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15We are greatly indebted to J. Hiifner who kindly pro-
vided us with a copy of his muon-cascade program, which
served as the basis for all of our cascade calculations.

18The capture schedule for ®Li was obtained using cap-
ture broadening of 150 eV and 2x1078 eV for the 1s and
3d states, respectively. For 12C, the corresponding val-
ues were 3250 eV and 1.5X10 %V, respectively. [See
R. J. Harris etal., Phys. Rev. Letters 20, 505 (1968).]
The results given in Table II are insensitive to uncertain-
ties in these assumed values.

"4, Hilscher etal. (Ref. 9) apparently assumed that me-
sons are captured from only the 2p or 1s state, whereas

Bistirlich etal. (Ref. 10) apparently assumed that the 1s
state population is equal to the 2p-1s x-ray yield. Both
of these assumptions are incorrect, as indicated in Ta-
bles I and II.

18Conforming with the authors of Ref. 4 we have as-
sumed the ad hoc nucleon-nucleon correlation parameter
of the potential to be unity.

1%We are grateful to D. K. Anderson, D. A. Jenkins, and
R. J. Powers for the calculated predictions and for their
permission to present these results.

20p, K. Anderson, private communication.
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The Jastrow method has been extended to the treatment of tensor forces by the incorpora-
tion of suitable spin and isospin dependence into the correlation operators. Here the three-
body contributions to the factor-cluster expansion of the energy expectation value are evalu-
ated for nuclear matter, supplementing the evaluation of the one- and two-body contributions
already reported in the first paper of this series. Complete numerical results are presented
for three semirealistic hard-core potentials containing differing mixtures of central and ten-
sor components. The three-body corrections result in a distinct improvement of the satura-
tion behavior of the approximate energy per particle. Nevertheless, these calculations should
be regarded as still exploratory rather than final in the sense that the most intelligent (i.e., a
suitably restricted) choice of radial dependence has not yet been determined for the correla-

tion functions.,

I. INTRODUCTION

It is commonplace to remark on the complexity
of the nucleon-nucleon force: its strong repulsion
at short distances, its state dependence (i.e., its
dependence on spin, isospin, and total angular mo-
mentum), and especially its strong tensor com-
ponent. These complexities have received care-
ful attention in the well-established Brueckner-
Bethe-Goldstone (BBG) theory'? of the ground-
state energy of nuclear matter. The literature
offers numerical investigations of the two-hole-
line diagrams (as defined in BBG theory) for a
variety of realistic and semirealistic nuclear po-
tentials.® There are also calculations of the three-
hole-line diagrams®* based on the Bethe-Faddeev
scheme.’ However, among the studies of this
type, only those of Dahlblom® and Day’ (who also
considers four-hole-line diagrams) include the
effect of the tensor component in an adequate man-

ner, and not just in terms of an “equivalent” cen-
tral potential.

In order to study the effects of tensor correla-
tions in nuclear matter —-or finite nuclei — we have
recently proposed an approach exploiting the orig-
inal Jastrow idea, in the enlarged context of the
method of correlated basis functions.® We have be-
gun with a relatively simple (and surely limited)
realization of the general scheme. It is our imme-
diate purpose to make explicit the merits and de-
ficiencies of this simple picture. Afterwards we
can still proceed, if necessary, to more compli-
cated structures; i.e., we can incorporate addi-
tional physical information (e.g., impose conser-
vation of certain “sum rules” in each cluster or-
der,? examine higher-order perturbative correc-
tions with respect to the non-orthogonal basis of
correlated wave functions,'® change to a different
ansatz for the Jastrow correlation factor, invoke
a more highly summed cluster expansion,!! etc.).
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It may be well to stress at this point that the
Jastrow approach is not limited merely to the
rough evaluation of expectation values —to a “pair
approximation” useful only for making qualitative
estimates in nuclear physics. There exist highly
informative and/or successful applications of this
approach, in the enlarged context of the method
of correlated basis functions, to a wide range of
quantum many-body systems including liquid and
solid He® and He*, the charged Bose gas, a mat-
ter, hypernuclear matter, and the neutron gas.'?
Furthermore, the first steps toward establishing
a clear connection with the Bethe-Faddeev scheme
and other diagrammatic methods are currently
being made.!®

In this paper we continue with the exploration of
the scheme outlined by Ristig, Ter Louw, and
Clark® (hereafter called RTC). Our aim is the
complete evaluation of the three-body-cluster con-
tributions to the ground-state energy of symmet-
rical nuclear matter, including tensor effects.
This is accomplished according to the same pat-
tern as was established for the two-body effects
in RTC. One can identify a “smallness parameter”
in our theory'* analogous to the “smallness param-
eter” of the BBG or compact-cluster theory. In
the latter method the smallness parameter is pre-
scribed a priori, and is considered to be small
enough that three- or more- hole-line contribu-
tions may be discarded. However, in our case the
smallness parameter is not fixed by a priori con-
siderations, with the consequence that (at least)
the three-body clusters must necessarily be in-
cluded in the analysis of the ground-state energy,
even if, in the final issue, the numerical contri-
bution of these clusters is small. I.e., the three-
body clusters (and possibly the higher-order clus-
ters as well) play an important role in the deter-
mination of the correlations and thus the small-
ness parameter. We cannot be satisfied merely
with an estimate of the three-body clusters to
check rapidity of convergence of the cluster ex-
pansion. In this connection, one should note that
it is in the three-body clusters that nondiagonal
two-body matrix elements of the two-body corre-
lation factor first come into play.

In Sec. II we begin with the most general expres-
sion (from RTC) for the three-body-cluster con-
tribution for a system with any number A of par-
ticles, and derive a simpler expression in the
case of uniform extended matter by expanding in
powers of 1/A. The most general spin- and iso-
spin-dependent, local three-body correlation op-
erator is written down in Sec. IIl. Necessary and
desired properties of this operator are discussed,
and mathematically the simplest choice of corre-
lation (the “asymptotic form”) is selected for fur-

ther investigations. For this choice the correlated
A-body wave function can be written in a simple
form. In Sec. IV we turn to the evaluation of the
three-body clusters for the ground-state energy
of nuclear matter for the class of noncentral po-
tentials studied in RTC. We express all contri-
butions conveniently either in terms of matrix
elements of an effective three-body potential, or
in terms of matrix elements of a product of the
effective two-body potential of RTC and an effec-
tive two-body correlation operator. (Contribu-
tions of the latter type are the analogs of the two-
body combination terms of Day.”) In Sec. V we
choose three test potentials containing differing
triplet-even-state tensor components (the same
potentials as were employed in RTC) and calculate,
without any approximation, their three-body con-
tributions to the energy per particle. The prelim-
inary character of the results is pointed out in
Sec. VI, and some questions are raised in regard
to how more judicious choices of correlation func-
tions should be made. Until these questions are
answered, it is not possible to come to any firm
conclusion on the relative merits of the present
approach compared to the BBG method or any oth-
er developed theory.'

II. THREE-BODY-CLUSTER CONTRIBUTION
FOR UNIFORM EXTENDED MATTER

We begin with the Hamiltonian

A

H=T+V=ij}t(i)+2v(ij), (1)

i<j
and the general correlated wave function
V=F&. (2)

Here ¢(7) and v(#j) are kinetic and potential opera-
tors for particles 7, j; & is an independent-parti-
cle-model ground-state wave function (the unper-
turbed wave function), and F an appropriate Her-
mitian correlation operator.

The expectation value of the Hamiltonian H with
respect to the trial function ¥ is given by the fac-
tor-cluster expansion derived in RTC:

E=E,+(AE),+(AE),; +(AE); +++++(AE),.
(3)

The indices 1, 2, 3,... label one-body, two-body,
three-body, ... correlation corrections to the un-
perturbed energy E,. For uniform extended mat-
ter, E, is the kinetic energy of the free particles,
(AE), vanishes, and (AE), is the two-body-cluster
contribution as evaluated in RTC. The three-body
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contribution (per particle) is given by

1 1 1 08I, ( 1 81y
= == —_— - — —=+c
1(BE), A,;,,[’m 5~ \1, o5 Y

with
I{= 1,

cl.) + (E% +cyc1.)]

, 4)
B=o0

I;,=ij| F(12){expB[#(1) +¢(2) + v(12)-€,~€,) }F(12)|ij —ji),

)

I, =Cij k| F(123) {expB[t(1) + £(2) + ¢(3) + v(12) + v(13) + v(23) — €; — €; — €, } F(123)P, | ij k) .

Here the | i) are spin- and isospin-dependent plane waves; F(12), F(123),...

are Hermitian two-, three-,

... body correlation operators; ¢; is the kinetic energy of plane-wave orbital i; P, is the antisymmetriza-
tion operator P,|ijk)=|ijk)—|ikj)++++; and the summation extends over all i, j, k, which are ele-

ments of the set {i, ...

, i4} of A orbitals occupied in &.

Expanding the above three-body contribution in powers of 1/A (for the uniform, extended medium), we

obtain

i 1 ;e _ 81i5 _ 3l 31;&)
A(AE)S_A‘QE<.( 88 98 08B 9B

B=o0

_1—1& 2 )[(Iu -1)+(I;,,-1)] ?g%"-+cycl.%

i<j<k

ﬁ=0+O<:'—1> . (6)

Now we take A -« and thus drop all contributions to the energy per particle O(1/A). Our result for
(1/A)(AE), may conveniently be written in an explicit and suggestive manner upon introduction of the fol-

lowing two- and three-body operators:

W,(12) = $[F(12), [¢ (1) +£(2), F(12)] ] + F(12)0(12) F(12), (M)

W,(123) = 1[ F(123), (£ (3), F(123)] ] + F(123)(12) F(123) - W, +cycl. C)

We arrive at

}(AE)3=§1—! % ‘Zj; (ij k|W4(123)P,| ij k) —1% Do Cik|[F2(12) = 1]|ik = ki Xij|W,(12)] ij - ji) . (9)

ijk

The second sum is built entirely out of diagonal
matrix elements for the two-body subsystems
alone. We therefore call them two-body com-
bination terms (cf. Day’s terminology”).

In order to obtain an expression for the energy
per particle correct to first order in the “small-
ness parameter” £ appropriate to the assumed
correlation operators, it would presumably be
necessary-as in the ordinary Jastrow treatment,
where F(1---n) =Hls‘<,s,, f(ry), and this parame-
ter is £=p [[f?(r) - 1]dT —to extract a double ex-
change contribution of first order in E from the
four-body contribution.?*** Here we shall adhere
strictly to a classification of contributions in
terms of the number of bodies or (equivalently) the
number of hole orbitals involved, rather than in
terms of order in £ or (equivalently) the number
of independent hole orbitals. Application of the
latter classification scheme must await a careful
analysis of the four-body correction (AE),/A in
the factor-cluster expansion.

III. CORRELATION OPERATOR
FOR TENSOR FORCES

Consider a potential with a state-independent
hard core and with spin- and isospin-dependent
central and tensor components outside the hard
core:

v(12)=+w, 7r=7,<c,

=W&(r)P3 P +V(r)PL P!
+3VE(r)PLP3+3V; ()P P?
+V3(r)P1S,+V7(r)PLS,, 7>c. (10)

Note that the parity projectors P* of RTC have
been replaced by the appropriate isospin projec-
tors P!, P3.

We seek to construct a correlation operator
F(123) for three particles, or F(1«--A) for the
complete nucleon system, which is suited to the
above nucleon-nucleon potential. It will be helpful
first to review the nature of the choice of two-body
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correlation operators F(12) that was made in RTC:
there we set down the most general local but spin-
and isospin-dependent two-body operator with cer-
tain necessary and desived properties. Namely,
we took F(12) to be a scalar, invariant under ro-
tation, inversion, and translation, and to be total-
ly symmetric in the particle labels 1,2. Further,
we required F(12) to satisfy the hard-core bound-
ary condition (it must vanish for configurations
with 7, < ¢) and the asymptotic boundary condition
implied by the cluster property (it must go to a
constant, taken unity, for »,,~«). In addition, we
chose F(12) to be positive everywhere except in-
side a hard core or at the origin, where it may
vanish, in accordance with the desire to avoid a
large kinetic energy.

The detailed calculations of RTC showed then
that the major contribution to the energy (AE),
may be obtained using a restricted set of corre-
lation operators of the type

F(12)=f(r) +f(r)[g(r) - 1] P1P*(1-Q), (11)

where Q= @S- )32/7?, S being the total spin opera-
tor. (Again we have written P! P? in place of
P* P of RTC. Note that the second term comes
into play only in triplet-even states.) We recog-
nize that f(r) [or rather, the deviation of f(r) from
unity] describes the “over-all” correlation, due
mainly to the hard core and of rather short range,
while g(r) [or rather, the deviation of g(») from
unity] describes the special correlations induced
by the tensor force, which are of rather long
range, but comparatively weak. The actual choic-
es to be made for f and g, discussed in RTC, are
unimportant at this point.

To ensure that F(12) of Eq. (11) is positive defi-
nite, all we need is f, g>0. For we can introduce

G(12)=1+(g'?-1)P}P3}(1-Q),

(12)= (ng)P1 P%(1 - @), 12)
and write
F(12)=f(r)G?*(12),
(13)

F(12) =f(r)e‘“‘ 12) ,

either expression being manifestly positive defi-
nite under the given condition.

Now we are prepared to determine the most gen-
eral local three-body correlation operator F(123)
subject to the same conditions as we have imposed
on F(12). The correlation operator F(123) may de-
pend on the three spin pseudovectors whose com-
ponents are o,(a) (=1, 2, 3 being the particle la-
bel), the isospin operators 7(a) [in the form of pro-
jectors P} 3%(a,B)], and the space coordinates. The
algebra of the spin operators [in particular, the

property that any product of more than three o,(a)
can be reduced] implies that F(123) may be cast in
the form

F(123) =f(712)f(713)f(723)
3 3
[T+ B o e+ Z Tolapo e, 6)

+T‘.,,,(123)0,(1)0,(2)0u(3)]’ (14)

where summation over the repeated indices i, j, k
is understood. This form calls to mind the sym-
metry decomposition of the three-body wave func-
tion underlying the Faddeev method. The various
T’s are functions of relative separations in coordi-
nate space (i.e., functions of ¥,,¥,,, T ,xT,,) and
of the isospin projectors, with rather evident sym-
metry properties with respect to the particle la-
bels a=1, 2,3 to ensure that F(123) is totally sym-
metric. Further, for F(123) to be a scalar, T
must be a scalar, the T;(a) must form for each «
the components of a pseudovector, the T,(aB)
must form for each ap a tensor of second rank,
and the T,,,(123) must form a third-rank pseudo-
tensor. To fulfill the hard-core boundary condi-
tion in the three-particle configuration space, we
have attached a Jastrow correlation factor to each
term. The cluster property (asymptotic boundary
condition) for three particles reads

F(123)-F(12) for 3—. (15)

This property holds only if
T(a), T ;»(123)=0 for 3— o, (16)

I.e., T, and T;;, must introduce pure three-body
correlations. Adopting the special form Eq. (11)
for the operator F(12), the remaining T’s in Eq.
(14) must obey the asymptotic boundary conditions

T-1+3[glr,)-1]PL12),
T,,(13), T,,(23)-0,
T,,(12)~ [ g(r,) - 1] PX(12) 17

x [5,, - 7122—’ x,(lz)x,uz)] ,

for 3 -, with ¥(12) =(x,(12), x,(12), x4(12)), ¥2(12)
=72

In contrast to expression (11) for the two-body
correlation operator, expression (14) is not an
orthogonal decomposition in spin-isospin space.
Consequently, the condition that Eq. (14) be posi-
tive definite cannot be incorporated explicitly in a
straightforward manner without first accomplish-
ing a difficult diagonalization, although sufficient
conditions are easily found.

Hopefully, it will not be necessary to exploit the
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full flexibility of Eq. (14). Special choices of the

T functions should, of course, be physically well

motivated and, if possible, mathematically simple.
In the absence of precedent we shall adopt the

simplest reasonable form. We extend Eq. (16) to

all configurations and assume for the surviving

terms in Eq. (14) the asymptotic forms correspond-

ing to Eq. (17) (invoke cyclic permutation of 123

as necessary):

T=1+3[glr,) -1] P}(12) +cyel.,
(18)
2
T,,(12) =4[ glr,y) - 1]p;(12)[5,, —;——zx,(lz)x,(IZ)].
12
In the notation of Eq. (11), we thus arrive at the
following three-body correlation operator:

F(123) =f(rm)f(r13)f(rza){ 1 +[ &(ry,) - 1] P1(12)
x P3(12)[ 1 - Q(12)] +cyel.}, (19)

which we shall refer to as the asymptotic choice.
Additional freedom allowing an improved descrip-
tion of three-body effects may be introduced by a
simple generalization of Eq. (19),

F(123) =f(7’12)f(713)f(723)
X{1+h(ry)h(r,)| gry,) - 11 P1(12)
xP%(12)[ 1 - Q(12)] +cyel.}, (20)

where A(7) is an independent function with the prop-
erty k(r)- 1 for r- «. This generalization would
(for example) provide a better chance to make
F(123) positive definite for given g(»), or to meet
other desired conditions such as a three-body
Pauli condition.

Other special forms of F(123) could be con-
structed by comparison with the Bethe-Faddeev
scheme,*!3 or (from a more mathematical point
of view) by generalization of Eq. (13) to three par-
ticles via

J@) = fr A7 15)f(735)
G(12)- G(12) +G(13) +G(23) -2, (21)
(12) - 0(12) +2(13) +2(23) .

But of course the price of any improvement on the
asymptotic choice of F(123) must be paid in terms
of more difficult T functions.

To complete the specification of the problem in
the framework of the “asymptotic-correlation an-
satz,” we observe that Eq. (20) may be generalized
in a straightforward way to A particles; we thus
propose the following A -particle correlation opera-
tor including tensor effects:

F(1- --A)=F1+F,ZA) u(ij) , (22)
1<y

where F,, F, are ordinary Jastrow correlation
factors

F1.z=‘I<-I,f1,z(7u); (23)

and the quantities u(ij) incorporate the state depen-
dence
(r

u(12) =§1(—rn%[g(rm) ~1]P(12)P%(12)[1 - Q(12)].
(24)

The corresponding trial A-body wave function is
reminiscent of that of Feingold,'® which was sug-
gested by second-order perturbation theory. In
the present study, only the two- and three-body
parts of Eq. (22) are employed, so that what we
will learn has to do only with these aspects of the
A-body wave function. A good trial wave function
for A >3 nucleons may have to be much more com-
plicated than Eq. (22), or at least different from it.

IV. EFFECTIVE POTENTIALS

Calculation of the three-body contribution, Eq.
(9), to the energy per particle for given correla-
tion operators F(12), F(123) requires evaluation
of matrix elements of the operators F?(12) -1,
W,(12), and W,(123). These latter operators in-
volve at most spin scalars, spin vectors, and
spin tensors. Note in particular that W,(123) has
the same form as Eq. (14). According to Eq. (9)
we need the spin trace of W,P,; from the theory of
irreducible tensorial sets!” it then follows that on-
ly the spin-scalar part of W, will give a nonvanish-
ing contribution. This last fact holds for the en-
tire expression (9); we need retain only the spin-
scalar portions of the operators F?(12) - 1, W,(12),
W,(123). Thus we may replace these operators, for
our purposes, by simpler effective operators,

F?*(12) -1-K(12),
W,(12) - w,(12), (25)
Wy(123) - w,(123),
which involve the spin operators only in the forms
G(a) <5(B), but satisfy
(OB} =5+ 5 T (ijklw,Pyl i8)
A S 31AG 34

-i— 2 iR\ K| ik - ki) (ij |w, |45 ~ji). (26)
(321

The construction of such effective operators pro-
ceeds via the definitions (7) and (8), the general
forms for F(12), F(123), and the replacements
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o(a)=~0, (11) this result collapses to
oi(a)o;(B)~0, i#j, a#8, (27) w,(12) =w{P(12) +0{?(12), (28)
0,(1)0,(2)0,(3)~0, for any two of ijk coincident . with
For all further reductions we have used the (0 _r? 2 2
“asymptotic choice,” Egs. (11) and (19). In RTC w;"(12) = m [Vi7rQ)]* 4720 Ve (12), (29)
the above procedure was already applied to obtain @ L 3
= 1 12). 30

the two-body effective potential w,(12) for the w3 (12) =w 1 (r,3) P (12)P*(12) (30)
most general F(12). For the special choice Eq. Here V. is the central part of the bare potential
(10) and wy is the “effective tensor potential”:

Ve=tViPiP + Vv PLP +3V PP +3V PIP3, (31)

N + 172 472 1
wr=3CV: -4V fA(g2-1) *3 ;[(ng)2 —(vF)?] *3 ?fz(g— 1)2. (32)

For the “effective correlation” K(12) we find simply
K(12) =[f2(ry) = 1] +5/2(r p) g% (ryp) - 11 P (12)P3(12). (33)

The first term in this expression will be referred to as the “over-all correlation,” the second, the “effec-
tive tensor correlation.”

We can follow the same pattern for the construction of the effective three-body potential w,;(123). The
procedure is elementary but the manipulations are lengthy; an outline is given in the Appendix. The final
result is

w4(123) =[wiP(123) +wP(123) +wP(123) +wP(123) +wP(123)] + [w®(123) +wP(123)] +w®(123) , (34)
with
2
wP(123) =[ f2(r15) f2(73) = 1wiP(12) +4ﬁ—m PR ) Vs f2(r19)] [ Vs f2(rys)] + cyel. (35a)

wP(123) =[ £2(r5) f2(725) = 1wy (r,,) P2(12)P3(12)

o Pral 8% - (7 0] [9 £2020)) P12PH(12) oyl (35b)
w$(123) = § f2(ras) f2(r13) £2(r13) - 1] P (13)P3(13) P (12)

+% %’ FRrVaf o)l {Vs f2ris) g2(r1) = 11} P1(18)P3(13) + (1~ 2) +adj. + cycl., (35¢)
w$P(123) = 5 f2(r35) f2 (1) g (r4s) = 1]wiP(r1,) P2 (12) P3(12)P 2 (13)P3(13)

"’% %f2(7u)[g(712) - 1] [stz(r”)] ‘ {sta("'m)[g("m) - 1]}P11— (IZ)PS(IZ)Pi (13)P3(13)

+(1-~2) +adj. +cycl. , (354)

2
w;’n('ru) = %[SV:;(’V;;) - 4V;~ (7’13)]f2(712)[g(7’12) - 1] +§ }:;l_[vf(ru)] * {Vf("’m)[g(‘rm) - 1] } s (35d")
w$(123) = V4(123)P 1 (13)P3(13) P 1 (23) P%(23) +adj. +cyel. , (35€)
w(123) = V,(123)P L (13)P3(12)[ P3(23) - 2]P3(13) + (1~ 2) +adj. + cycl. , (36a)
wP(123) = V,(123)P 1 (23) P3(13)[P3(12) - £] P*(23) + (1~ 2) + adj. + cycl. , (36b)
w$(123) = V4(123)[P3(12), P3(13)][P2(12), P3(13)] + cycl. (37)

The functions Vj, ..., V, depend only on spatial coordinates.
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We note that the terms in the first bracket of Eq. (34), viz., Eqs. (35a)-(35e), have the following struc-
ture:
(a) w'® is the “over-all” effective three-body operator, surviving intact for a spherically symmetric two-
body Jastrow factor (g=1); indeed, the only term surviving in this case.
(b) w® contains the over-all correlation times the effective tensor potential w?,
(c) w® contains the effective tensor correlation times the “over-all” two-body potential w§’.

(d) wf;’ and w?’ involve pieces of the effective tensor correlation times the effective tensor potential.
These addends all possess direct parts. The remaining terms in Eq. (34), viz. Eqgs. (36a), (36b), and
(37) do not. In particular, »® only contributes through double exchange, i.e., via matrix elements joining

|ijk) with |jki) or |kij).
The explicit forms for the functions Vi, ..., V, show clearly the difficulty of the three-body evaluation:

V5(123) = ‘,%fz(raa)[g(’rzs) - l]fz(‘rla)[g(ﬁs) -1]
X (‘lit;[vlf("'u)]2 +f2(7u) sin"y[31V;(rn) - 1Vt-:(ru) =3 Vz("n) + 33V5("12) + 4V; (ryp) - 12 V;‘(ru)]
o) oS3V 4lra) =V ilri) + BV 3(r) =SV 3l
+T18_ %fa("m)<f(”13)f(”as){vaf("u)[g("m) - 1]} : {Vaf(rza)[g("'zs) - 1]}
+f(713)[g(rm) - l]f('rzs)[g('rza) - 1] [vaf(rla)] ° [st('ras)]> ’ (38)

Va(123) == 3 f2(rgs) f2(r1s)[ 2 (r15) = 1]
X (-6f’(rn)(1 —3cos?a)V; (ry) +12(re) g (ry) - 11(1 = 3 cos?a)[*V i(ry,) - 4V (r,,)]
+% {vifra)lglra) - 11} [(V, = Vo) flrp)(1 - 3 cosza)]>
+ o g Arig) g (r1s) = 112 23 Vi (rys) + 1V 5(ryg) + 33V rig) + 9PV 5 (ryg) = 16°V 5 (1))
- % ’:n: FAr)lg(ry) =111 =3 cos? @)V, f2(r55)] - {Vs f2(r 1) g (75) - 11}, (39)
Va(123) = =5 f (r15)[ g (715) = 1) f*(r2s) g (725) - 1]
X (2§[fo (ri2)]- [(V1 = 9,) £ (7,5)(1 - 3 cos™y) | - 6§f’(r,,)(v1- ¥, cos?y)

+f3(rg) sin®y[3 VL (r ) =1V S (r) =3V E(r,) +33V o(r,) +4V plryg) = 12V 1(r,,)]
+2f%(r1y) cos™y[3'V o (ry) = 'V S (r12) +3°V (7 ) - 98VE(713)]>

+ :sz(rza)fz(rm)[g (7’13) - 1] zfz(ru)[slvé(rn) - 1VE(7'13) + SSVZ.(‘rm) - QSVE(ru)]

1 r2 2 2
~3d 5,/ ra)(1 -3 cos 7)<f 13) frag){Vsf(ris) g (715) = 11} {95 f (ras) g (r25) = 1]}
+F ) ) = 117 (rao) & ras) = 11 (V5 f (i) - [st(rza)]) , (40)

1 2
Ve(123) = - 35 fn—f’(rn) (st’(rzs)f’(rm)[g(rn) —1]-{v,[g(ry) -1](1+4 cosza)}> +(1-2). (41)

In these expressions,
_Fy-F Ty ¥ Ty F
cosa =—n—n, cogﬁsu’ cosy Ezla_ru .
12713 712732 7137 2s

(42)
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|

V. NUMERICAL RESULTS FOR NUCLEAR MATTER

For numerical calculations it is convenient to decompose the three-body potential w,(123) according to

w,(123)=w,(12, 3) +cycl. ,

(43)

as already indicated in Eqgs. (35)-(37). Also, it is useful to define the following spin- and isospin-aver-
aged functions (u, v, k label single-particle spin and isospin states) of the spatial coordinates:

V=1 T uvkl [w,(12, 3) - K(13)w,(12) - K(23)w,(12)]| pvi),

LUK

Vi = vkl [w,(12, 3) - K(23)w,(12)]| pkv),

[M73

(44)

Vi =3 S uv| (20,12, 3) - K(13)w,(12) - w,(12)K(23)]| vku),

3

Vie=3 D (nvk|[w,(12, 3) - K(13)w,(12) - K(23)w,(12)]| v k).

HUK

These definitions incorporate the two-body com-
bination terms. If we wish, we may classify con-
tributions to a given V, (a=I,...,IV) in corres-
pondence with the scheme set up for the structur-
al decomposition of w, in Eq. (34) ef seq. For in-
stance, we can put the addend of V , arising from
the “over-all” term w!}’ together with that addend
arising from the “over-all” part of the two-body
combination contribution, etc. Thus, we may
write

8
V=23V, a=I,...,IV. (45)
i=1

Standard procedures now permit reduction of Eq.
(26) to

1ap L b
Z(AE)a =9 om? (9 =911 +9111 —91v), (46)

L 0 1
e[ [ L v
0 1] -1

© e el
511=f f f Vul?(kp?,55)dT ,
0 0 -1
47)

«© © 1
5111=j°- ]; fl Vinl(kpr1p) Ukpr 3)L (kg7 5)dT

© 1

oy = L’ r f Vil (kg p)dT

0 -1

with

ar =r,%r,2d(cosa)dr,, dr,,,

(48)
_3

146% =F(sinx -xco8x).
It should be noted that 4; yields the direct,
-(9y +9;) the single-exchange, and 4;;; the double-

exchange contribution to the three-body-cluster
energy.

-

We have adopted for numerical study three ex-
amples of the class of noncentral potentials ex-
amined by Gammel and Thaler,'® viz. the Gammel-
Christian-Thaler (GCT) potential and the potentials
with code Nos. 5200 and 5100. These are the
same potentials as we used in RTC. The GCT po-

Energy per particle (MeV)

25+

230k

-35

FIG. 1. Calculated energy per particle E/A as a func-
tion of Fermi wave number k; for GCT potential. Curve
labeled A(3): Three-body approximation 8@ =[E + (AE),
+(AE);]/A with tensor correlations absent (“over-all” re-
sult, f#1, g=1). Curve labeled B(3): 8® with tensor
correlations present (‘complete” result, f=1, g=1).
Curves labeled A (2) and B(2): “over-all” and “complete”
results in two-body approximation §® = [Ey+ (AE),l/A.
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tential has a “weak” tensor component, the poten-
tial 5200 a tensor component of “moderate”
strength, and the potential 5100 a “strong” tensor
component. For a complete specification, see Ta-
bles I and II of RTC.

The two-body-cluster contributions to the ground-
state-energy expectation value of nuclear matter
being known for the choices of f and g made in
RTC,' we have simply used in these functions the
“optimal” correlation parameters A, A*, and a*
listed in Table III of RTC and calculated all the
corresponding three-body contributions Eqs. (45)—
(47) for kg values 1.0 (0.1) 2.0 F~'. To give some
impression of the relative importance of the vari-
ous contributions U, i =1,...,8 to the three-
body energy per particle [Eq. (46)] arising from
the various 33, V¥, i=1,...,8, we cite these re-
sults for the potential 5200 at k. =1.4 F~'; U®
=-0,95 MeV; U® =-2,12 MeV; U® =-1.75 MeV;
U®4+U® =-1.84 MeV; U® +U™ +U® =5,38 MeV.
Our final results for the energy per particle in
three-body approximation, §® =[E, +(AE),
+(AE),]/A, are displayed in Figs. 1-3 for poten-
tials GCT, 5200, and 5100, respectively. The
curves labeled A(3) are the results including only
over-all correlation effects; the curves labeled
B(3) are the complete results including the effects

7
RS

-15 +

Energy per particle (MeV)

20+

25+

-30

1.0 1.5 2.0
-1
ke (F)

FIG. 2. Same as Fig. 1, for potential 5200.
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of tensor correlations. The curves A(2), B(2) are
the corresponding results (over all, complete) in
two-body approximation, §® =[E, +(AE),]/A.

The results for §® exhibit a distinct qualitative
improvement over the results (from RTC) for §®
with respect to the problem of saturation. It
should be stressed, however, that it is not legiti-
mate to interpret our present calculation as yield-
ing reasonably good approximations to the correct
energies per particle, or the correct energy ex-
pectation values per particle E/A, for the poten-
tials in question — though the superficial appear-
ance of the results might make it very tempting to
do so. The correlation functions f and g used here

and in RTC were chosen primarily on the basis of

mathematical simplicity, with a view to exploring
the general scheme in an unencumbered and effi-
cient manner. The functions we have adopted are
evidently unsatisfactory - at least beyond the sat-
uration &, of about 1.4 F~! - because a good corre-
lation function should (one would hope) already
produce saturation in the two-body approximation
to E/A. Indeed, A(2) as well as A(3) should al-
ready show saturation.

AG3) A(2)
10+
5 (—
< 0 T T T T T T T T T T
2
z
@
i
<10+
15+
B(3)
.20 —
B B(2)
| L L 1 | 1 | 1 1
1.0 1.5 2.0
-1
ke (F)

FIG. 3. Same as Fig. 1, for potential 5100.
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On the other hand, it seems likely from our re-
sults that with better correlation functions the ap-
proach proposed here should be successful.
Though the over-all and particularly the tensor-
induced three-body corrections become rather
large at high densities (casting doubt on the use-
fulness of the cluster expansion), this may well
be associated with a tendency of the cluster expan-
sion to repair the saturation behavior of the two-
body approximation in the face of a poor (i.e., not
adequately constrained) choice of correlation func-
tions. The search for better correlation functions
and their use in the present framework will be the
subject of a more numerical paper.

We might remark additionally that for all densi-
ties B(3) should lie below A(3), and B(2) below
A(2), provided the upper bound property holds for
§® 8@ respectively (which it will if the cluster
expansion in question converges rapidly enough),
and the ansatz for the tensor correlation function
g is a sensible one. These criteria are violated
only for the GCT potential, and then only for B(3)
vs A(3) at kz beyond about 1.4 F~'.

At kp=1.3 F™' (just below the empirical satura-
tion density), we find B(3)= -13, -12, and -10
MeV for potentials GCT, 5200, 5100, respective-
ly - quite reasonable values. The order of these
values is in line with the usual hypothesis about
the dependence of the energy per particle on the
central-tensor mixture,® but the effect is so weak
that it may not be significant. The net three-body
correction is found to be small in magnitude at
this density, |(AE),/A|~1-2 MeV, but grows
large and positive at high density.

VI. DISCUSSION

There are many problems connected with the ex-
tended Jastrow scheme which should be attacked.
Some of these questions, it must be admitted, have
yet to be properly formulated.

It would surely be useful to know the precise
connection between the Jastrow approach and
Brueckner theory, a connection which is still not
completely elucidated. Consider, for example: Is
there or should there be a dispersion effect in the
Jastrow scheme as in reaction-matrix theory?2°
But the most pressing questions with regard to
the method developed here are the following:

(a) What is the smallness parameter for the fac-
tor-cluster expansion if a correlated wave func-
tion of the type (22) is adopted, and what class of
correlation functions produces a rapid conver-
gence?% 4

(b) What kind of subsidiary conditions on the pair
correlation functions f and g are preferred with

respect to a good trial function and our choice of
a factor-cluster expansion?

(¢) Is it possible, within the general scheme, to
separate “short-range” and “long-range” effects
or at least certain particle-hole excitations?!
from the “true” short-range correlations? A clar-
ification would certainly be necessary in face of
the form of the wave function (22). In this wave
function the tensor effects are described, roughly
speaking, by a two-body operator which generates
zero-particle-zero-hole and two-particle -two-
hole excitations only.

Of course, these questions are not independent,
but rather emphasize different aspects of the en-
tire problem. They must be considered seriously
before profound conclusions can be drawn with re-
gard to the present numerical results or future re-
finements. The same questions already arise in
the two-body version of the theory; their impor-
tance is only brought into clearer focus by our ex-
ploration of three-body effects. At this juncture,
little can be added to the discussion of RTC.

It is our belief that a fruitful attack on these
problems should begin with the imposition of the
Pauli condition on the trial wave function (see the
discussion of RTC). This condition seems a natu-
ral one in view of our original introduction of the
correlation operator F as a true dynamical corre-
lation, and our desire that all contributions of the
“uncorrelated” ground state (represented by @) to
the energy be collected in the first term E, of the
cluster expansion (insofar as it is possible). (In
other words, we want to avoid cluster expanding
in the statistical or kinematic correlations of free
fermions.) The Pauli condition in this general
sense takes the form

(e|F-1]2)=0, (49)

which is presumably to be applied separately in
each cluster approximation. In two-body approxi-
mation, Eq. (49) yields just the “average Pauli
condition” of RTC.

ACKNOWLEDGMENTS

M.L.R. appreciates very much the hospitality of
the Washington University Physics Department
during the years 1969-1971. He enjoyed a reward-
ing time at the Center for Physics at Aspen, Colo-
rado, where he was encouraged to carry out parts
of this work., J.W.C. would like to acknowledge
the hospitality of the Niels Bohr Institute, Copen-
hagen, and of the Physics Institute of Abo Akademi
during the summer of 1971. He also thanks
Nordita, Copenhagen, for financial support.



(3

TENSOR CORRELATIONS IN NUCLEAR MATTER... 705

APPENDIX
The derivation of Eqs. (34) et seq. involves the following steps:
(a) First we evaluate the commutators in Eq. (8). To this end it is helpful to bring them into the form

[F(123), [¢(3), F(123)]] =§[v3, F(123)} --2’% {v,[F(123),[V,, F(123)]] +adj.}. (A1)

The first term is merely the square of a derivative of a local operator and, hence, is itself local. The cur-
ly bracket term seems to be linear in the momentum operator —i%V,, but a careful examination shows that
it contributes to the energy only through matrix elements connecting |ijk) with | jki) or | kij), i.e., only
through double exchange. This fact can be used to bring the curly bracket term also into local form.

(b) The second step makes use of the following relations:

[Vs, flris)] =[Y, 3],

(V0 QUIR =5 5[2P°(13) - QU3)],

13 ) “2)
[V31 [st Q(13)]] =—[2P3(13) - 3Q(13)] ’

Tis
i[Q(13), [V,, @(13)]] =Z71;‘=[5(1) +5(3)]XF,, .

Insertion of Eqs. (A2) into Egs. (A1) and (8) yields then an expression for W, convenient for the extraction
of the spin scalars. This expression contains the spin operators only in the combinations indicated in step
(c) below.

(¢) We next reduce the operators occurring in Eq. (8) after insertion of (A1) and (A2):
P3(12)[1 - Q(12)] =1 P3(12) ++ -+,
S, P(13)[1 -Q(13)]=(1 - 3cos?a)P3(12)[P3(23) - 3] P3(13) +++ -,
[P?(13) -Q(13)] P'(12)[P°(13) - Q(13)] = 4 P3(13) ++ -+,
[P3(13) -Q(13)] P*(12)[P*(13) - Q(13)] = : P3(13) ++ -+,
[P3(13) - Q(13)]S),[P*(13) - Q(18)] =0 ++ -,
[P3(13) -Q(13)] P*(12)[P*(23) - Q(23)] = (1 - 2 cos®y) P3(13) P%(23)
- (1 +cos?y)P3(13)[P3(12) - §]P3(23) ++ -,
[P3(13) - Q(13)] P3(12)[P3(23) - Q(23)] = (1 +2 cos?y) P3(13) P3(23)
+4(Tcos?y —1)P3(13)[P3(12) - ] P3(23) ++ - -
[P3(13) - Q(13)]S,,[P3(23) - Q(23)] = § sin?y P3(13)[2P3(12) - 3] P3(23) +- -~ .

(A3)

’

We keep only the spin-scalar parts, thus drop the terms represented by dots. Note that we could express

the various P products in accordance with our original statements (14) and (27), but the formulation above
is somewhat preferable physically.

(@) In addition, we exploit some properties of the isospin operators. For example,
P1(13)P(12)PL(13) =3 PL(13) PL(12) P}(13) = $Pi13),

(A4)
P(13)P}(12) PL(23) = -3 PL(13) P}(12) P1(23) = $ PL(13) P1(23),
while
P3(12) PL(13) P3(12)[P3(23) - $]P%(13)~0. (A5)

The replacement (A5) holds because the sums needed in Eq. (9) will cancel any contribution to the energy
given by the left side.

Completing steps (a) through (d) and collecting related terms according to the decomposition (34), we
arrive at the expressions (34) et seq.
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