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The "elementary-particle" treatment of nuclear P decay is extended to include the effects
of final-state Coulomb interactions. The resulting formalism is valid for both allowed and
forbidden decays. The Coulomb correction in allowed transitions is considered in detail and
compared with the usual impulse-approximation calculation. The spectrum shape factor for
the transition O' —C~ +e-+~e is evaluated as an example.

I. INTRODUCTION

In the "elementary-particle" treatment of nu-
clear P decay, ' initial and final nuclei are treated
as elementary, rather than composite, particles.
The composite nature of the nucleus, which is
usually taken into account through the use of a
model-inspired nuclear wave function, rnanifests
itself in the elementary-particle treatment through
nuclear form factors. The present elementary-
particle approach does not, however, include a
systematic formulation of the Coulomb correction.
Thus, this approach is limited to the treatment of
P decay of light nuclei where Coulomb corrections,
which are of order cyZ, can be neglected. Of
course, even for light nuclei, high-accuracy anal-
yses of P-decay spectra such as those required to
test the conserved-vector -current (CVC) hypothe-
sis or the existence of second-class currents re-
quire knowledge of the Coulomb correction.

In this paper, we extend the applicability of the
elementary-particle treatment of nuclear P decay
by including the Coulomb correction in the basic
formulation. We define the Coulomb correction
as the one due to the static Coulomb final-state
interaction between the emitted electron (or posi-

tron) and the final nucleus. In the nuclear case
this is the dominant electromagnetic correction.

In the customary impulse approximation, the
Coulomb correction is introduced by replacing the
plane-wave electron wave function by the Coulomb-
distorted wave function, properly averaged over
the initial and final nuclear wave functions. ' 4

Hence, the Coulomb correction in this approxima-
tion is, strictly speaking, model-dependent,
though in practice some approximations are used
to make it model-independent in order to simplify
the calculation.

In the elementary-particle treatment the initial
and final states are described in terms of form
factors or structure functions characteristic of
the nuclei as a whole, the numerical values of
these form factors reflecting the complexity of
the internal nuclear structure. Thus, the form
factors play roles of nuclear wave functions and
the Coulomb-distorted electron wave function is
averaged over the nuclear form factors. The
form factors can be obtained directly from the
corresponding electron scattering data with the
help of the CVC hypothesis. Hence, a model-
indepent calculation of the Coulomb correction to
high accuracy is, in principle, possible when this
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treatment is used.
We restrict our discussion in this paper to the

case of allowed p transitions (~ d, J
~
=0, 1 and no

parity change). In this case the nuclear form fac-
tors contributing to the hadron transition matrix
element have about the same momentum-transfer-
squared dependence within a few percent, ' and as
a result the formulation is relatively simple. This
simplicity facilitates comparison of this approach
with that of the usual impulse approximation. A

generalization to the case of forbidden P transi-
tions is under investigation.

In Sec ~ II we first review the usual impulse-ap-
proximation formulation of the Coulomb correc-
tion. We then develop the formulation in the ele-
mentary-particle treatment. The prescription of
taking proper averages of the Coulomb-distorted
electron wave functions over the nuclear form
factors is given.

We present in Sec. III approximate expressions
for the Coulomb-distorted electron wave functions
for a point nucleus and for a finite size nucleus.
Their averages according to the prescription given
in Sec. II are discussed.

In Sec. IV, expressions for the square of the

transition matrix element including the Coulomb
correction are given. As an example, the spec-
trum shape factor for the transition B"-C"+ e
+ v, is discussed.

II. FORMULATION

The conventional effective weak Hamiltonian for
strangeness-conserving semileptonic weak pro-
cesses may be given by

H = dxX (x), (1a)

3C„(x)= J &„'(x,o) l„(x, 0)+ H.c. , (1b)

J~' (x, 0) = V &+)(x, 0) +A ~„'(x, 0),

l „(x,0) =4,(x, 0) y „(1+ y, })I&, (x, 0), (ld)

where 6= 10 '/m, '; and I (x, o), V "(x,o), and
A&')(x, o) are, respectively, the lepton weak cur-
rent, the charge-raising vector, and axial-vector
hadron weak currents. The transition matrix ele-

ment for the process i -f+e + v, is, from Eq. (1),

SK=&f(i ), ti&), .(R)tl& I (i&))=
~~ &f(i&i), (i)), .(i&)tl Jd z "(Ol) (0)l,t'(i))), , (2)

where p, , pf, p„and p, are, respectively, the
momenta of the particles denoted by subscripts.

A. Impulse-Approximation Treatment

First we discuss the transition matrix element
of Eq. (2) in the traditional impulse approximation.
In the impulse approximation, one replaces Eq.
(1b) by

A

X (x)= g I„'&I„( x)d"(x-r ')+H.

and replaces the initial and final nuclear states by
appropriate nuclear wave functions. In Eq. (3) the
sum over a extends over the A nucleons in the nu-
cleus, r ' is the position of the ath nucleon, and
I ~ is a single-nucleon operator to be determined
from the nucleon case. It is customary to take
(neglecting off-shell contributions and second-
class currents)

I {a)
g

{a) (a) g& g{a)
mp

where

V.= (Pg —P().
and g~, g» g» and gp are the vector, weak-mag-
netism, axial-vector, and induced pseudoscalar
form factors.

Substituting Eq. (3) into Eq. (2) and carrying out
the integration over x leads to

A

3R =
~2 (f, e, v, ( Q I'~'I (r 'l) ~i) .

a= j,

In the absence of Coulomb interaction between the
final nucleus and the electron, both the electron
and antineutrino may be described by plane waves.
In this case, the final state can be written as a
product of leptonic and hadronic states. Then,
using translational invariance, we can evaluate
the leptonic matrix element:

(e, ~l v(~r'})0)

=e '~~'~" (e, v, (l (0)~0)

{a)= e-"&"&"" u, (p, h (I+r, )v„(p„) .
{a) {a) + gp y{a) q T(a)

m y5
{4) (6)
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Equation (5) then becomes

where

x tg (p )y (I+ra)U (p )1 (7)

q=-(P. +p. ) =p&-p;

This is the well-known impulse-approximation ex-
pression in the absence of Coulomb interactions.
In the allowed approximation (which is appropriate
for transitions with A J —=

I J, —JzI = 0, 1 and no pari-
ty change), only the leading terms in I't„') are kept
and e'~' is replaced by unity, implying that the
lepton pair does not carry any angular momentum.
(Note that the angular momenta of the lepton pair
are measured from the center of the daughter nu-
cleus. ) In the case of forbidden transitions, one

t' q' r (a) .must expand e'q" in terms of spherical compo-
nents, keeping the leading terms in this expansion
for which 9P does not vanish.

In the presence of final-state Coulomb interac-
tions the outgoing electron can no longer be de-
scribed by a plane-wave function, although the
antineutrino is still described by a plane-wave
function. Since the final nucleus is considerably
heavier than the electron, the usual practice is to
assume that the net effect of the final-state inter-
action is approximately equal to the replacement
of the plane-wave function of the electron by a
Coulomb-distorted one. Hence, one can still write
the final-state wave function as a product of lep-
tonic and hadronic parts. Then

(~ -l, (a). p
&

a-1

a=1

Equation (10) then can be written

x()t.e " '"&r ( Ir+, )~.(P. )

Note that the hadronic matrix element in this ex-
pression corresponds to the hadronic matrix ele-
ment of Eq. (7) with q=0.

B. Elementary-Particle Treatment

We now consider P decay by treating the initial
and final nuclear states involved as "elementary"
particles in the sense that we do not consider nu-
clei as explicitly being composed of protons and
neutrons.

Using translational invariance, we can rewrite
Eq. (2) as

%= ~(2v)'5 "(p, -pi-p, —p, )

'r (a)e '»&'' in terms of spherical components, and
to retain the leading terms which satisfy the selec-
tion rules for nuclear transitions.

In the case of allowed transitions, we can re-
write Eq. (10) in a form which is particularly use-
ful for comparison with the results of the elemen-
tary-pa. rticle treatment. We define the average

A

(@ I p pa) -ip„r &a)g
(

(a)
)I g &

A

3)I= ~(ozIp I"'(e, ),Il (ri')Io&Ic;&,
a „-1

(8)
x(f (p~), e-(p, ) )'.(p.)l JV(o)f (o) li(p, }&.

(12)

4,(r~', p, ) is the Coulomb-distorted electron wave
function, which will be discussed below.

Combining Eqs. (8) and (9), we have the follow-
ing result

A

3g—= (4'~I+ I'i„' e P" '
Tt, (+r' p, )Iq, &

a=1

x
I y (I+y,}v„(p„)]. (10)

This is the well-known result for the transition
matrix element in the presence of the final-state
Coulomb interactions. As mentioned already, the
usual practice is to expand g, (r~', p, ) as well as

where the lepton part is now given by

&e-(p, ), ),(p„)l t.(~r')Io&

—@,(r', p, )y,(I+y, ) U.(p„)e 'Pa' ",'
(9)

In the absence of final-state Coulomb interaction,
the lepton part is independent of the hadron part
and can be factored out; Eq. (12) then reduces to

3g= (2m)'5" (p,. -pq -p, -p, )

(13)

I Compare Eq. (7). Note that momentum conserva-
tion is not explicit in the usual formulation of the
impulse approximation. ] The exact form of the
hadronic matrix element used in the evaluation of
Eq. (13) depends on the spins and parities of the
final and initial nuclear states. For example, for
2' - —,

"transitions
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where

{fll'n'(0)li)=Mf ynFv(q', i-f)

(14)

(flAn'(0)li)=uf y y, F„(q', i- f}
i(m;+mf}+ ', q.y, F,(q', i-f) u;.

Here, q = pz —p„u, and u& are spinors describing
the motion of the initial and final nuclei (viewed

as single particles of spin —,'); and F„, F„, F„,
and Fp are, respectively, vector, weak-magne-
tism, axial-vector, and induced pseudoscalar
form factors. We assume that weak currents are
of first-class nature, so that scalar and tensor
form factors do not appear. Likewise, the had-
ronic matrix elements for 1'-0' transitions are

Let us now discuss how the Coulomb interaction
modifies the expression for 3R. In the final state,
as mentioned already, the antineutrino has no in-
teraction with the rest of the state, while the elec-
tron and the final nucleus are interacting with each
other through a static Coulomb potential. Thus,
we shall expand the interacting state (f(pf), e (p, )l

in terms of noninteracting electron and nucleus
plane waves. For the sake of simplicity, we con-
sider the case in which the initial and final nuclei
are spinless. (This simplification enables us to
suppress the spin indices of the nuclei, but does
not otherwise affect the formulation. }

In order to carry out this expansion, we must
utilize completeness relations for both the elec-
tronic and final nuclear states. For the electrons,
we simply use

g [s'"'(p) u '"'(p) —~'"'( p)~'"'( p)l = 1

{f1~ n (0)li}=v2menByfq()t', 2 2
'

~
(+) 9( Fdd(q '-f}

m mp

(flA~„')(0)li)=&2m $ F„(q', i- f)
Fp(q', i- f)+g~$ ' g (15)

where $ is the polarization vector for the spin-one
nucleus, m is the nuclear mass (m, =mf =m), and

Q= p, +p&. Form factors are defined as above.
The vector and weak-magentism form factors,

F~ and F„, are uniquely determined from the cor-
responding electron scattering data through use of
the CVC hypothesis. The contribution of the in-
duced pseudoscalar form factor Fp is very small
(=m, ) and can be neglected for the purposes of this
work.

where u and v describe positive- and negative-en-
ergy electrons, respectively. In the estimate of
Coulomb corrections, we can neglect the strong
interactions of nuclei. That is, we need not con-
sider intermediate states in which a proton has
been replaced by a m' plus a neutron, etc. Fur-
thermore we treat the nuclei nonrelativistically.
Thus,

Elf)(fl = 1,

where the sum over f runs over all plane-wave
states of the bare final nucleus. This does not
imply, however, that strong-interaction effects
are entirely neglected in this formulation of P de-
cay. Most of the effect is already included in

nuclear form factors. Then

(f(rr) ' (P)l= Jdk. „dk g((f(kr)r(P)lf(kr), tk. , ~, k'0))(f(krlktk. , kk 0)l,
—(f(pf), e (p )I f(kf), e(k„ if, , E&0)) {f(kf),e(k„ i(, , E &0)l], (17)

where p is the spin index of the intermediate electron [the spin index of the final (physical} electron is sup-
pressed] and the electron with E)0 (E&0) is a positive- (negative-) energy electron. We express the am-
plitudes in E(l. (17) in the coordinate representation, i.e.,

(f(pr), (p, )lf(kr), e(k„p, k ) 0f)d, fdrr(f=(pr), (p, )l r, ,)( r, ,lf(kr)(k, ), p„k 0)),, (18)

where

i 1 ~ ](.'(, , I f(k ), (k„P,E 0))=
(2 )„,
SP ~ k

{rf, r, l f{kf),e(k„p, E &0))=
(2 )3fp

),~ u (k,),

g 'e' "ejp. 7]

), (k,),U(P)
(19)
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and
R

(f(Pj), e (P.)l rj, r.)= (2,)2j2 (2,)2{2 e( P) (20)

P = Pf + Pe7
m, r, +mf rfR 7

mf + PE~
r=r, —rf, mf pe me pfp=

mp+mf

(21)

The first factor on the right-hand side of Eq. (20) represents the plane wave describing the motion of the
center of mass and the last factor represents the relative motion of the electron with respect to the nu-
cleus, 4,(r, p) being the Coulomb-distorted electron wave function. This expression is, of course, not
exact, but corresponds to the approximation made in the impulse approximation. Since we have mf »m„
Eq. (20) can be approximated as

(f(pj), e (p, )~ rj, r,)=-, e '{Pj'('d)' "j(12,(r, p, ).

After substituting Eqs. (18), (19), and (21) into Eq. (17), we change the integration variable r, into r and
then carry out the integration over rf and kf. The result is

(f(p), (p)I = (2,)jdd.),2 P(, ji)

x Q [uj")(k,)(f(pj+p, —k,), e(k„gp 8 &0)] —vl")(k, )(f(pj+p, -k, ), e(k„ i{,, E &0)
~ ], (22)

or, after substituting Eq. (22) into Eq. (12),

22 =
vp (2 )'Ill'i {ji,—jii —ji, —p ) I dji, Jd

( ), 2',(,p )

xg[u(")(k, )(f(pj+p, —k, ), e(k„p., E &0), v, (p, )~ Jj„')(0)l (0)]2(p, ))

—v("i(k, )(f(pj+p, —k, ), e(k„ i(, E & 0), v, (p, )~ J ~' (0)l„(0)~i(p;)) ] . (23)

In the matrix element in the square bracket on the right-hand side of Eq. (23), the electron, final nucleus,
and antineutrino are now all noninteracting free states; hence, the hadron and lepton parts can be sepa-
rated, e.g. ,

(f(pj+p, —k, ), e(k„p, , E &0), j{ (p )~ J j~' (0)l„(0))i(p())= (f(pj+p, —k, )( Jt~)(0))i(p ))uj" (k, ) y„(1+y,)v(p ) .

(24)

Substituting Eq. (24) and the corresponding expression for the negative-energy electron into Eq. (23) and
using the completeness relation, we finally obtain

3R=- (2v)'5 ' (p,. —pf —p, -p„) dk, dr, 4,(r, p, e"'"e

x(f(pj+P, -k, )l&". (0)12(p, )) y (1+y2)v(P, ) (25)

Equation (25) is the elementary-particle-treatment
version of Eq. (10) and is fundamental in the in-
vestigation which follows. We note that the final
result (25) holds for the case of arbitrary nuclear
spin and parity.

In the absence of Coulomb corrections, we have

q, (r, p, ) =rd(p, ) e "')'d, (25)

so that the integration over r yields (2m)'5 "(k, -p, )
and the integration over k, reduces Eq. (25) to Eq
(13), as it should.

As can be seen from Eq. (25), the effects of the
final-state Coulomb interaction are present in
both lepton and hadron parts, destroying the local-
ity of a lepton-pair production. The hadron part
is modified in three ways: (1) Nuclear form fac-
tors which characterize the hadron matrix ele-
ment will be functions of the momentum transfer
q'=[(pj+p, —fj,) -p, ] instead of q=(pj —p, ). (2)
There will be additional kinematic terms due to
the replacement of q by q'' in the matrix element.
(3) Final nuclear spinors which describe nuclei
with nonzero spin are modified; i.ep7 the momen-
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turn of the final nucleus is pj +p, —k, instead of pz.
The last modification can be neglected in our dis-
cussion, for the nuclei involved are always non-
relativistic, so that it does not make any differ-
ence whether the momentum is pz+p, -k, or pz,
since they are negligibly small compared to the
mass m (( p, —k, ~

- aZm, ).
We now must evaluate the following two types of

quantities which appear in Eq. (25) when the ex-
plicit form of the hadronic matrix element is in-
troduced:

Using the relation

Jt dk k e'"e' (r- (2v) 5 (r x) (32)

B, = drp(r)e ~ p~+ . +~(, p~ (33)

In the absence of Coulomb corrections, we have

and carrying out integration by parts for the vari-
able r in Eq. (31), we obtain

dk g p)e r "e
—.' q', (r, p, ) = -p, q, (r, p,), (34}

xF, ((pq —p, +p, —k, )'),

)),=,fAir, f drW, (r, p, )

x F,((p —p, + p, —k, }')( p, —k,), (28)

where F,.((pz-p, . +p, -k, )') are the nuclear form
factors, and i denotes vector (V), weak-magne-
tism (M), axial-vector (A), and pseudoscalar (P)
form factors. The quantity B,. arises from the
modification (2) listed above. Equations (27) and

(28) can be rewritten using structure functions p,
as defined by

in which case B;=0, as it must. In fact, even in
the presence of (:oulomb interaction, we have (us-
ing the wave functions of Sec. III)

p, + —.' q, (r, p, ) =p, (aZ), e, ~. (35)

From Eq. (35), the quantity B, can be neglected
compared with other usual kinematic factors, es-
pecially in the nonrel3tivistic treatment of nuclei.
We conclude, therefore, that the most important
correction, in the approximations mentioned above,
is the modification (1) and the corresponding aver-
age of the electron wave functions.

In allowed transitions we have F,.(0)40, so that
we can write

i;(i)*)=f r,. (x) (29) F,.(q') =—F, (0)&,(q'). (36)

In the impulse-approximation picture p,.(x) come
from the matrix elements of certain operators be-
tween the initial wave function of the decaying nu-
cleus at rest and the final wave function of the
daughter nucleus after it has absorbed the recoil
momentum q.

First, the expression for A,. of Eq. (27), when
Eq. (29) is substituted, becomes

In nuclear P decays, most nuclear-structure in-
formation is contained in F, (0), and the transition
rates are insensitive to 5:,(q') simply because
5:.(q') = I for lq'(=m, '«m, '.

It has been shown, ' with the help of the impulse
approximation, that the nuclear form factors
F,. (q') (i = V, M, A) have approximately the same
q' dependence, i.e.,

&v(q') = 5'e(q') =—5'A(q') -=5'(q') . (3'7)

A, =,f Ar,f Arr, (r, p, )

x dx p, x e'&&~-1" I'.-"' ""

(Fp does not have this q' dependence, but, as men-
tioned already, the contribution of the Ep term is
negligible in nuclear P decay and so will not be
considered. ) Defining again

dr%, r, p, e"»p,. r —= 4. . . (30) 5 (q') = Jtdxq)(x)e'"'q (38)

where we have used the momentum conservation
p, = pz+p, +p„, and (4', )( is the indicated average
of the electron wave functions.

Similarly, the quantity B,. becomes

B;=( },JtdrJI dxV, (r, p, ) e '" »p((x)

q)(x) =—p, (x dr p, (r),

F((0)&P,) . -

we can write, from Eq. (30),

A, =F,. ( )f Ar ()(,p, )("r r (r)

(39)

x dk, (p, k, ) e'"~' t i-r) (31) In contrast to the previous average (()),)„(g,) is
common for all form factors, and depends upon
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F(q2) only. This is not the case for the forbidden

P transition. The net Coulomb effect is, then, to
replace the contributing form factors (i = V, M, A)
in the nuclear matrix element, F, (q'), by F, (0)
and u, (p, ) by (g,):

III. ELECTRON WAVE FUNCTION

In this section we shall discuss the Coulomb-
distorted electron wave function and its average
discussed in the previous section. To describe
the emergence at infinity of an electron with a
specific momentum p„ it is necessary to construct
superpositions of the Coulomb-distorted spherical
waves, which will represent a plane wave at least
at infinity. Such a superposition is given by'

2lr 3 1/2

y, (r, p, ) =
'

pi''(~(u - p)2(p)li(v)&
8 8 K P

x y,*„,(P,)e-" q„„(r},
6"-=-2' [I(K) + 1]v —ar g I'( y + i v) +q ——2'sy,

g„(r) x.„„(r)
f (r) x ( )

(41)

(42)

(43)

where the notation is standard. ' For a point nu-
cleus the radial functions, g, (r) and f„(r) are
given, when normalized per unit energy, by

g (r)= ' ' ' (QQ')
4m

x(f(p~)l zV(0)li(P, )),(0.}y.(I+y, ) .(p.)
(4o)

[compare with Eq. (13}],where the subscript 0 to
the hadron part denotes that form factors should
be evaluated at q' =0, i.e. , replaced by the cou-
pling constants. In Eq. (40), the lepton and had-
ron parts are now formally separated, but (g, )
contains information about nuclear structure
through y. We also remark that Eq. (40) is pre-
cisely the elementary-particle-treatment version
of Eq. (11)for the case of allowed transitions.

13 1 r'
x 1 — —+-—oZE R —~(P r)'+ ~ ~ ~

30 2R2 8 8

, () p. p.(.+ .)
( )"

E„+m m

13 1 r'
x 1 —+——nZE R —~(p r)'+ ~ ~ ~

30 2 R2

g„(r)=— ' '™F(E„Z) (46)

1 E,O.Z rx 3p8r+—
2 p, R

x 1-- — 1-~ + ~ ~ ~

f ( )
P. P.( .+ .)F(E Z)

E8+m, i

1E,aZ r
X sper+

2 p, R

x 1-—— 1+~ +

where F(E„Z) is the standard Fermi function.
For the positron decay, Z should be replaced by
-Z in Eqs. (44) and (45) with appropriate changes
in the phase q„.'

For our purposes, it is sufficient to retain only
the K =+1 and -1 terms from Eq. (41). Then

(22)' "21,~e g, +io ro P,g„e '

p,m, 4K ia rf, +o -p, f„e '~

and F(a, b;z) is the confluent hypergeometric func-
tion.

For a finite-size nucleus the radial functions

g„(r) and f„(r) must be modified inside the nu-
cleus. If the nucleus is represented, for example,
by a uniformly charged sphere of radius R, the
radial functions for r &R are given by'

&/2, (,)= P('" 'F(E Z)

with

. p, (E, +m, } "'(
)

(44)

where
I

+z q-i + p%

(46)

Q =2e"' (y+ iv)(2p r)& 'e '22"""e.„I F(y+ iv)
I'(2y + 1)

xF(y+1+iv, 2y+1;2ip, r),

5' = 2n —arg I'(y + i v) ——2'w y +7i, .

In deriving Eq. (46) we have used the relations

(4'I)

(K2 +2Z2)1/2 V = euZE
p

)

K —i QZ /Pe
y+iv

x'., „(P) x, =&I(~ -p)2(p)li(l )»*, ,(P},
(O''PeXv) 'Xp&'rX2=o'r O'Pex2.

(48)

We rewrite Eq. (46) using Dirac spinors instead
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of Pe.uli spinors; the result is

1 (2v)' '"
4,(r, p, )=—4,

x (a+ by, + cy r +"dy ry, )u, ,

1 (21r)' '" .4(,p, ) =—
4, p

(49)

can be rewritten as

A = dr r sin(rp „)a*y(r),
4mN

PV 0

B= drrsinxp„b*y r,
Pv (54)

C =, t dr[(rp, )cos(rp„) —sin(rp„)}c*y(r),
PV' 0

where

xu, (a~+b*y, —c*y r+d+ ry, ),
J/ d r [(rp „)co s(rp, ) —sin(rp „)]d*q(r ) .

PV 0

e + e ™ee-jb

=-'(.'-.)'"( - -". '" ")

=-l(..'-.)"'(»- ". " ")
2m, &.+m.

The average value of Eq. (49) is, from Eq. (39),

(j)=—,fd Na e "& q'(r)

+y4 drNb*e-"»rp r

When nuclear form factors are not known, y(r) is,
of course, unknown. In this case, in view of the
fact that (g,) is not very sensitive to details of nu-

clear structure, one may use some simple models
for y(r}. When the nucleons near the spherical nu-

clear surface participate in the P transition [i.e.,
shell distribution with y(r) =y(r) = (4vR2) '5(r -R)],
we have

N sin(Rp „)
RP.

N sin(RP „)
( )

RPV
(55)

C=,[(Rp „)cos(Rp, ) —sin(Rp, )]c~(r =R),
RpU

where

+y dr -Ac*re "»y r

+y Jt d r Nd*re "»»i» (r) y I

=u, (A+By4+Cy P, +Dy P„y~), (51)

D=,[(Rp „}cos(Rp, ) —sin(Rp, )]d*(r =R) .
RP„)'

For the case of a uniform distribution of the trans-
forming nucleons, we have

3N R
A=, drr sin(rp„)a*,

PV 0

d r Ng+e- Pvy

B = d r Nb*e-"'»y r

3N dr r sin(rp „)b*,
V 0

-AN
C =R» d r[(rp „)cos(rp „)—sin(rp, )]c+,

PV 0

(55)

C = P v' d r -Nc+y e-"~vy r

D=P, dr Nd"ve-"»y r,
(2&}' "',&sN= — e'

The lepton contribution to is now given by

(52) dr[(rp, ) cos(rp, ) —sin(rp „)]d~ .3iN

V 0

IV. TRANSITION MATRIX ELEMENT

The transition rate of the process i —f+e +v
is proportional to the square of the matrix ele-
ment of Eq. (40); in particular, proportional to

~ =-(4.)y (1+y.)v.
—= u, (A+By, +Cy P.+Dy P.y. )y (1+y,)v, .

(53)

XII-~' I'; b' = (f(p, )I ~' -(0)Ii(P, )&. ,
SgS V

(5V}

In the case when the structure function 4»(r) is
spherically symmetric, i.e., y(r) =y(r), Eq. (52)

where I is defined in Eq. (53). We sum over the
lepton spins s, and s„since we are interested in
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the energy spectrum. Evaluation of Eq. (5'l) is straightforward; the result is

Q I I h ~ I
= h '„'h

I)
' i;„8,.

SeS p

z., = &IAI'l„, (P„P,) —IBI'I.,(P, -P„P„)+ICI'[I„,(P„P„)—2P, P„I.,(P, —P„,P,)]

+ ID I

' [2p, p, I ()(p, -p „p„)—1„8(p, -p,*,p„)] + 2 Re ( A~ B)I „8(p, - p,', p,) —2 1m (A*c )m, f „@(p, -p „,p,)

-2Im(A*D)[(-) 'I ()(P„P,)+2i(P„) I —,()(P„P,)] —21m(B~C)[(-} I ()(P, -P,*,P„}

+2i(p„} I„,@(p,—p,*,p„)]+21m(B~D)m, l„~(p, —p„p,) —2 Re(C*D)1„8(p,-p,', p,)),
where

I s(p„p,) =(p,)„(p„}8+(p,)8(p„)„-6„()(p,.p„)+e 8~(;(p,)),(p, )g,

P,*= (p„iE,), -

(58)

(59)

The integration of Eq. (58) over the lepton and neutrino angles yields the shape factor for the transition.
To illustrate the use of the result in Eq. (58), we derive the spectrum shape correction factor S(E„Z)

for the allowed process 1'-0'+e +v„e.g. , B'2-C" +e +v, . The hadron matrix element is given in Eq.
(15), the nonrelativistic expression being

(60)

where EA and E„are now the nuclear coupling constants

FA=-FA(0'B '- c"} F~ = F~(0' B"- C") ~ (61)

The shape factor obtained from Eqs. (58) and (60) is, keeping the terms up to E,/m~,

&(E., Z) =
I
Al'+

I
BI'+2 Re(A*B) +

I
CI'+

I
Dl' -2 ™Re(C*D)+-™[im(A*C)—Im(B*D)]F(E„Z) E, 3 E

——',[im(A*D) —Im(B*C)]+3
2

~ (2E, —W, )l Al' —W, l
Bl'+2 (E, —W, ) Re(A*B)

4 1 j', , m

P A e

+ (vE, —w ) I
c I' + (yE, —w ) I D I' —2 —(c(E, —w, ) Re(c*D)

e

(c.-)v)(r (x c)-) ()t c)l-(lc. -mw. l() Pic)-r (a c)) }.
e

In the estimate of the lowest-order Coulomb correction, it is customary to keep the two large radial
functions g, and f„, i.e. , A and B in Eq. (53). In this approximation Eq. (62) reduces to

S(E„Z)—= IAI'+I lB'+2~Re(A*B) +— a IAI (2E —W ) —
I
BI'W +2~Re(A*B)(E —W }

4 2 m

F(E., z) I E, 3 2m~ IA ' E, e 0

(63)

1 2 2 m 8 1 I' W

F(E„Z) E,I
Al'+

I
Bl'+2~Re(A*B) +—

3 2mPEA ' 2 (64)

where the second approximate equality, Eq. (64),
is due to the replacement of the last square brack-
et in Eq. (63) by (2E, —W, ) F(E„Z), which is the
leading term; this is justified because the (F„/F„)
term is already of order E,/m~. If we use, for ex-
ample, the A. and B which correspond to the shell
distribution [Eq. (55)], Eq. (64) becomes, neglect-

I

ing (Rp, )' terms,

S(E„Z)—= [g,'(r =It) +f„'(r=B)]
epe

8( ~~( w} (65)
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The first term in Eq. (65} is the well-known Cou-
lomb correction factor for the allowed approxima-
tion and is usually denoted by L,. Substituting g,
and f+, of Eq. (45) into Eq. (65), we finally obtain

In view of the large experimental error in the val-
ue of a, evaluation of the Coulomb correction us-
ing more-realistic form factors is not warranted
at present.

S(E Z)—= 1-— ' ~+aE4Wo F
32m F e~

P A
(66) V. SUMMARY AND DISCUSSION

with

8 1 F 28
a =— ~——nZR for shell distribution,

3 2m, F„15
implying that the Coulomb correction modifies the
coefficient of E, by the factor -~ aZR. For the
values of A and B of the uniform distribution in
Eq. (56) the radial wave functions g, and f„are
averaged over the nuclear volume, resulting in
the replacement of r" by 3R"/(n+3). The coeffi-
cient a for this case is given by

8 1 F 22
a =— ~——nZR for uniform distribution.

3 2m F„15
(67)

The above Coulomb correction agrees with the re-
sult of Refs. 2 and 8.

We have also calculated the contribution of the
small radial wave functions g„and f, through C
and D as given in Eq. (62). This modifies Eq. (67)to

8 1 F 24a-= — ~——eZR,
3 2m' F„15 (66)

( f0)

implying that the correction due to the small ra-
dial wave functions (C and D terms) is about 10%
of the usual correction due to the large radial
wave functions. Comparing Eq. (68) with the ob-
served value' of a, we find

I'„/E„=4.6 +0.9, (69)

which yields, with E„=1.03,"
E„=4.7 +1.0.

This value is to be compared, as a test of the
CVC hypothesis, with the value of E„obtained
from the inelastic electron scattering from C","

F„=4.1 +0.2. (?1)

We have formulated an "elementary-particle"
treatment of nuclear P decay, which includes the
effects of the final-state Coulomb interaction.
The completely general transition matrix element
which results from this calculation is given in Eq.
(25). By restricting our attention to allowed tran-
sitions, we are able to accurately approximate
this general result with the somewhat more tract-
able form given in Eq. (40). Simplification re-
sults, in this case, primarily because of the simi-
lar dependence on q' of the nuclear form factors
which contribute to the P decay. Equation (40) is,
in fact, quite similar in form to the usual impulse-
approximation transition matrix element for al-
lowed decay. Differences which exist between the
two forms are in the calculation of the average
value of the electron wave function, and in the
evaluation of the nuclear matrix elements. In the
impulse approximation one must have a model-de-
pendent nuclear wave function; in the elementary-
particle treatment the nuclear matrix element is
given in terms of the nuclear form factors -pa-
rameters which can be obtained from a complete-
ly independent experiment.

The average over the electron wave function has
been carried out for two models of the nuclear-
structure function &p(r} using the usual Coulomb-
distorted wave function for a finite nucleus. Al-
though this calculation can be carried out more ac-
curately if the nuclear form factors are known,
this average should be relatively independent of the
the exact q' dependence of these form factors.
Thus, the results of the model calculation should
be reasonably reliable. We find that our result in
this case agrees with that of the usual Coulomb
correction to order Rp, .
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