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Current theoretical models for the pion-nucleus interaction in the (3, 3)-resonance region
are discussed. We conclude that nonlocal potentials of the Kisslinger type are inadequate.
The most promising potential is local and closely related to the Glauber model. Some pro-
perties of the Glauber model are also studied. Thus we show that the multiple-scattering
series can be summed and charge-exchange effects can easily be accounted for.

I. INTRODUCTION

The elastic scattering of pions by carbon nuclei
in the (3, 3)-resonance region has recently at-
tracted much interest both experimentally' and
theoretically. ' The theoretical approach has been
based on the multiple-scattering model of Glauber'
and on the optical model of Kisslinger. 4 Confusion
about the applicability of the two models has re-
sulted, and they have been found to give different
results. Here we want to point out that part of
this confusion is due to an incorrect application of
both the Glauber model ' and of the Kjsslinger
model '~@

In the Kisslinger model, one solves a Klein-
Gordon equation for the pion. The potential is de-
rived from the free pion-nucleon amplitude. It
contains a term proportional to the nuclear den-
sity and a nonlocal velocity-dependent term. The
latter is due to the p-wave term in the pion-nu-
cleon interaction. This model was originally in-
tended to describe pion-nucleus scattering at some-
what lower energies. Extending the model to scat-
tering in the (3, 3)-resonance region creates new
problems. In fact, we point out that the standard
form of the potential has a serious deficiency. It
cannot simultaneously reproduce the forward pion-
nucleon amplitude and the angular dependence
near the forward direction. In the (3, 3)-resonance
region the pion-nucleus cross sections depend
critically on these two properties.

In the Glauber model the scattering amplitude
is a sum of multiple-scattering terms up to the
12th order. This explicit binomial form has been
used in most of the theoretical calculations. Need-
less to say, such an approach is not very trans-
parent but was used in order to account for the
large charge-exchange cross section. We show
that despite this complication the multiple-scat-
tering series can be summed into a nice and com-
pact formula which takes charge-exchange con-
tributions into account.

We discuss three different potential models.

Two of them are nonlocal and of the Kisslinger
type, while the third one is local. We conclude
that the Kisslinger potentials are inadequate in
the (3, 3)-resonance region. The local potential,
which seems more promising, is just the potential
one would naively associate with the Glauber
model. We also find that the cross sections ob-
tained with the Glauber model approximate rather
closely those obtained with the potential model,
and this up to surprisingly large angles. A local
potential has independently been suggested by I.ee
and McManus' ~ and by Wi]kin

We are mainly interested in the theoretical as-
pects of the Glauber and Kisslinger models. We
do not compare our results with experiments, be-
cause our wave function for the carbon nucleus is
unrealistic. Moreover, it is well known that
Fermi-motion effects are important in the (3, 3)-
resonance region, "' at least in the forward direc-
tion. On the other hand recoil corrections and
corrections due to the nonvanishing longitudinal
momentum transfer" can be neglected.

II. GLAUBER MULTIPLE-SCATTERING

SERIES

f(q) = — d'5 e' q I'(b), '

2' (2.1)

with all quantities being taken in the lab system.
This relation is easily inverted to give the profile
function F(b) in terms of the scattering amplitude
f(q). The pion-nucleus elastic scattering ampli-

We shall use the independent-particle model for
C" and the wave function derived from the har-
monic-well potential. Explicit expressions for
densities, form factors, and other quantities of
interest are given in Appendix A.

In the multiple-scattering theory of Glauber'
the amplitude for pion-nucleus scattering is ex-
pressed in terms of pion-nucleon amplitudes. For
the latter he introduces a profile function I'(b) de-
fined by
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tude is then constructed in the following way:

where 4 is the nuclear wave function

A4(r„.. . , r„)=g 9&(r,),

(2 2)

(2.3)

and s~ is the component of r~ orthogonal to the
direction of motion of the projectile meson. The
nuclear profile function is defined by

A

I'(b, s„.. . , s„)=I -g [1 —I',(b —s,)]. (2.4)

This definition is valid only when the operators
r~(b —s,) commute. When this is not the case it
is necessary to account for the temporal order of
the individual collisions. This is achieved by re-
placing the right-hand side of Eq. (2.4) by its
space-ordered product. For two profile functions
this product is defined as

s [r,(b —s,)I',(b —s,)]
I', (b —s,)I",(b —s,), when z, & z,

z& being the component of r& parallel to the direc-
tion of motion of the projectile meson. The gen-
eralization to an arbitrary number of profile func-
tions is obvious.

The approach above does not account for the c.m.
correlation within the nucleus. For harmonic-
well wave functions this effect is easily incorpo-
rated. ' It amounts to multiplying the scattering
amplitude of Eq. (2.2) by a factor

fI(q) e+ 0 /4A (2 6)

with a as defined in Appendix A. The numerical
effect of the c.m. correlation is shown in Fig. 1.
It is quite small, given the experimental uncer-
tainties, and in the following we shall neglect it.

III. CONVERGENCE OF MULTIPLE-
SCATTERING SERIES

In this section we shall assume f,~(q) =f,„(q)
=f(q) for the pion-nucleon amplitudes. This
means that there is no charge-exchange scattering
and that the I','s of Eq. (2.4) will commute. This
restriction will be relaxed in the following section.

We introduce the nucleon density p(x) normalized
as

I",(b -s2) I', (b —s,), when z, & z,
(2.5)

(3.1)
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FIG. 1. (a), (b) Elastic differential cross section. Predictions of Glauber model (dashed line) and Glauber model
corrected for the c.m. correlation (solid line).
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and define

X(b) =i d'xp(x)I'(b —s)

approximation. By retaining the 1/A term when

exponentiating (3.4) we get

X=-exp ix(b)+ —X'(b) (3.7)

d'q e-""f(q)s(q).
2m&

(3.2)

1„,(ix—)'a, .
0=0

(3 4)

The "binomial" coefficients a~ are given by

1
a = —A(A —1) .(A —k+1)gk

=—1 ——k(k —1)+ ~ k(k —1)(k- 2)(3k —1),1 1
24A. '

(3.5)

where the last line gives the coefficient as an ex-
pansion in 1/A.

For heavy nuclei, i.e., large A, expression
(3.4) can be replaced by its "optical limit, "

where S(q) is the nuclear form factor and s the

component of x in the impact-parameter plane.
The elastic scattering amplitude, Eq. (2.2), can
then be written as

A+

E(q)= — d'b e'q b 1 — 1+—X(b) . (3.3)2m„A
We shall call this expression the binomial form of
the multiple-scattering series. It is complicated
to handle in the general case and we want to sim-
plify it. To this end we study

X=(1+ix/A)" IV. INCLUSION OF CHARGE EXCHANGE

In the (3, 3)-resonance region the charge-ex-
change cross section is quite large and our for-
malism must be extended to account for charge-
exchange contributions to the pion-nucleus am-
plitude. We shall then assume that protons and
neutrons in C" are bound into pairs of isospin
zero.

We decompose x(b) of Eq. (3.2) as

x(b) = x.(b)+ x,(b), (4 1)

t being the isospin operator of the pion and T the
Pauli isospin operator of the nucleon. Thus

x~(b) = xo(b) + 4x,(b),

x.(b) = x.(b) —f3x,(b)

(4.2a)

(4.2b)

This approximation correctly reproduces also the

1/A term in the expansion (3.5). When the differ-
ential cross section is calculated in approximation
(3.7) the result turns out to be practically indis-
tinguishable from the exact results.

In order to avoid confusion we remark that the

expansion in Eq. (3.7) is only formally an expan-
sion in 1/A, because the phase-shift function x
is expected to increase as 4' '. This is due to the
fact that g is roughly proportional to the path
length within the nucleus. As a result the actual
A dependence becomes 1/A"' rather than 1/A.

X = elX$)
opt (3.6) For C" with an equal number of protons and neu-

trons the approximation (3.7) reads
In a nucleus as light as C" it is not immediately
clear that the optical limit is a good approxima-
tion. It approximates the binomial coefficients a~
of Eq. (3.5) by a~(8) =1. Thus, taken term by term,
the optical limit misinterprets the higher-order
multiple-scattering terms quite strongly. Close
to the forward direction this is not too serious,
because the multiple-scattering series converges
quite rapidly, but when we move away from the
forward direction higher-order multiple-scatter-
ing terms become more and more important and
one would expect the optical approximation to
break down. But this argument ignores the deli-
cate cancellation between different terms in the
multiple-scattering series. In fact, as demon-
strated in Fig. 2 the optical limit is a very ac-
curate approximation of the binomial form. For
comparison with experiment the small difference
found is unimportant.

It is quite simple to improve upon the optical

1= exp ixo + —(xo + t,'x, ') (4.3)

This result is not isospin-invariant, but not much
imagination is required to realize that the proper
generalization must be obtained through the re-
placement t,'-P. In order to prove it we shall
have to analyze the meaning of approximations
(3.6) and (3.7).

We first consider the optical limit. According to
Eq. (4.3) the result depends only on x, =-,'(x~+x„),
and therefore certain multiple-scattering ter ms
must have been left out. In fact, we shall show
that the optical approximation is equivalent to
counting only those multiple-scattering terms for
which scattering takes place off at most one nu-
cleon for each proton-neutron pair. To this end
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we decompose the profile functions as in Eq. (4.1}: becomes

r(b) = r, (b}+t ~r, (b), (4.4)

and consider pair No. 1, p, and n, . As the profile
functions are noncommutative, we must be careful
with the ordering. A typical scattering proceeding
through p, is

r(1) . r(k- 1)r(p,)r(k+ 1) r(l), (4.5)

with all I"s belonging to different pairs. Another

possibility is to scatter off n, instead:

I'(1). ~ .I'(k —1)r(n, ) I'(k+ 1) .I'(l), (4.6)

with all other factors remaining the same. As all
nucleons have the same density (4.5) and (4.6) will
be additive. We get

r(1) r(k- 1)[r(p,)+ r(n, )]r(k+1} r(l).
(4 7)

But I'(p, )+ r(n, ) =21"o and is isospin-independent.
Repeating this argument for all pairs we conclude
that each nucleon contributes effectively only with

the isospin-independent part I', . Hence the space-
ordering prescription can be ignored. The total
contribution from lth-order multiple scattering

(4 6)

The first term in this expansion agrees with the

first term in the expansion (3.5). In the optical
limit they are therefore equivalent. The 1/A
terms do not agree. To achieve agreement we

must include terms for which the pion scatters
off both nucleons in exactly one pair.

Assume the pion scatters off both nucleons in

pair No. 1, P, and n„but only off at most one
nucleon in all other pairs. The contributions are
then of the form (4.5) but contain both r(p, ) and

r(n, ). For nucleons not in pair No. 1 we conclude
as above that they will effectively contribute with

the isospin-independent part I; only. By summing
over all permutations between these nucleons we

arrive at an expression of the form

II r, (q, )[r(p,) r(n, ) 6(z}+I (n, ) r(p, }e(-~}],
(4.9)

with z =z~ —z„.But as p, and n, form an isospin
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FIG. 2. (a), g) Elastic differential cross section. Predictions of Glauber's multiple-scattering series (solid line)
and its optical limit {dashed line).
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T=O pair we have

F(p, )r(n, )e(z)+ r(n, )r(p) t(-z) = r(p, )F,(n, ) —Pr, (p,)F,(n, ) +-,'e(z)r, (p,)r, (n, )t(~, x~„)t. (4.10)

Here the last term does not contribute to elastic scattering as it will induce transition to the 7 =1 state
only. The total contribution to lth-order scattering proceeding through any one of the —,A pairs is then

A——(-x* t*x') tv)' ' —-& "—-'-' ~ 3)2 &2 o & (l 2)t o 2 2

= —(-)'(iX )' '(-X '+ t'X ') 1 ——(I —1)(l —2) +1. . . , -, , l(l —1)
gy O 0

(4.11)

V. RESULT OF GLAUBER'S MODEL

In previous sections it was shown that pion-
carbon scattering can be accurately described by
the optical-limit approximation and that charge-
exchange scattering and other I/A effects can be
ignored. As a result the scattering amplitude for
elastic scattering becomes

F(q)= — d be'o [1—e x 8]
277 .

with

(5 1)

X(b) =
J

d qe-'~' f(q)S(q),

where S(q) is the nuclear form factor and

f(q) =-'[f;(q)+f..(q)] = -'[2f 1,(q)+f I.(q)]

(5.2)

(5 3)

The pion-nucleon amplitudes are to be evaluated
in the lab system and according to Glauber's pre-
scription at t = -q~. Equations (5.1)-(5.3) are

This contribution is of the same magnitude as the

1/A term in Eq. (4.8). Combining Eqs. (4.8) and

(4.11) we conclude that taken together they cor-
rectly reproduce the first two terms in the ex-
pansion (3.5) of the binomial coefficients. To this
accuracy the result is equivalent to

L
X= exP iXo+ ~(Xo2 + t X, ) (4.12)

Being isospin-invariant, this is the desired gen-
eralization of Eq. (4.3).

We conclude that charge-exchange scattering
within the nucleus, being a 1/A correction to the

optical approximation, plays only a minor role in
elastic pion-nucleus scattering.

We note that the 1/A term in (4.12) is propor-
tional to the square of the nuclear density. There-
fore when this correction is taken into account we
should distinguish between s- and p-state den-
sities. We also remark that (4.12) is easily ex-
tended to account for nuclear correlations.

valid for any form of f(q), but in the (3, 3)-reso-
nance region it is sufficient to keep the s- and p-
wave contributions. When this is done

f(t) =u, +v,t, (5.4)

with uo and vo as defined in Appendix B. Going
back to Eq. (5.2) we get

X(6) = —
[uo T(6) + von2T(b)] . (5 5)

Here T(b) = f „dzp"(b, z) is the transmission factor
and 4, is the two-dimensional Laplace operator.
For analytic expressions for T(b) and e T(b) we
refer to Appendix A.

The term proportional to vo in Eq. (5.5) is en-
tirely due to the angular dependence of the pion-
nucleon P wave. The cross section is quite sen-
sitive to this term. This is illustrated in Fig. 3,
where we compare the result of a calculation
using Eq. (5.5) with one in which the v, term is
neglected. It is clearly seen that the latter ap-
proximation is unsatisfactory. It shifts the sec-
ond minimum by about 20' and reduces the for-
ward amplitude by a substantial amount. The rea-
son for the failure of this approximation, so suc-
cessful at high energies, is intimately connected
with the relative sizes of the nucleus and the pion-
nucleon interaction. At high energies the nuclear
radius is much larger than the range of the pion-
nucleon forces, and it follows that the nuclear
form factor S(q) is much steeper than the pion-
nucleon amplitude f(q). In the (3, 3)-resonance re-
gion, however, the pion-nucleon cross section is
several times larger than at high energies, and
the range of the pion-nucleon forces becomes com-
parable to the nuclear radius. Thus, for this case
the slope of f(q) is comparable to that of S (q).

In many of the applications of the Glauber model
the important v, term was neglected. This was
done in analogy with high-energy scattering. In
the (3, 3)-resonance region a proper application of
Glauber's multiple-scattering theory must use the
complete expression (5.5).
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FIG. 3. (a)-(d) Elastic differential cross section. Predictions of Glauber's model (solid line) and the high-energy
approximation of the same model (dashed line). Both calculations in the optical-limit approximation.
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Vl. DERIVATION OF AN OPTICAL
POTENTIAL

In high-energy potential scattering the phase
function y(b) of Eq. (5.1) is related to the potential
through

q(b) = -- dz{V(b'+z')'"),
U

(6.1)

for spherically symmetric potentials. When in-
stead the phase function is assumed to be known,

this equation defines the potential through an Abel
integral equation. In the previous section we found

oo P Qo

g(b) =
k u, dzp(b, z)+v, ~ dzn, p(b, z}

oo

potential model quite closely. We also conclude
that the agreement between the potential model
and the Glauber model improves with increasing
energy. This is of course not a very astonishing
result. In general the potential model and the
Glauber model differ appreciably for very large
scattering angles and experiments there favor the

potential model.

VII. COMPARISON WITH OTHER
OPTICAL MODELS

The potential V~ discussed in the previous sec-
tion is local in contrast to the Kisslinger potential4
which is given by

(6.2}

ln the last integrand we can add a term a'{p(b, z)) /
Bz' because it integrates to zero. It follows that
the multiple-scattering theory of Glauber is equiv-
alent to an optical potential

and

V (r) = ——[a,p(r) + t(,V ( p(r) V}],
1

Qo = Ro —2k Vo,

bo = -2vok, o/k, ,

(7 1)

(7.2a)

(7.2b)

VG(r) = ——[uop(r) + von, p(r)].
CO)

(6.3)

This method of arriving at an optical potential is
very attractive because it can easily be extended
to include 1/A effects, correlations, and absorp-
tion on nucleon pairs. A more conventional ap-
proach is given in Sec. VII.

In high-energy scattering one expects the poten-
tial V~ to give a result similar to the Glauber
model. We have investigated this correspondance
in the (3, 3)-resonance region. The pion is then
described by a Klein-Gordon equation,

(n + e, ' —u. ')p = 2e, Vag, (6.4)

with Vo as in Eq. (6.3}. This equation was solved
numerically by a computer program developed by
M. Krell. ' In Fig. 4 we compare the result with
that of the Glauber model. The general agreement
between the two methods and especially in the for-
ward direction is quite surprising. We must re-
member that the Glauber approximation is in-
tended for quite a different situation. It assumes
high-energy and small-angle scattering and also
that the pion-nucleon scattering itself is of a dif-
fractive nature. Despite the fact that these con-
ditions are not at all fulfilled in the (3, 3)-reso-
nance region, the general agreement extends to
very large angles. Of course there are differences
and they are large enough to be significant also
with present experimental accuracy. On the low-
energy slope of the (3, 3) resonance the Glauber
approximation smears out the first minimum and
displaces the second one quite considerably. On
the high-energy slope the Glauber approximation
gives deeper minima but otherwise follows the

f( = uo+ vot . (7 3)

For free pion-nucleon scattering -t=(k, -k, ')'
—(&u, —u, ')'. For scattering by a nucleon bound in
a nucleus the collision will take place off the en-
ergy shell. Because of the large nuclear mass
the recoil energy u, ' will differ only very slightly
from &u, and we can therefore put -t= (k, —k, ')'.
If we assume that the correct extrapolation of the
pion-nucleon amplitude is obtained by choosing the
correct t, we get

A o vo(kt kI) (7 4)

From this amplitude all phenomenological poten-
tials can be derived.

We first discuss Kisslinger-type potentials. As

where k, is the appropriate pion-nucleon lab mo-
mentum and k, the corresponding pion-nucleon
c.m. momentum. The solution to the Klein-Gor-
don equation, Eq. (6.4), with the Kisslinger po-
tential is displayed in Fig. 5. The cross sections
obtained differ very much from those obtained
with the local potential V~ or the Glauber model.
Krell and Barmo' ' and also Sternheim and Auer-
back'~ used 5, as a free parameter and looked
for the best fit to the experimental data. This
was obtained for an imaginary part of b, about
50% higher than the predicted one. This is quite
a significant difference and indicates that the Kiss-
linger potential is in fact not a suitable starting
point for a description of pion-nucleus scattering
in the (3, 3)-resonance region. Theoretically, this
inability can also be understood as follows.

The pion-nucleon lab amplitude which determines
the optical potential is given by Eq. (B2}:
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the energy loss has been neglected, we can re-
write Eq. (7.4) as

(7.5)f& =(uo —2ki vo)+2voki'ki.

Treating all quantities in this f, except k, k,' as
phenomenological constants we arrive at a Kiss-
linger potential (7.1) with

gp Qp 2k) vp

bp =-2v
p

(7.6a)

(7.6b)

Comparing with the standard Kisslinger potential
we see that b, is enhanced by a factor (k, /k, )'
= 1+2iv, /m+ p, '/m', where m is the nucleon mass.
At threshold this factor is only (1+u/m)', but in
the (3, 3)-resonance region it is considerable and

explains why the best fit of Sternheim and Auer-
bach requires a significantly larger bp than the
Kisslinger prescription. However, in order to
also reproduce f, (0) correctly this larger b, re-
quires a smaller a, . In fact in the (3, 3)-resonance
region ap gets a large contribution from the pion-
nucleon p wave. As a result the imaginary part of
ap becomes negative. When the corresponding po-
tential is used in the first Born approximation,
physically inadmissable results are obtained. Such
a potential yields production of pions instead of
absorption. However, when the corresponding
Klein-Gordon equation is solved, no production is
observed but the cross sections have a somewhat
strange behavior as shown in Fig. 5. However,
when the energy is lowered, the p-wave contribu-
tion to ap will diminish and we finally reach an en-
ergy where the imaginary part of a, is positive.
This is particularly true at threshold, where the
phenomenological potential obtained from (7.6a)
and (7.6b) is more appropriate than the standard
form (7.1). On the other hand we have not in-
cluded the true absorption by nucleon pairs which
will cut down the unphysical production and hence
reduce its associated problems.

The Kisslinger potential on the other hand is
based on a pion-nucleon lab amplitude of the form

fr=(uo —2k, 'vo)+2(k, /k, )'v k, k,'. (7.7)

When deriving the Kisslinger potential (7.1) from
Eq. (7.7) all quantities except k, tt,' are treated
as phenomenological constants. In the forward
direction the amplitudes f~ and f„arethe same.
The a, of the Kisslinger potential, Eq. (7.2a}, has
no admixture of the pion-nucleon p wave and there-
fore its imaginary part is always positive. The
price one has to pay for this convenience is an in-
correct description of the angular dependence, the
factor (k,/k, )' discussed above.

The upshot of this discussion is that a Kisslinger-
type potential is totally inadequate for a quantita-

VIII. GENERALIZATIONS

In this section we generalize some of our results
to nuclei with T g0. This will include charge-ex-
change and double-charge-exchange reactions. We
limit the discussion to transitions within the same
nuclear isospin multiplet. Such transitions will
be called coherent.

Consider a nucleus with T = —,
' and assume pro-

tons and neutrons bound into P pairs of isospin
zero except for the valence nucleon. It is not dif-
ficult to show that for coherent scattering the nu-
clear profile function factorizes; i.e.,

&ylII(1- r, ) I & =&pl (1 —r„)If& &o lII(1 —r, ) I o&.

(8.1)

The scattering by the core is treated as in Sec. IV.
We get the results

ikF.i(q) =—d'b e"b
2m

x 1 e"p i —«»+NX. }+—.(X '+t'X, ')

and

.W2 ik
)

-. b-
F~(q) =i'

I d—'b e'~' hX (6)A 2m' 1

(8.2)

.2P P
&«xP iA X. +Z. (X:+t'X,') . (8.3)

The extension to isospin T =1 nuclei is straight-
forwal d.

tive theoretical description of pion-nucleus scat-
tering in the (3, 3}-resonance region. The phenom-
enological potential based on approximation N
which correctly approximates the basic pion-nuc-
leon interaction develops unphysical properties in
the (3, 3)-resonance region. The phenomenological
potential based on approximation K avoids this
difficulty but on the other hand strongly misrepre-
sents the basic pion-nucleon interaction.

The only surviving potential is therefore our
local potential Vv of Eq. (6.3}. This potential can
be derived in a manner similar to the Kisslinger-
type potentials discussed above. We then start
from the original Eq. (7.4)

A = iio vo(kt —ki) i

and treat up and v, as phenomenological constants.
The operator q =k, —k,' acts on the nuclear density
function p(r) and yields the term ap(r) in Eq. (6.3).
It is therefore not at all necessary to go through
the Glauber model and relation (6.1) to motivate
our local potential, but one can directly use the
original method of Kisslinger.
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Then consider a heavy nucleus. We assume that

all M valence nucleons are neutrons and that the
core consists of P pairs of isospin zero. We also
assume M and P are so large that I/A effects can
be neglected. For elastic scattering this gives the
well-known result

F„(q)= —d'be'' Il —exp i (—ZX~+NX„)
L

(8.4)

In a coherent charge-exchange reaction the initial
m' turns into a m'. Nevertheless, the methods of
Sec. IV show that the scattering by the core re-
mains the same. For the valence nucleons, how-

ever, we must distinguish between scattering be-
fore and after the charge exchange. Introducing

X,.(b, z) =i d's p(s, z)I', (6 —s), i =0, 1

(8.5)

we get

(y~ ~ g (1 —I', ) ~ g,.) = 2 i' exp i
& X,(b)

.2P 1 . M —1 . M —1
dz —

X,(6, z)exp i X,(6, z')dz'+i X,(b, z'}dz'
~ 00 "z

(8.6)

Here the subscripts + and 0 stand for ii'n and ii'n scattering, respectively. The integration of (8.6} is tri-
vial and we get

)
~ d2b iq ~ b ~ ~X I 2P (M 1) X+ Xo t (8.7)

Finally, we consider coherent double charge exchange where the projectile m' leaves the nucleus as a m-.

Equation (8.6) is then generalized in an obvious way and we get

-8M ikF„,(q)=, —iPbeiq' sin ~ exp i 2p—X, +(M-2) (8.8)

Cross sections for other charge combinations are easily derived using the Wigner-Eckart theorem.

IX. CONCLUSIONS

The Glauber and Kisslinger models have re-
cently been used to describe the pion-carbon inter-
action in the (3, 3)-resonance region. None of the
models were originally intended to apply in this en-
ergy region, the Kisslinger model being a thresh-
old approximation and the Glauber model a high-
energy approximation. We have therefore investi-
gated some properties of these models relevant in
this particular energy region.

We conclude that the nonlocal Kisslinger poten-
tial in its standard form is inadequate because it
misrepresents the basic pion-nucleon interaction
quite strongly. If one tries to correct for this de-
fect a potential with unphysical properties is ob-
tained. The s-wave part of the modified potential
becomes productive instead of absorptive. This
complication does not occur at threshold and there
we suggest the use of the new modified potential
rather than the original one.

We have also shown that the methods of Kiss-
linger can be used to derive a phenomenological
local potential. In the (3, 3)-resonance region
this potential seems to be more promising than

the nonlocal potentials of the Kisslinger type. Its
detailed properties and implications will be stud-
ied in forthcoming publications.

Our new local potential is very closely related
to the Glauber model. In fact we have found that
the Glauber model reproduces the cross sections
of our local potential quite accurately and up to
very large angles. This is rather surprising be-
cause the Glauber approximation is a small-angle
approximation. In addition it assumes a diffractive
pion-nucleon interaction, whereas in the (3, 3)-
resonance region this interaction is dominated by
one particular partial wave. We have also investi-
gated other aspects of the Glauber multiple-scat-
tering series. Thus we have shown that in spite
of the large charge-exchange cross sections the
series can be conveniently summed and charge-
exchange effects can be accounted for.
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APPENDIX A

The following analytic expressions are valid for
nuclei 4 &A ( 16 that can be described by the har-
monic-oscillator potential. We assume that the s-
states are always filled (four nucleons) and that the
remaining A —4 nucleons are in the p states.

-) A+8 1 A —4 b bapaTb= ~ + e

-4 b 2

DaT(b) =, 16 —A+(5A —32)—
3 1Ta a

b 1i
-2 2—2(A —4) — 'e b i',

a

(A13)

(A14}

Single-Particle Densities
where Lz is the two-dimensional Laplace operator.

, zi, z
s state: p, (r) = »» e ' (Al) APPENDIX 8

2 K 2/ 2
p state: pa(r) = „»— e '

3w a a

The nuclear rms radius determines a;

Form Factors

(A2)

(A3)

Here we discuss the form of the pion-nucleus
amplitudes to be used in our calculations. We de-
note quantities in the c.m. system by a subscript
c and those in the lab system by a subscript l.
h((I) will be used as a common notation for f,i,(g)
and f„a(g).

In the region around and below the (3, 3)-reso-
nance only s and p waves are important in h(g).
Thus

Def' ed by: d(q)= fd' '"p( );

s state: S,(q) = e ' ' i',
P state: Sa(q) = (I -a a P)e ' '

(A4)

(A5)

(A6)

1
h, (t) =—[aa+(2a, + +a, ) cos8,],

C

cosa, =1+I/2k, ', (B2)

Nuclear Density and Form Factor

p(r) = 4p.(r) + (A - 4)p, (r)

4 A —4 r
(A7)

ai~ =e'~»sin5

where l' denotes angular momentum states with
j=l+-,'. Going over to the lab system we get an
additional kinematic transformation factor:

A —4 2~2
d(igl=b(f — 'q e ' '

6A 7 (A8)
h, (k, , k', ) =Jh,(k„k,'). (B4)

e,p(e) = „,yi —10 —
(

—
)

2(A —4) a '
-, a g, a

(A9)
3 a

where 4, is the three-dimensional Laplace opera-
tor.

The exact form for J is easily calculated but unin-
teresting. The leading terms in an expansion are

kJ ~ 1+ 2
' + ~ ~ ~

k, 4k, E+(d,

Transmission Factors

D f' dby: y(b)= I d'p(b, ),

T(b)= eS ~az

].T (b}= 1+2 — e3maz a

(A10}

(A11)

(A12)

We have ~,/(E, +(d,)= —,'and can therefore put J
= k, /k, a. At this point it is also important to re-
member that a large-angle pion-nucleus collision
will be predominantly made up by high-order
multiple-scattering collisions and that the mo-
mentum transfer will be roughly equally divided
between them. As a result the momentum trans-
fer in the individual pion-nucleon collisions will
be much smaller than k, and the leading term in
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Eq. (B5) becomes entirely sufficient. Thus

h, (t) =u+ ut,

u=, (a, +2a„+a,),~k

C

C

(B6)

(B7)

(B8)

By taking the appropriate isospin average, Eq.
(5.3), we get

f(t) =u, + vot,

u, = —,'[2u(-,') + u(-,') ],
vo = 3[2v(2)+ v( —,')],

(B9)

(B10)

(B11)

with u(T) and u(T) as defined in Eqs. (B7) and (B8).
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