa. -
rameter region for "Mg and small modifications
for the other nuclei lead to the values of Table I.

A word of caution is in order concerning the ex-
perimental B(E2) values listed in Table I. The
spread of values among different experiments is
wider than is given by the listed errors. This is
because different techniques of measurement do
not agree, and also because some values depend
on E2/M1 mixing ratios. The la.tter is particular-
ly true for the transition between the I =2 states,
for which case the values of Table I could be
changed by a factor of 2 if alternative data were
chosen. Since no strong argument can be made
for the selection of data, Table I is intended pri-
marily for comparison of calculated B(E2) values.

A. Mg and S

The nuclei "Mg and "Shave intrinsic states
arising from filling the first two or first four sin-
gle-particle levels, respectively. From Table II
one sees that the gap between occupied and unoc-
cupied single-particle levels is about 2.5 MeV.
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FIG. 1. Energy-level spectra: (A) experimental, (B) shell model, and (C) triaxial model, as explained in the caption of
Table I. The line 0 refers to the energy above which other levels are found in the experimental and shell-model spectra.
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TABLE I. Excitation energies and g2 properties: (A) experimental, (B) shell model, and (C) triaxial model with 3

MeV added to the gap and values (g, &) equal to (4, 0.25) for Mg, (4, 0.20) for 6Mg, and (3.5, 0.20) for ~ Si and 3~S.

Triaxial energies for Mg and Si are normalized to the underlined values for 1=22. Shell-model results are from

Refs. 3, 4, 13, and 14. Experimental values are from Refs. 8-12.

Excitation energy (MeV)

2, 4, 22

Eq (e fm')
2i 2i 0

B(E2) (e' fm')

4i 2i 22 ~ 0 22 2i 3~2

~4Mg

(A)
(B)
(C)

26Mg

(A)

(B)
(C)

'osi

(A)

(B)
(C)

32S

(A)

(B)
(C)

1.37
1.45
1.25

1.81
2.34
1.74

2.24
2.42
2.40

2.24
2.00
1.86

4.12
4 04
4.17

4.33
4.12
5.59

5.28
5.43
7.39

4.47
5.40
6.10

4.23
4.39
4.18

2.94
3.0S
2.94

3.50
3.61
3.50

4.29
4.97
4.50

5.25
5.40
5.44

3.94
4.77
4.67

4.83
4.12
5.89

5.41
5.87
6.36

—24 +4
-16
—15

+0.4
—13

—6.6
+4.6

—18+ 5
—14
-11

85+6
63
54

98 +50
82
77

44+7
22
46

22+7
5

65

55+8
43
35

81+18
58
52

74+10 50+7
68 13
56 79

5+2
8
3

2+ 0.5
0
1

7+3
12

2

12 +4
14

5

10+4
7

5

12 +6
12

5

32+ 6
97
20

41+ ll 13+2
15 23
14 8

44+25 15+7
31 0.4
61 3

Adding 3 MeV to this gap leaves the wave functions
and hence the E2 properties essentially unchanged,
and leads to the excitation energies listed in Table
I. The effect is essentially to halve the moments
of inertia. , although in comparison with experi-
ment the energy spectrum is somewhat better than
one would get by simply halving the original mo-
ments of inertia.

It is clear from Table I that the results of the
adiabatic model and the shell model are very simi-
lar. The components of rotational energy and the
coefficients ar of Eq. (5) are given in Table III.
For these nuclei, . the wave functions are nearly
pure eigenfunctions of K, and the triaxial adia-
batic model offers a simple picture for the low-
lying states.

B. Mg and Si

The experimental energy spectra of these nu-
clei differ from those of the above T =0 cases in

that the second 2' state lies much lower in ener-
gy and becomes the second excited state. In the
model they differ from the T =0 cases in that the
intrinsic state has a pair of particles or holes in
the single-particle levels 3 and 4 of Table II.
These two levels are separated by only 0.9 MeV,
so variation of the gap has a strong effect on the
moments of inertia. If one arbitrarily adds 3 MeV
to the gap and fixes the energy scale to fit the sec-
ond 2' level, one obtains the results in Table I.
(Alternatively, one could get substantially the
same results by adding 5 MeV to the gap which
gives a resultant gap about the same as for the
T =0 nuclei).

It is clear from Table I that there is much less
similarity between the adiabatic model and shell-
model calculations for these T =1 nuclei than
there is for the T =0 nuclei. The adiabatic model
tends to preserve the ratio B(E2;4, -2,)/B(E2;
2, -0) near the value of 10/7 appropriate to K=0

TABLE II. Single-particle wave functions for (g g) = (4, 0.20). The 2s function is positive near the origin. The
energy unit is about 1 MeV.

Level 1
2 2

i i
2 2

-6.09
—3.06
—0.35

0.60
3.16
5.74

—0.010
0.032
0.540
0.761
0.349

—0.093

—0.837
0.063
0.442

-0.231
-0.181

0 ~ 116

0.231
0.205
0.406

—0.58 5
0.570

-0.269

0.487
0.187
0.534

-0.080
—0.575

0.325

—0.088
0.940

-0.219
0.135

-0.094
-0.183

—0.019
0.185

-0.120
-0.010

0.429
0.8 76
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states despite the fact that the wave functions have

strong K mixing, as one sees in Table III. The
shell model, on the other hand, gives very weak
B(E2; 4, —2, ) values and experiment tends to lie
somewhere between the calculations. The calcu-
lated values for the quadrupole moment of the low-
est 2' state differ in sign for the two models.
Clearly it would be of great interest to measure
these quadrupole moments in "Mg and "Si.

Despite these differences, there remains a qual-
itative similarity with observation, particularly
with regard to the change in spacing of the 2' lev-
els in going from T =0 to T =1 nuclei. In the adia-
batic model the difference results not from a
change of deformation, but from the different oc-
cupation of the deformed levels. This result dif-
fers from the irrotational Davydov model in which
the relative moments of inertia, and hence the lev-
el spacing, are determined by the asymmetric de-
formation parameter y [tany = -eu 3, where e is
defined in Eq. (3)].

4. MAGNETIC DIPOLE EXCITATION

The adiabatic model can also be used to esti-
mate the isovector M1 excitation strength of 4N
nuclei. This property is studied experimentally
by scattering electrons inelastically at 180, and
measurements have been made for "Ne, "Mg,' Si, and recently "S. Generally the strength is
concentrated in a few strong peaks at an excita-
tion of about 10 MeV, but the "S experiment"
exhibits no large peaks.

In the adiabatic model, the closure sum rule for
4N nuclei becomes the simple expression

QB(M1;00- 11m) = 4+ Q)(iv(Mq'0) kv)), (7)
p jk

TABLE III. Coefficients az(I) of the lowest eigenfunc-
tions and rotational energies &,.= jg ~/2d, . in MeV, for the
triaxial cases of Table I. Intrinsic quadrupole values
are in efm.

TABLE IV. Contributions to the Ml isovector sum
rule from the indicated transitions between single-parti-
cle levels. The values were calculated for g=4 and
either q =0 or q=0.20. The unit is the squared nuclear
magneton.

Transition g=0 q =0.20

where the single-particle states k are occupied
in the intrinsic state, the states i are unoccu-
pied, and v refers to neutrons. Since each occu-
pied level contains four nucleons, and the squared
matrix elements are the same for neutrons or pro-
tons or time-reversed partners, these symme-
tries are included in Eq. (7). The contribution to
Eq. (7) from transitions between particular single-
particle levels are given in Table IV for q =4, and
both axially symmetric (e =0) and asymmetric
(e =0.2) cases. There are clearly some large ma-
trix elements, particularly the spin-flip transi-
tions (2-3) and (4-6) in the axially symmetric
case.

From Table IV one can obtain an idea of the to-
tal strength and the energy ordering of the con-
tributions. For example, if "Ne is represented
by a full level 1 in the axially symmetric case,
the strength is mostly in the transitions 1- 2 and
1-3. With an axially symmetric adiabatic model,
the distribution of strength can be calculated by
constructing intrinsic states having K=1 and K =0
for the I" =1', T =1 wave functions. However, it
is imperative to include the Coriolis-coupling
term which mixes states with b,K =1. With such
calculation one can reproduce the M1 transition
strengths of shell-model calculations for "Ne and
also for the 1P nucleus ' C.

With a triaxial deformation for ~4Mg and with
levels 2 and 3 filled, Table IV shows the strength
to lie mostly in transitions to the lower states
2- 3 and 2- 4. For "S, with a triaxial deforma-
tion and filled levels 1-4, there is again consid-
erable strength —now in transitions 4- 5, 4-6,
and 3- 5. The triaxial model shows more frag-

I=2
Qp

a2

I=4
ap

ap

a4
A)
Ag

A3

(ep&

K»

24Mg

1.000
-0.007

1.000
-0.027
0.000
0.215
0.203
0.942

+25.92
-8.8 5

26Mg

0.991
—0.131

0.919
-0.395
0.019
0.338
0.247
0.583

+26.00
-9.29

3ps;

0,769
-0.640

0.690
-0.696
0.198
0.631
0.319
0.525

+21.25
-17.13

32S

0.998
-0.061

0.976
-0.219

0.005
0.358
0.266
0.967

+20.53
-12.47

1 2

1~3
1 4
1 5
1 6
2 3
2 4
2 5
2 6
3 4
3~5
3 6
4 5
4 6
5 6

3.19
1.56
0
0.45
0.05
7.77
2.26
0.73
1.04
0
4.44
0.02
0
8.79
0.00

3.83
0.64
0.82
0.36
0.06
4.92
4.04
0.87
0.61
4.55
4.74
0.80
1.62
4.76
2.99
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mentation of the strength than the axially sym-
metric model. One would have to include Coriolis
coupling to see if the model is capable of predict-
ing the even greater distribution of the strength
that seems to be observed experimentally for "S.
It would be of great interest to see what the shell-
model calculations give for the distribution of
j.sovector M1 strength in Mg and S.

5. CONCLUSIONS

The reason for comparing the results of the
adiabatic model with those of the shell model is
to present a pictorial basis for the correlations
that the residual interaction produces in the shell-
model calculation. For "Mg and "S, the triaxial
adiabatic model produces results quite similar to
those of the shell model. For "Mg and ~Si the
similarity is not so striking, although the triaxial
model with virtually unchanged parameters pro-
duces a quite different picture for these nuclei,
particularly in regard to the I =2 states. An ex-
perimental determination of the quadrupole mo-
ments for these nuclei would be very valuable.

The adiabatic model does indicate that the M1
excitation strength in "S should be comparable
to that seen in "Mg. However, it may be more
fragmented, and a calculation of the distribution
of such strength via the existing shell-model wave
function would be of great interest for comparison
with the results of inelastic electron scattering.

The present calculation, which obtains a de-
formed field via single-particle quadrupole opera-
tors and introduces an arbitrary extra gap in the
single-particle energies, can be viewed as a
pseudo-Hartree-Fock calculation. One should

certainly be able to produce results which repre-
sent the observations in "Mg and "S equally well
from a genuine Hartree-Fock calculation. Al-

though there are remnants of similarity, the va-
lidity of the triaxial model for ' Mg and ' Si is
uncertain in view of the gap dependence of the
present results. Furthermore, one should also
include the effects of the pairing interaction when

two single-particle levels are as close as they
are for these nuclei. The triaxial model also fails
for "Si, for which no second low-lying 2' state is
found experimentally. In this connection it is in-
teresting that the shell-model calculation for "Si
has a second 2' state lying 2 MeV below the sec-
ond experimental 2 state.

Finally, while the triaxial model may be pic-
torially helpful, it is difficult in practice. For
odd-A and odd-odd nuclei it would be imperative
to include the Coriolis interaction in any adiabatic
calculation. The use of the model to select a trun-
cated basis for shell-model calculations is very
difficult, although this has been done" for "Mg.
Nevertheless, the triaxial adiabatic model does
provide a simple method for obtaining some ap-
proximate features in nuclei for which the com-
plete shell-model calculation is formidable.
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