
BRUECKNER-HARTREE -FOCK CALC ULATIONS. . .

R. Reid, Ann. Phys. (¹Y.) 50, 441 (1968).
4~P. C. Bhargava and D. W. L. Sprung, Ann. Phys.

{N.Y.) 42, 222 (1967).
42It has been pointed out to the authors by J. P. Svenne

that the work of Bhargava and Sprung contained an error
which makes their numerical results unreliable. But
the subsequent adjustment of our effective interaction to
fit G matrix elements which have been calculated more
rigorously alleviates in our work, we believe, much of
the effect of that error.

43J. Nemeth (to be published) has considered the possi-
bility of using in such a parametrization the densities at

the positions of the two interacting particles.
44J. Zofka and G. Ripka, Nucl. Phys. A168, 65 (1971).
45J. R. Demos and M. K. Banerjee, to be published.
48T. A. Brody and M. Moshinsky, Tables of Transforma-

tion Brackets for Nuclear Shell-Model Calculations
(Direccion General de Publicaciones, Universidad Na-
cional de Mexico, Ciudad, Mexico, D.F. , 1960).

47D. M. Brink and E. Boeker, Nucl. Phys. A91, 1 (1967).
This paper gives the transformation brackets for the
Cartesian oscillator basis.

A. B. Volkov, Nucl. Phys. 74, 33 (1965).

PHYSICAL REVIEW C VOLUME 5, NUMBER 1 JANUARY 1972

Three-Body Clusters in Nuclear Matter*
Joao da ProvidOncia and C. M. Shaking

Laboratorio de Fzsica da Universidade, Coimbra, Portugal

(Received 16 August 1971)

It is shown that starting with a correlated wave function for nuclear matter of a general
form one may make direct correspondence to the conventional diagrammatic theory of
Brueckner, Bethe, and Goldstone. In particular, in this work we show that the expression
for the three-body-cluster energy is the same as that obtained by Bethe. Also, it is shown
that the current approximation which neglects the potential for particle states in the diagram-
matic approach corresponds to a neglect of a couPling between the two-body (Bethe-Goldstone)
equation and the equation for the three-body-cluster wave function (Bethe-Faddeev). The the-
ory presented here provides a clarification of the relation of the n-body-cluster wave func-
tions and the structure of the wave function of the entire system.

In two previous works" we have discussed the
theory of correlated Fermi systems which ob-
tains if one begins with a wave function of general
form,

e'I 4')

where
~ 4) is an uncorrelated state. ' In the case

of nuclear matter
~ 4) represents a Fermi gas,

while for finite systems ( 4) represents a Slater
determinant of appropriately chosen orbitals. In
the first paper of this series we studied the struc-
ture of the theory for the special case in which es
induced correlations having Jastrow structure. '
In the second paper' we showed how the theory
could be extended to include occupation-factor cor-
rections and, in addition, the equations were writ-
ten so as to be appropriate to the treatment of fi-
nite systems. In that second work we limited our-
selves to the case, S =S"', where S"' is a two-
body operator. It was shown there that that choice,
along with a cluster-expansion method, enabled
us to obtain the Bethe-Goldstone equation for the
two-body cluster wave function. Also, it was
clear that the neglect of three-body-cluster ef-

fects resulted in a theory in which there was no
potential in the particle states of the Bethe-Gold-
stone equation.

In this work we are interested in demonstrating,
through three-body-cluster terms, the complete
correspondence of the Brueckner-Bethe-Goldstone
approach and that obtained starting with the wave
function of Eq. (I). We are able to make this cor-
respondence if we neglect a coupling term be-
tween the two- and three-body-cluster wave func-
tions. If this coupling is neglected we obtain cor-
respondence with the conventional diagrammatic
approach if, in the latter theory, the particle po-
tential is placed equal to zero.

To carry out this program it is necessary to
write

S = Su) +S(3)

where S'"' is an n-body operator. 4 The operator
es may be expanded as

and the E'"'s may also be written
(a)F"' =—g a at(mn) f»~ ij) a&a, ,

mni f
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F»' =—P a ataf &mnPI f,»lij k&a~a&a, ,
mnPj jk

(4)

etc. Note that F =S, F =S', F =(S )2/2!,
etc. , if S is given as in Eq. (2). [As in previous

works we use i,j, k, . . . to refer to occupied (hole)
states, m, n, p, . . . to refer to unoccupied (particle)
states, and o, P, y, . .. to refer to either. ]

Using the cluster-expansion procedure outlined
in Ref. 2, we may write the energy of nuclear mat-
ter (see Appendix A)

1 1
& =&4'I HI+&=gt;, ~r;+&, gh&&„&r;r&+&, gh~, &„»r;r,r&+ "

with y, = &O'I a~~a, l4'&, and where the h's are cluster integrals defined below. We introduce the operator

p„= (1+f„)(4+t2+v„)(1+f„)—(t, +t2),

and in terms of this operator we have

(5)

h;, , ); = &~i I p-„l i'j '&, ,

where the subscript A refers to an antisymmetrization prescription for kets

Iij k&~ =
I ij k) —

I ji k& —
I ikj) +

I jhi&+ I kij &
—

I kji),
etc. The three-body cluster integral is given by

h, ,~, , ,.= &ijkl[(1+ f~, + f~, + f~, + f~„)(t,+t, +t, +v„+v„+v„)(1+f„+f„+f„+f„,) —(P„+P„+P„)
—[t,(1+ft, )(1+f»)+t, (1+f~,)(1+f»}+t,(1+ f~,}(1+f»)]J lij''k'&„.

It is also useful to define the two- and three-body-cluster wave functions:

I ~,,&
= (1+f„)lij&. ,

I @;,&&
= (1 + f„+f„+f»+ f»&) I ijk&&.

These are normalized as follows:

&tiled, ...&=&tilt'j'&„=&tilt'j'& —&tel j't'&,

&ijkl4;, ~ & =&ij klij''k'&&

We will also need the following cluster integrals:

„;,'=&A[( f,'.)(1 f„)-1]lij &„,

(8)

(9)

(10)

(11)

(12)

and

z,», & ~. = (ijk I ((1 + f„+f„+fz~, + f 2,)(1+f»+ f„+f»+ f 2,) —[(1+f„)(1+f„)—1]—[(1+f~, )(1+f„)—1]
—[(1+f»}(1+f») —1]—1}lij''k'&„. (14)

Finally, we write the equation for the occupation factors which are obtained by a selective summation of
cluster diagrams as discussed in Ref. 2 (see Appendix A},

(15}

At this point we may proceed with various algebraic manipulations; however, it is useful to derive equa-
tions which allow us to specify the best correlation operators f» and f», .' We may use variational tech-
niques if we introduce Lagrange multipliers. We multiply Eq. (15) by e,. and sum over i to obtain

(16}

Thus we have for the energy
1 1

@=Q'i+2( ~. i -'i)ri+2! g«'. ~~r~r~+2i Z i~a.~~ay r'»
i i ij ' jjk
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where we have defined

(18)

(19)

(2o)

ijkjjk ijkijk ( i j+ k)~ijkijk'

We may now freely vary 8 with respect to the y and the correlation operators f Va. riation with respect
to y, yields the expression for e, ,

'
1

ei ti, i +QKik, ik 1 k+ k QKjjk, jjkl jyk '
Jk

Variation with respect to &ij I f~, I mn& yields

( mn I (t, + t, +v») I
4' j j&

—( mn
I 4', j&(ej + e j) +g [(mnk

I (t, + t, + t, +v» + v» +v») I
4',.jk &

—(mnkl (t, +t, +v»)(1+ f»)ltjk&„—(mnkl t, (1+f»)lijk&„]yk=0. (21)

We note that in the square bracket of Eq. (21), the second two terms which we have derived serve to can-
cel the "unlinked" terms in the first term of this bracket —thus the bracketed expression is of "linked"
character.

We also note at this point that if we drop the last term in Eq. (21), which represents a coupling between
the amplitudes I

4'; j& and I
4' jjk&, we find that Eq. (21) leads to the equation

I @;j& = lkj& — Qv»l 4'„&, g =p I mn& & mnl,
1

1 2 i j tlttl

(22)

which is the Bethe-Goldstone equation with zero potential for the particle states. Also, as shown previous-
ly, 'k we have the relations (see Appendix B)

K» =v„(1+f»}, (23)

and

2 = ——K
8 12 t (24)

where the K» of Eqs. (23) and (24) is the same as that defined in Eq. (18), and e =t, +t, —ej —e,
We will return to the discussion of the neglected term in Eq. (21) at a later stage. At this point we vary

the expression for the energy with respect to &ijkl fjt»l mnp& and obtain

&m pint, +t, +t, +v»+v»+v»)I4'„, &
—(e,. +ej+ek)&mnpl@;jk&=0. (25}

Equations (21) and (25) provide a set of equations which enable us to calculate the correlation operators
f„and f», . We proceed now to establish the connection between the theory developed above and the con-
ventional diagrammatic methods of Brueckner, Bethe, and Goldstone. The relation between these theories
through the consideration of two-body clusters is apparent from our previous work. "

If we note that

jii jk i jk g &4 jjk I mnP& (mnP I k i jk), (26)

we may use Eq. (25) to simplify Eqs. (8) and (19). We find

Ki jkjjk =&tjkI (1 + flak+ fjk+ fkk)(tg+ tk+tk+vgk+vjk+vkk)l @;jk&

—&ijkI [(p„+p»+p»)+t, (1+ fkt, )(1+f»)+t, (1+ f)(kt1+ f»)+t, (1+f~, )(1+f„)]Iijk&„.

Next we notice that the kinetic energy operators do not contribute to Eq. (27). Therefore, we have

K j, „., =(ijkl (1+ flak+ f~, + f„)(v»+v»+v»)l@, jk&
—&ijkl [(1+f~k)K»+(1+ f„)Kk+(1+fkk)x„]lijk&„,

(27)

(28)

where we have used Eq. (23). To further simplify Eq. (28) we introduce the wave matrix 0 and the T ma-
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trix for the three-body-cluster amplitude I4, ,~&:

I 4;ga&
= fl I tjk&g,

and

(v» +v» +v») I
4' „~&= T I ijk)„.

At this point we follow Bethe and Rajaraman' and write (see Appendix C}

T —Z'& ) + T& &+ T~~)

(28)

(30}

where

T" =K —K —[T &~+T ]'e
etc. We may also write

T —F2+K,3+K23+ 6T,
with

n. T =-[T"' —K„]+[T"'—K„]+[T"' —K„].

(32)

(33)

Using Eqs. (30) and (33) in Eq. (28}we find

K& Jp ' jk &tjkl (f&2 + fin +f2')&TI if»~

taking note of the fact that, for example, (ijkl ft2K, lijk)„=0, etc. , and &ijklnTIijk&„=0. Also note that

&ijkl f„[T"'—K»]lijk&„=0, etc. , so that we may write

K;,&;;&=&ijkI f&2[T"' —K23]+ f„[T"'—K»]lijk&„+&ijkl f„[T"'—K„]+f~~[T&3'—K„]lijk&„

+ &tjkl f2&[T&" —K»]+ f„[T"'—K»]l ij k&„.

(34)

(35)

Again to make contact with Bethe's work we may examine the first term of Eq. (35), which corresponds
to particles 1 and 2 interacting last. Noting that [see Appendix, .Eq. (Cp)]

T"' —K, =K, [0"&—1] T&' K =K [g 1] (38)

the first term of Eq. (35}becomes

&tjkl f& (K Ã"' —ll+KsÃ' ' 1]] ltjk&z=&tjkl f&~K2 tl&" + f, K, 0&'~Iijk&~=&ijkl [T+' —K, ]I&jk& (37)

with similar expressions for the other terms of Eq. (35). Comparison may be made, for example, with

Eq. (4.12) of Bethe and Rajaraman, ' noting that their q(r»} = f„, and their -Z"' =[1 —ft«&]l ijk&.

Using Eqs. (33), (35), and (37}our expression for the energy, Eq. (1V), becomes

1
& =&& +p(t« - ) e&y2&+&&K&,,„r,r, + , p&ijkl t—Tliik&&r,y,r, .

fj f jk
(38)

This result agrees with that of Ref. 7 if we set the occupation factors equal to unity.
Finally, we return to the question of the coupling between the two- and three-particle wave functions ex-

hibited in Eq. (21). We may ask under what circumstances can this coupling term be replaced or approxi-
mated by a potential in the particle states of the Bethe-Goldstone equation. To derive such an approxima-
tion we may assume that particles 1 and 2 are close together and 3 is far from either. More precisely,
we assume that f» =f»-0.' Then note that in that case I4'„,&

= (1+f»)lijk&„. Keeping two terms of Iijk)„,
we may write

Iq;;,&=(1+f„)le&~lk&= l4;,&Ik&.

Using these approximations, Eq. (21) becomes

(mnl (t, +W, +t2+W, +v»)I4, &&
—&mnI4, &&(e, +e&}=0,

which is a Bethe-Goldstone equation with particle potentials given by

(ml W, ln) =g(mkl v,'~Ink&.

(39)

(40)

(41 )

The superscript l reminds us that this approximation only holds for the "long-range" part of v» (or v»),
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since Eqs. (38) and (39) were derived in the limit f» =f» =0. The result in which the particle potential is
given by the antisymmetrized matrix element

&ml W, I n) =Q &mkl v,', I nk&„, (42)

may be obtained by replacing the coupling term in Eq. (21) by

& m(1)n(2)k(3) I [(v,', +v I,)(1+f») I I (I}j (2)&~I k(3)& —v I,(1+f») I i(3}j(2)&~ I k(1)& —v.', (I + f13) I i(I)j (3)&~ I k(2)&] .
(43)

Further work is called for in order to determine the particle potential most suitable for uncoupling the
two- and three-body equations. The "uncoupling" of the two- and three-body equations in nuclear-matter
cal.culations has been discussed previously. However, the explicit fo~m of the coupling term as given in
Eq. (21) will allow one to check which particle-state potential best approximates the effect of such coupling.

APPENDIX A

In order to draw the diagrams describing the cluster expansion of the expectation value of the energy,
up to three-body clusters, we need the elements shown in Fig. I, in addition to the elements which have
been considered in Ref. 2. Vfith the help of these elements the expectation value of the Hamiltonian may
be represented by the diagrams of Fig. 2(a) in an approximation which corresponds to the partial summa-
tion of a set of primary diagrams (containing no thick lines). The thick lines represent the occupation fac-
tors y, and Fig. 2(b) provides a diagrammatic representation of Eq. (15), which relates the occupation
factors to the two- and three-body-cluster integrals It. ,„„and K,$7 jg7.

APPENDIX 8

In this appendix we derive Eqs. (23) and (24) for completeness. If one neglects three-body clusters one
has from Eq. (21) or (22)

(mnl (t, +t, +v»)I4';&&=(e, +e&)&mnl4';t&, (al)

or

Q(t, +t, +v„)14';„&=(&;+~,)QI4';, &. (a2)
We may write Eq. (18) as

K...,. =(ij I [(1+ft )(t, +t, +v»)(1+ f») —(t, +t, )]lij &„—(e, +e.)x,.„.,
= (ij I [(1 + ft ) Q (t, + t, + v») (1 + f» ) —(t, + t )]I ij &~

+ &ij I [(1+ f~» }(I-Q ) (t, + t, +v») (1 + f»}—(t, + t, )] I ij &„—(c,. + e,.)x, , ,, ~ (a3)

&ij I (1+f,'.)(I -Q) = &tj I,

~;;„,= &4';, I4';, &
—&ijl tj&, = &4';, I Q Iq';, &,

we find

K;,;;;= &ijl v„(I +f,.)lij&
= &ij I v„l 4'„&= &tj I K„lij )„,

where

K„=v„(1+f„),

(a4)

(as)

(a8)

(a7)

Making use of Eqs. (9) and (a2) and the relations 1 Q
t +t —(f +E} 8

(a8)

APPENDIX C

From Eq. (30) onward we have tacitly assumed
that we can use the Bethe-Faddeev solution' to de-
fine our three-body-cluster amplitude I4'...&. In
this appendix we show that this is indeed the case.

%e recall that we had

I 4';pa& = ( + f„f„+f,. +f...)+I tjk&~

1 ——K» ——K,~
——K»+ f», I ijk&~

Q Q Q

and [see Eqs. (9) and (22)] (Cl)
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ij k, ghL (a)

K
i jk, ghl

(b)
FIG. 2. (a) and (b) Diagrammatic representation of the

cluster expansions for the energy, Eq. (5), and for the
occupation factors, Eq. (15). (See Ref. 2 for a definition
of the diagrammatic elements other than those defined in

Fig. 1.)

FIG. 1. Diagrammatic representations of three-body-
cluster integrals defined in Eqs. (8) and (14). (Diagram-
matic elements which have only one or two lines entering
and leaving were defined previously in Ref. 2.)

Comparing Eqs. (C4) and (Cl} we see that we

should define

f„,= (n.T) .-—
e

(C5)

using Eq. (24). As defined, f», excited all three
particles so that

With this definition we see that the requirements
given by Eq. (C2} are satisfied.

Also note that for the Bethe-Faddeev solution,

&ij''k'I f»3lijk&„=&ij''ml j'»31&jk&~

=&i ms[ f„,[ijk&„=0.

Also we must have

&mnp~4, &=&mnp~ f„,~ijk&„

(C2)

0 = 1+Q [0"' —1],

with

n(" =-1-—r"'.
e

(CS)

(C7)

1
&mnp( V[4'„~&,t~+t„+t, —(e, +e,. +e,.)

(C3)

where V=v»+v»+».
Now we study the Bethe-Faddeev solution to see

that all these properties hold true. The wave ma-
trix for the Bethe-Faddeev solution may be writ-
ten

Thus

& mnP ) 0 ( ijk& = Q & mnP ( 0"'
( ijk)„

1
(t +t„+t~) —(e,. +e,. +e„)

(CS}

Q= 1 — T=1 [T"'+—T"'-+—T"']
e

so that we see that the requirement of Eq. (C3) is
also met, since [recall Eqs. (30}and (33)]

=1 ——(A»+E ~+A„) ——(&T). (C4) & mnp I
& T I ijk&„= & m sp I

1 I
4' „,& ~ (CS)
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This is a reasonable assumption for the simplest form
of the Jastrow theory in which f&2 is a short-range func-
tion of r&2

——~r& -r&~. For a more general theory we would
have to work harder to understand the exact nature of the
approximation obtained by setting f&3

——f/3 0.
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Two classes of two-body Hamiltonians are constructed such that the energy eigenfunctions
of the members of each class are identical below some cutoff energy E, . In one class the
phase shifts for energies greater than E, remain fixed for all Hamiltonians in the class, al-
though the corresponding eigenfunctions are different for small distances of separation. In
the other class the phase shif'ts for the various members of the class also differ for energies
greater than E, .

It has become conventional in nuclear physics to
invent a two-body potential V» that reproduces
two-nucleon scattering data reasonably well below
a laboratory energy of -300 MeV and to use this
potential to calculate properties of systems that
contain more than two nucleons. Clearly, such a,

potential is not unique. Several groups' have re-
cently initiated systematic studies of the ambigui-
ties that possible choices of V» may introduce in-
to the many-nucleon calculations. One approach
has been to generate a family of equivalent poten-
tials, each member of which produced eigenfunc-
tions that differ for small values of the relative co-
ordinate r», but are identical for large values of
this coordinate. These potentials thus give rise to
T matrices that are identical on the energy shell,
but differ off shell. Such a family of equivalent po-
tentials allows one to investigate the sensitivity of
various many-body calculations to off-shell differ-
ences in the corresponding family of two-body T
matrices.

Of equal importance is the question of the sensi-
tivity of many-nucleon calculations to ambiguities
in the high-energy behavior of the two-nucleon in-

teraction. Without recourse to a fundamental the-
ory, the high-energy part of the two-nucleon inter-
action cannot be fixed and even a careful analysis
of future nucleon-nucleon scattering data will not
resolve this difficulty. It is of interest, therefore,
to be able to isolate the off-shell effects of the
high-energy tail of any given two-body interaction.
To this end we propose a method to generate a
family of two-body Hamiltonians, each member of
which has identical eigenfunctions for energies be-
low some specified cutoff energy E,. For energies
greater than E, the eigenfunctions differ. We con-
sider two classes of such Hamiltonians: (i) the
class for which the high-energy (E & E,) eigenfunc-
tions differ at small values of the separation dis-
tance r», but for which the high-energy phase
shifts remain unaltered, and (ii) the class for
which each Hamiltonian generates different high-
energy pha, se shifts.

The Hamiltonian operators in class (i) are of the
form'

H =UHU~ =Ho+ V,

where Ho is the kinetic energy operator for the rel-


