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A variational-bound formulation of the three-body problem based on the Faddeev equations
has been derived previously, This method involves a variational calculation of the exact ef-
fective potential between the incident particle and the bound two-body target. Variational up-
per and lower bounds on this effective potential are obtained by constructing approximate sep-
arable three-body Green's operators. The eigenphase shifts determined by using the effec-
tive potential in the two-body Lippmann-Schwinger equation are upper and lower bounds on
the true eigenphases for energies below the three-body breakup threshold. The method is ap-
plied to the neutron-deuteron system, and a set of variationally converged phase shifts is ob-
tained.

I. INTRODUCTION

A considerable effort has been made in recent
years to formulate the three-body scattering prob-
lem in a manner which will allow practical evalua-
tion of the various scattering parameters. ' A large
part of this effort has been devoted to the investi-
gation of simplified three-body models' which take
the two-body interaction to be a sum of separable
functions in momentum space and thereby reduce
the three-body Faddeev equations' to a one-dimen-
sional integral equation which is easily solved.
However, since the two-body interaction is not
separable (at least asymptotically), we must ulti-
mately learn how to solve the three-body problem
with local interactions. A direct numerical finite
differencing of the Faddeev equations has recently
been performed for the S states of a simple three-
boson system interacting via local potentials which
are dominated by a few angular momentum states. '
However, this method rapidly becomes orders of
magnitude more difficult as the spin and higher an-
gular momenta are introduced. A variational ap-
proach to the Faddeev equations also has been for-
mulated and successfully employed to construct the
quartet phase shifts for the neutron-deuteron sys-
tem. ' This variational approach is applicable to
nonzero energies, and differs from previously de-
rived variational-bound formulations' in that it
does not involve the Feshbach projection operators.
This second point is crucial in the nuclear three-
body problem, where all the mass ratios are finite
and the projection operators are extremely diffi-
cult to construct. ' In this formulation the zero-
order variational approximation is the exact solu-
tion to a simple separable model. In this way the

gross properties of the three-body problem are
factored into the variational solution explicitly,
and a natural coupling of the finite-difference and
variational methods is made. As is well known,
the quartet state is well described by most dynami-
cal schemes, and it is the purpose of this work to
establish the quality of the variational solution
when applied to the more complicated and sensi-
tive doublet state of the neutron-deuteron system.

In Sec. II of this article, we make a specific de-
composition of the two-particle scattering ampli-
tude into separable and nonseparable contributions.
When this amplitude is inserted into the three-
body Faddeev equations, a two-body Lippmann-
Schwinger-type equation results for the elastic
n-d scattering amplitude. The effective potential
that appears in the two-body equation is construct-
ed in Sec. II. In Sec. III formal upper and lower
variational bounds on the solution to the elastic
two-body equation are derived. In Sec. IV a dis-
cussion of the application of this technique to the
scattering states of the neutron-deuteron system
is presented.

II. EFFECTIVE POTENTIAL FORMALISM

Consider first a two-particle system interacting
through a potential v which supports N bound
states. The eigenvalue equations are written as

(h, + v) l x,. ) = -s,. l x,. ), z = i, . . . , N .

An exactly solvable separable potential v~ which
supports the same N bound states is

U, = Z ~
I x;) ~z '~&,(x, I

~',
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where

~;, =(x; l~ Ix, ).
That the two potentials support the same bound
states follows from the relation

~ lx;& =six;&. (4)

The two-body scattering amplitude, t(k', k; E),
possesses bound-state poles at the energies E

e;-(i=I, . . . , N). We can isolate these poles by
writing

t= tA+ tq,

where tA is defined by the Lippmann-Schwinger
equation

tA —VA+ V A gOtA (6)

s,, (E)
t»(E)=g~lx;& E'„(x,l~

4 Vf

The "self-energy" function S,,(E) is defined by

I s '(E)j;, = (x; I x, (E}&,

(10)

where the "distorted bound state" lx,. (E}& is given
by

I x, (E}&= g (E)~ I x, ) .

It follows from Eqs. (4), (1), and (12) that at E
= -ef there is no distortion, i.e. ,

Ix(E=-~, )& =g~(E=-e, )UIx, &
= Ix, &.

(12)

This guarantees that S,,(E= -e, ) = 6... and that ta
has the correct residue at the bound-state pole.

and v A
= v —v ~. g, is the two-body free Green's

operator, (E —h, ) '. It follows from the two-po-
tential theorem' that

ta —(1+ t„go}ti(a(1+got„) 1

where t» is defined by

tA~- v~+ v~ gAtA

and gA is given by

gA CO gOtAgO '

Since v~ is a separable operator, t» may be de-
termined algebraically in the usual manner, with
the result

It is noteworthy that in the context of the three-
body problem the two-body amplitude t~ enters
through the expression

got~Zo — X E E Xf Es, , (E)
(14)

f EJ

In the derivation of the effective potential, it is
assumed that the potential vA does not support any
bound states. This is an assumption which is
easily checked and in the present application will
be shown to be valid.

As is well known, the Faddeev equations are a
set of coupled linear integral equations for the
nine scattering operators (")T(a~(E) (o., P= 1, 2, 3)
which describe the three-body scattering events
of total energy E in which pair a (P} interacts in
the final (initial) state. (Upper- and lower-case
symbols will represent operators that act in the
three- and two-body Hilbert spaces, respectively).
The amplitudes T(o(; E) (o( = 1, 2, 3), which de-
scribe the scattering of pair n in the presence of
the third spectator particle, are the input to these
equations. T(1;E), e.g. , is related to the two-body
amplitude t by the relation

(k,' k '~
I T(1;E) I k, k2~ &

= i(k,' —k, )(k,', I(E— '
) k,),

(16)
where k, is the momentum of particle 1 relative
to the 23 subsystem, and k» is the relative mo-
mentum of the 23 subsystem.

The amplitude T z for scattering with pair a
bound finally and pair P bound initially is given by
the residue of the matrix elements of the operator
(''T'8' at the initial- and final-state poles, located
at

2k" @2ka B—E —E8.2p~ 2 p. g

In order to define the effective potential consider
the reduced Faddeev operators ' TAR' defined by
the input amplitudes T„(o(;E). When these opera-
tors are compared with the full Faddeev operators,
' 'T'"', using the two potential theorem, ' it may be
shown9 '0 that the amplitude T„B(k',ka, E) satisfies

the two-body equation

T (k', kk, E)=V (k', kk , ) ~kEfIdkjk (k', kj;E)

where the effective potential is given by

-'"('- ... )
T),() (k q I k 8, E),

E — & + c&+sg
2 p. y

(16)

+2k I2
V k(k', kk, )=( (E—E1 "k, k' (E —E)(1—II k) Q P' T'„" (E) kk E—;kk).

CX

p~o a&(
2 p. e
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H, is the three-body kinetic energy operator. We

are here using the subscript u to define both the
particular two-particle subsystem and the asso-
ciated bound state. The state ()&,(E —If'k, '/2p, ); k,)
is defined as

For convenience the trial Green's operator ap-
pearing in the Eq. (20) is taken to be of the form
of a finite sum of separable terms

(24)

where the
~ g, ) are members of a suitably chosen

set of basis functions. If the linear coefficients

a& are evaluated variationally by demanding that

CGA =0, the resulting variational upper and lower
bounds are:

III. MAXIMUM AND MINIMUM PRINCIPLES

(&8} G'"' =Z I 0;)(
5J

where the matrix m„ is defined by

(25)

It follows from the definition of the Faddeev op-
erators' that the sum appearing in V s(k„, ks, E)
[Eq. (17)] may be expressed in terms of the re-
duced three-body Green's operator G„=(E -H„) '

as

and

(~o);, =&0; IE -H~l Pg) ' (25)

(27)

z g"'T' = z ~A(r)+[~A- ~A(o)]GA[~A- ~A(@]
a &8 p &a &&a, 8

(19)

where the matrix m„ is defined by

(~„)„=&tj,IH„(E -H„) I y, ). (29)

+ KG~i(H„—E)G„(H„—E)AG„. (21)

At this point it is assumed (and will be shown to
be the case in the present n dapplication) that-
H„ is a positive operator. If, however, H~ sup-
ports a set of three-body bound states, these must
be "subtracted out" as were the two-body bound
states. " The zeroth-order bounds employed in
the present calculation are:

and

upper bound: G„=0~G„; (22)

lower bound: G„=l/E ~G„. (23)

These inequalities follow from the fact that H„ is
a positive operator, and E is taken to be negative.

V„(n) represents the interaction between pair n,
V„ is the sum of all pairwise interactions, and

HA is the reduced three-body Hamiltonian. The
starting point in the derivation of the variational
principle for G„ is the identity"

G„=G„,+G„,+G„,(H„—E)G„,

+ n.G~t(H„—E)G„(H„—E)b G„, (20)

where G„, is a trial Green's operator and G„=G„,
+bG„. Let G„' represent a zeroth order bound on

G„, so that G„-G„is of definite sign. Then if G„
is replaced by G~~ in the right-hand side of Eq. (20),
the error introduced will be of second order and
of definite sign. We then have the following varia-
tional bound on GA,

G„=G„,+G„,+G„,(H„—E)G„,

The error introduced into the effective potential
V 8 by replacing G„with either the variational up-
per bound, Eq. (25), or the variational lower
bound, Eq. (27), may be written

av 8(k', kii) =&aifi (k')
~
(G„-G„')

~
ai)8(ka)}, (29)

where

~
n, g, (k, )) = (H„-E)~G„

(30)
Since G„represents either an upper or lower bound
on G„, the diagonal elements of the error operator,
LV (k, k), are of definite sign; positive for G„&G„"
and negative for G„&G„. We now recall the monot-
onicity theorem, "which states that if the diagonal
elements of the error operator AV are positive
(negative) the eigenphases determined variation-
ally using Eq. (27) [Eq. (25)] lie above (below) the
true eigenphases.

Therefore, by inserting the variational bounds
on the Green's operator [Eqs. (25) and (27)] into
the effective potential [using Eq. (19)] variational
bounds on V„8 may be constructed. These bounds
when inserted into the effective two-body Lipp-
mann-Schwinger equation [Eq. (16)] lead to va, ri-
ational bounds on the eigenphase shifts.

It is noteworthy that there are two possible com-
putational strategies that can be employed: (1)
improve the trial Green's operator G, by adding
more separable terms; or (2) iterate the bound
by inserting the variationally determined bound
into the right-hand side of Eq. (21).
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The bounds on V 8 constructed here are equiva-
lent to the bounds derived by Sugar and Blanken-
becler. " The advantage of the present formula-
tion is that the Feshbach projection operators do

not appear.

IV. NEUTRON-DEUTERON SCATTERING

In order to evaluate the practicality of this for-
mulation we consider the neutron-deuteron L=O
scattering states. The two-particle interaction
is taken to be central with symmetric exchange
mixture having the radial form

v(r) =v, e ""&'

where v0=-86.4 MeV and 5 =1.332 fm. It is easily
shown that the distorted bound state

~ X (z)) satis-
fies the integral equation

IX(z)&=a.(z)vlX&+g. (z)v IX(z)&. (32)

The Christian-Gammel approximate deuteron
wave function" was used to represent li&, and

Eq. (32) was solved numerically for (k y(z)& . In

order to carry out analytically the integrations
occurring in the effective potential, the solution
was fitted to a sum of three Gaussians for values
of z in the interval (-~, E). The self-energy func-
tion S(E) was then determined using Eq. (11). The
three-body states appearing in Gzv"s and Gv"B [Eqs.
(25) and (27)] were taken to be of the form

g; (r„r„r„s)= exp(-g a;, r&z) o, , (33)

where r,. is the separation between pair j and v',.

is a particular spin state having total spin s = —,', —,'.
The advantage of this particular form is that it
allows analytic evaluation of the effective poten-
tial matrix elements, Eq. (17).

Before the variational principle may be applied,
the bound-state spectra of the reduced two- and
three-body Hamiltonians h„and H„must be estab-
lished. The two-body Fredholm determinant,
n.„(E)=Det(1 —v„g„), has been evaluated numer-
ically and is a smooth, nonnegative function for
E & 0, excluding the presence of any negative-
energy bound states ink„. [The two-body bound-

state energies e", are given by the zeros of the
Fredholm determinant h„(E).) In order to estab-
lish the presence of any negative-energy states
in the spectrum of H„, a Rayleigh-Ritz eigenvalue
calculation was performed. Using a 10-term trial
wave function, it was found to be impossible to
drive the energy expectation (&~ H„~ g) negative,
indicating that H„ is a positive operator. It is
recognized that this is not a proof of the positivity
of H„;. however, since this is a difficult question
and of somewhat peripheral interest a more ex-
haustive study was not performed.

After an angular momentum decomposition and
an antisymmetrization to account for the identical
neutrons, Eq. (16}reduces to a one-dimensional
integral equation for the elastic n-d amplitude
which was solved numerically. [The equation actu-
ally solved was that for the reaction matrix which
amounts to replacing the +iq in Eq. (16}by the
principal-value prescription. ]

In the quartet state, as is well known, the neu-
trons are spatially well separated as a result of
the Pauli principle, and most dynamical schemes
give essentially the same results. This spatial
separation has the consequence, in the present
formulation, that the variational terms arising
from G„" and G„" are only a small contribution
to the effective potential, and for a simple trial
Green's operator G„, the upper and lower bounds
on V„z are separated by only a few percent. The
variational bounds on kcot45, where ~5 is the quar-
tet L=0 phase shift, at E = —1.2 MeV are:

kcot46„= -0.136 ~ kcot~6 ~ -0.153 = kcot~6„.

(34}
The upper bound is in reasonable agreement with
previous calculations' and with experiment, "
while the lower bound may be improved by the
addition of more terms in the variational Green's
operator, Eq. (27).

In the doublet state the situation is different and
the variational contributions to the effective po-
tential are of the same order as V 8. As in bound-
state calculations' the variational upper bound is,

TABLE I. Doublet scattering lengths.

Present
variational
upper bound

Experiment
Van Oers Koester

and Seagrave ' and Ungerer
Separable

model ~

Kohn variational upper bound
Yukawa Gaussian

Doublet
scattering
length (frn) 0.118 0.15 + 0.05 0.46 + 0.06 -1.0 -2.0 0.19

~ Reference 15.
Reference 17.

~Aaron, Amado, and Yam in Reference 14.

d Reference 18.
e Reference 19.
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FIG. 1. The doublet scattering length as a function of
N, the number of separable terms in the expansion of
G vUB

A

in general, of better quality than the comparable
lower bound and we therefore consider the upper-
bound scattering-length calculation first.

Inserting G„" into V 8 we determine a lower
bound on the doublet phase shift '6, and, at zero
energy, an upper bound on the doublet scattering
length 'a. The nonlinear parameters a, , appearing
in Eq. (33) were determined by numerically mini-
mizing the scattering length. For convenience,
the same values of these nonlinear parameters
were also used for nonzero energies. In Fig. 1,
the doublet scattering length is presented as a
function of the number of separable terms in G„",
and it is observed that the variational bound has
essentially converged for %=30. In Table I, the
experimental value of Van Oers and Seagrave"
and a new value based on the recent experiment of

N, NUMBER OF SEPARABLE TERMS

FIG. 3. Variational upper and lower bounds on a typi-
cal diagonal momentum-space matrix element of the ef-
fective potential vs N- the number of separable terms
in the expansion of G„and Gz -at zero energy (s =2).VUB VLB 1

Koester and Ungerer, "together with the result of
the present calculation are given for the doublet
scattering length. For comparison the calculations
of Aaron, Amado, and Yam, '~ who used a Yama-
guchi separable interaction, of Humberston, "who
used the Kohn variational principle with a Yukawa
local interaction, and of Pett, "who used the Kohn
variational principle with a Gaussian local inter-
action (Serber exchange mixture) having the same
radial form as our potential, are also presented. "
When comparing our results with the separable
approximation, it should be noted that the neglect
of the variational terms arising from G„" and G„"
is equivalent to making the separable approxima-
tion V„= V —V~ =—0. That is, the contribution to
the three-body amplitude of the separable com-
ponent of the two-body interaction va is exactly
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FIG. 2. Variational lower bound on {tan26)/0 (CR). For
comparison the experimental results of Van Oers and
Seagrave (VS) (Ref. 15), the separable results of Aaron,
Amado, and Yam (AAY) (Ref. 14), and the Kohn varia-
tional calculation of Humberston {H) (Ref. 18) are also
presented.

-30.0
-2.2 -2.0 —l.5

E(MeV)
-i,o - 0.5

I

- 0.0

FIG. 4. Variational upper and lower bounds on a typi-
cal diagonal momentum-space matrix element of the ef-
fective potential vs the three-body energy (s = ~). The
separable expansion of Gz" (Gz" ) contains 30 (36) terms.
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represented by the Born-exchange term (the lead-
ing term) in Eq. (1I). From Fig. 1 it is clear that
in the present application the variational terms,
which represent the nonseparable component of
the potential, are indeed important.

In Fig. 2 the variational estimate of (tan'5)/k
is presented along with the experimental curve of
Van Oers and Seagrave. " Since the variational
result is also a bound, the exact value for the
Gaussian potential must lie above our estimate of
(tan 5)/k. [An upper bound on kcot 5 yields a low-
er bound on (tan'5)/k]. In these calculations G~v"~

[Eq. (25)] contained 30 separable terms.
The lower-bound calculation is defined by in-

sertingG„" [Eq. (2'l)] into V z and then solving
Eq. (16). The nonlinear parameters n, „contained
in GA were evaluated by numerically maximizing
the effective potential at zero energy. The diffi-
culty in the doublet lower-bound calculation is
twofold. In the first place, the operator G„' re-
quires matrix elements of the square of the Hamil-
tonian (Gv„"~ only requires matrix elements of H„)
and consequently is considerably more difficult to
evaluate than G„"' (a factor of =100 in computer
time is involved). Secondly, the convergence of
the lower bound is much slower than the upper-
bound calculation. To illustrate this, in Fig. 3
a typical matrix element of the effective potential,
V(k, k), for the lower-bound calculation (at zero
energy) is plotted versus the number of terms in
the separable expansion of G„"; with 36 terms in
the expansion the calculation has yet to converge. "
For comparison, the corresponding upper-bound
results are also presented in Fig. 3. It is impor-
tant to note that as the number of separable terms
in the expansion of G„" is increased the machine
time required to evaluate V„& increases rapidly.

In Fig. 4 the variational upper and lower bounds
on V(k, k) are presented as a function of E. The
divergence of the lower bound from the variation-
ally converged upper bound as E approaches the
inelastic threshold is due to the 1/E behavior in

GvLB

An interesting comparison may be drawn between
these n-d lower bounds and the corresponding
bounds on the e -H scattering phase shifts recent-
ly reported by Madan. By neglecting the varia-
tional contributions to G„", i.e., by taking

GYLB (35)

he has shown that away from the inelastic thresh-
old the upper and lower bounds on the phase shifts
are separated by less than 20%. In our problem
such a crude approximation is grossly inaccurate,
as shown in Fig. 3 for zero-energy scattering.
The divergence of the upper and lower bounds at
the inelastic threshold is also present in Madan's
calculations.

The variational upper-bound approach presented
here has been shown to be a practical one for
three-body systems interacting via local two-body
potentials. While an evaluation of the utility of this
formulation will be incomplete until realistic two-
body forces are employed, we believe that the
labor involved in such extended calculations will
not be prohibitive. The crucial test will be the
convergence properties of the upper-bound varia-
tional calculation.

In the quartet state the lower-bound variational
solution is sufficiently close to the upper bound to
yield a meaningful bound on the error in the vari-
ational calculation. In the doublet state, where
there is considerable polarization of the deuteron,
the lower-bound solution does not yield a useful
estimate of the error, and in this case the lower-
bound calculation can only serve as a guide to the
upper -bound calculation. We emphasize, however,
that the difficulty in the doublet lower-bound cal-
culation is not one of principle. In a more system-
atic study, involving realistic forces, the consid-
erable investment in computer time required by
such a calculation might very well be considered
worthwh ile.
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The particle decays of the first T = 2 state in 9Be (BB) have been studied by the 'Li(~He, pn)
reaction at E(3He) =10.0 MeV (8.7 and 7.95 MeV). Protons (neutrons) emitted at 0' were de-
tected in coincidence with decay neutrons (protons). Neutron energy was determined by the
associated-particle time-of-flight technique. The ratios of partial neutron (proton} widths
to the ground and first excited states of Be to the ground-state radiative width I' are found

~0
to be, respectively, 6.4+2.0 and 20.4+4.6 for the ~Be analog state (&1.5 and 13.9 +2.1 for ~B).
Taking 1&0

——10.5+1.5 eV, these results give I'„0=67+ 26 eV, I'„& =213+56 eV, I'~0&18 eV,
and I'q& ——147+ 30 eV for the mirror decays.

1. INTRODUCTION

In spite of the isospin selection rule, it has re-
cently been found that the T =-,' states in several
A=4n+1 nuclei' ' decay to T =0 low-lying states
of the corresponding A. =4n nuclei with g =X. The
branching ratios of these decays are very charge
asymmetric. Since the isospin-forbidden width is
a measure of isospin impurity in the analog state,
one hopes to obtain information on the charge-de-
pendent effects inside the nucleus from such mea-
surements. Theoretical calculations for A. = 13 by
Arima and Yoshida' show that the observed partial
widths' can be qualitatively explained by considera-
tion of isospin mixing due to residual Coulomb in-
teraction within the 1p-shell configuration states
and mixing with the continuum states due to single-

particle Coulomb interactions. Presence of a.

charge-dependent nuclear force is, however, not
essential for theoretical-experimental agreement.
Recent calculations for the isospin mixing in the
first T = —,

' states of 'Be and 'B by one of the au-
thors' have shown that the residual Coulomb inter-
action within 1P -shell configuration states is too
small to account for the observed total widths' of
the analog states. Measurements of the isospin-
forbidden particle decays in mass-9 nuclei may
be able to give better evidence concerning the
existence of a. charge-dependent nuclear force.

In the present experiment, the reactions 'Li-
('He, p)'Be and 'Li('He, n)'B were used to populate
analog states. The decays were observed by de-
tecting the protons (neutrons) in coincidence with
the decay neutrons (protons). The processes in-


