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Separation Method for 0 Using One-Boson-Exchange Potentials
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Realistic, generalized, and regularized velocity-dependent one-boson-exchange-poten-
tial models of the nucleon-nucleon interaction are applied to calculate the low-lying en-
ergy levels of the nucleus 0 in the harmonic-oscillator shell model. The singlet even
states are treated by the Moszkowski-Scott separation method technique. The energy
levels so obtained are comparable to those obtained from the phenomenological Hamada-
Johnston hard-core potential. We do not attempt to calculate core-polarization effects
explicitly, but rather we attempt to simulate them by varying the coupling constant of
the light scalar meson.

I. INTRODUCTION

In a previous paper' we calculated the low-lying
energy levels of 0" in the harmonic-oscillator
shell model, using recent models of the one-boson-
exchange potential. It was found that the shell-
model matrix elements exhibited too much repul-
sion, and we concluded that it was necessary to
use reaction-matrix theory, where the potential
V is replaced by the Brueckner reaction matrix G
for the scattering of two nucleons. In this paper
we calculate the shell-model reaction matrix ele-
ments for 0' using several velocity-dependent one-
boson-exchange models. The main part of the cal-
culation is the determination of the Moszkowski-
Scott separation distances' for the singlet even
states. We consider potential models I and III of
Ueda and Green, ' referred to as UG I and UG III;
the two-parameter model of Green and Sawada, '
referred to as GSII; and the most recent model
of Bryan and Scott, ' referred to as BSIII. All
these models have p' velocity-dependent forces
and no hard cores. They are discussed in Sec. 2
of Ref. 1.

II. SEPARATION METHOD

The G matrix is defined by the integral equation

G = V —V(Q/e}G,

where Q is the Pauli operator and e is the energy
denominator. G also satisfies

GP= VP,

where (t) is the unperturbed wave function, which
is taken to be a harmonic-oscillator wave function
in the case of finite nuclei, and g is the correlated
wave function. From Eqs. (1) and (2) it follows
that

y = y —(q/e) Vy.

The application of the Brueckner theory to the
nuclear many-body problem is facilitated by the
Moszkowski-Scott separation method technique. '
This technique has been applied to the shell mod-
el by a number of authors" using phenomenolog-
ical potentials. Basically it involves a separation
of the potential (for a given state and relative mo-
mentum) into a short-range part V, and a long-
range part V, in such a way that V, gives no phase
shift. Then, to a first approximation, V, is the
effective interaction between nucleons. In calcu-
lating the energy levels of 0"we are only con-
cerned with the singlet even and triplet odd parts
of the potential. Since the triplet odd potential is
entirely repulsive, it is not susceptible to treat-
ment by the separation method. The reaction ma-
trix associated with V, is given by

G, = V, —V,(1/eo)G, .

Substituting Eq. (4) into Eq. (1) we find that

(4)

G=G, + V, (6)

to first order in G, and V, . The higher-order
terms, such as the Pauli and dispersion correc-
tions, are expected to be much smaller than the
contribution from V, and will not be computed in
this work.

The energy denominator eo is chosen as

eo =Ho(r) —E„,+Ho(R) —E„,,

2M ™r —E„, 2M
—'Mv R —E„„.,

(6)

where Ho(r) and Ho(R} are the relative and center-
of -mass oscillator Hamiltonian whose eigenfunc-
tions are, correspondingly, P„,(r) and P„,, (R) with
eigenvalues E„, and E„, , and M is the nucleon
mass. It is important to note that Moshinsky's
coordinates' are used throughout the discussion.
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TABLE I. Separation distances.

Model
dn

t,
'F)

The separation distance d is chosen so that the
diagonal matrix element of G, between oscillator
states vanishes:

(y.) I G. I y. , ) =0, at r =d.
HJ

UGI

UG III

GS II

0 0
1 0
2 0
Average

0 0
1 0
2 0
Average

0 0
1 0
2 0
Average

0 0
1 0
2 0
Average

1.015
1.061
1.134
1.070

1.047
1.102
1.182
1.110

1.047
1.103
1.180
1.110

1.018
1.078
1.160
1.085

(12)

The singlet even components of the one-boson-ex-
change potentials under consideration have p' ve-
locity-dependent forces and no hard cores. Ac-
cordingly, we consider

v, (r) = v, (r) + —,' a'[p'J(r) +A&)p'](, (13a)

Hy manipulating Eqs. (Bc) and (10), and using
Green's theorem, it may be shown that the con-
dition (11) is satisfied if the logarithmic deriva-
tive of the radial part of the correlated wave func-
tion matches the logarithmic derivative of the ra-
dial part of the oscillator wave function at the
separation point:

R,'(r) R„',(r)
R,(r} R„,(r)'

BSIII 0 0
1 0
2 0
Average

1.056
1.115
1.200
1.124

where

a=M (13b)

They are defined by

r = (r, —r, )/v 2, R = (r, + r, )/W2,

I) = (p, —p, )/W2, P = (p, + p, )/v 2.
We have

(7a)

(7b)

p2=-h2V2

On account of the relationship

Eq. (10}becomes

(13c)

(14)

E„,=(2n+ l+ 2)K((), n=0, 1,2, . . . , (Ba)

E„,=(2N+ 2+ —', )K.(d, N= 0, 1,2, . . . , (Bb)

&0(&)4 r
=+ )(I) ) ~ (Bc}

The correlated wave function may be expressed
as P„,, (R)((),(r), where P,(r), which is the correlat-
ed wave function for the relative motion, satisfies
an equation similar to Eq. (3):

(( aJ)v'(, („,—,(, —

(VZ) V ~ —', (O'J))$, =0,

where

)) =M(d/h =X

and

(16a)

q,(r) =y„,(r) —,, V,q,(r). (S) e„) =2v(211+1+ 2). (16b)

Equation (S}may be rewritten as

(10)

The quantity X is the size parameter of the oscilla-
tor and has the value 1.71 F for 0". The first-
order derivative in Eq. (15) may be eliminated by

HJ UGI UG III GS II BSIII

TABLE II. Talmi integrals of the static singlet even
potential. Units are MeV.

TABLE III. Decomposition of (1d5&& J =O~G)1d&/2 J=0)
for the singlet even potential. Units are MeV. The stat-
ic singlet even and velocity-dependent singlet even con-
tributions are denoted by CSE and VSE, respectively.

—5.464
-1.783
—0.585
-0.242
-0.124

—4.587
-1.629
-0.554
-0.229
—0.116

—4.266
—1.514
-0.525
—0.225
-0.118

-3.610
-1.388
-0.514
-0.226
-0.118

-3.778
-1.333
-0.448
-0.187
-0.097

HJ UG I UG III GS II BSIII

CSE -2.319 -1.837 -1.722 -1.398 -1.513
VSE 0.071 0.082 0.099 0.100
Total -2.319 —1.767 —1.641 —1.299 -1.413
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d u l(l+1)s+ e„,— s —V(r) u=0,nl +2 (19)

where

a Je„,+ (2M/if') V, + v'r' 1 a(Vj)
I+ad 4 I+ad

(20)

Equation (19) is the standard form of Schr5ding-
er's equation and may be integrated easily to give
the function u(r). The radial part of the correlated
wave function is then determined from

(21)

the transformation

4, =X(1+a&} "'
which leads to the differential equation

e„, —(2M/if )V, —v r 1 a(VJ}
1+aJ 4 1+aJ

(18)

If the radial part of X is expressed in the form
u(r)/r, then u satisfies

The radial part of the oscillator wave function is
given by

2

ft„,(r) =Af„,e ""(vr')'"t!„,(vr'), (22a}

where

n! 2 (2l+1)!!
(n —k)!k! (2l+ 2k+1)!!

(22b)

2' "' (2l+2n+1)!!
vs

I
(2l+ 1}!!]'n! (22c)

The separation distance is therefore determined
by integrating Eq. (19) outwards from the origin,
where u = 0, until a distance d is reached at which
the boundary condition (12) is satisfied. In addi-
tion, the correlated wave function is made to heal
to the oscillator wave function for r ) d by letting
ff,(d) =R„,(d). The shell-model G matrix elements
of the singlet even potential may be calculated us-
ing

(23)

The right-hand side of Eq. (23) is evaluated by ex-
panding it in a series of Talmi integrals, as dis-
cussed in Ref. 1. The Talmi integral of V, (r) is

TABLE IV. Matrix elements (abJIGicdli for Ota. Units are MeV. The column labeled HJ is derived from the
Hamada-Johnston singlet even potential in combination with the UGI triplet odd potential.

UG I UG III GSO BSrrr

ld 5/2

1d5/2

1d5/2

1d5/2

1d5/2
1d 5/2

~5/2

d 5/2

d 5/2

d 5/2

2s, /,
2s

~5/2

~5/2~5/2

1/2
2s |/2
dS/2

~5/2

~5/2
1d5/2

~5/2

d 5/2

~5/2

2SS/2

2si/2
2s 1/2
s 1/2

dW2

1ds/2

1ds/2

1ds/2

~S/2
1dsn

1d5/2

~5/2
2si/2
1d5/2

2si
1ds/2

~5/2

2s

1ds/2

sg/

1ds/2

~5/2

2s1/2
1dw2

2si/2
1dw2

1ds/2

~5/2

2s,n
2s,n
S/2

dS/2

1ds/2

2sf/2

1ds/2

1dsn
1ds/2

2S)/2

1ds/2

1ds/2

1ds/2

dS/2

Ids/2

dS/2

—1.021
-0.849
-0.333
—0.500
-0.710
-0.547
-0.954
—0.487
-3.511
—0.663
-0.947
-0.195
-0.085
—0.062

-1.477
-0.737

20231
—0.580
-0.124
—0.433
—1.764

-0.674
—0.782
-0.344
0.062
0.412

—0.150

—0.469
—0.692
—0.256
—0.387
-0.577
-0.436
—0.800
—0.395
—3.060
—0.543
—0.747
-0.195
—0.005
—0.062
—1.314
—0.650
-1.823
—0.471
—0.045
—0.433
—1.456
—0.609
—0.697
-0.211
0.132
0.781

—0.058

-0.421
-0.702
—0.247
-0.346
-0.533
—0.352
—0.740

-0.377
—2.861
-0.483
—0.693
—0.199
+0.010
—0.114
-1.222
—0.626
—1,699
-0.436
-0.087
-0.362
—1.357

-0.578
-0.680
-0.194
0.155
0.747

—0.058

+0.271
-0.522
-0.157
—0.290
—0.432
—0.351
—0.657
-0.289
-3.010
—0.461
—0.473
—0.090

+0.138
-0.253
—1.219
-0.610
-1.431
-0.353
+0.084
-0.260
—1.143
-0.625
—0.657
&.025
0.254
1.500
0.090

+0.329
—0.510
—0.140
-0.343
—0.470
—0,354
—0.685

-0.285
—3.310
-0.494
-0.443
—0.076

0.164
-0.295
—1.267
-0.644
-1.472
-0.384
+0.101
—0.256
-1.167
—0.699
-0.683
+0.0 74
0.251
1.680
0.142
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defined by

2 -t22 +2
I~[Vr]=,

r
e ' t ~' Vr(&t)dt,

fr 2 '~to

where

to =d/&.

(24a)

(24b}

excessive repulsion. It turns out that the comput-
ed values from the one-boson-exchange models,
based on the approximation (25), are close to the
values computed from the hard-core Hamada-
Johnston (HJ} potential using the reference-spec-
trum method. "

(rtr r I
G

I rtr r) = (rtr r I Vro I @rrr), (25)

where V» is the total triplet odd potential. We
consider the approximation (25) to be adequate for
the following reasons: (i) The one-boson-exchange
models under consideration are nonsingular, and
therefore the matrix elements of V~o do not di-
verge; (ii} the triplet odd matrix elements are
independent of the p =0 Talmi integral. Since the
short-range repulsion of the potential manifests
itself mostly in the p =0 Talmi integral, then the
matrix elements of V~ are not expected to exhibit

This is exactly the definition given in Ref. 1, ex-
cept that the lower limit of integration is no long-
er zero, but depends on the separation distance.
A factor v2 has been dropped because distances
are in v2 F.

For the triplet odd potential we make the approx-
imation

III. RESULTS AND DISCUSSION

We have computed the separation distances for
the s states for the UGI, UGIII, GSII, BSIII, and

HJ potentials; the results are presented in Ta-
ble I. The separation distances are, of course,
state-dependent. We denote by d„ the separation
distance for the s state characterized by radial
quantum number n. It is evident from Table I that
d„varies rather slowly with n,' therefore it is not
unreasonable to define an average separation dis-
tance d for each model,

d = —', (do+ d, + d, ) . (26)

We see that corresponding separation distances
for the various models are very close to one an-
other, differing by at most 5% in every case. This
is remarkable agreement considering how differ-
ent are the meson-theoretic, velocity-dependent
one-boson-exchange potentials from the phenom-
enological hard-core potential.

In Table II we present the Talmi integrals of the
static singlet even potential. We see that the vari-
ous models have similar Talmi integrals; in par-
ticular, the P = 0 Talmi integrals are in good
agreement with one another. This represents a
considerable improvement over the results ob-
tained with V matrices. ' The UGI model gives
the closest results to the phenomenological poten-
tial.

C9~ 0-
ILI

UJ

0
2

TABLE V. Contributions, in MeV, to the p =0 Talmi
integral of the static singlet even potential.

Model Meson Contribution Model Meson Contribution

UGI

7Ip
~V
~c

—1,219
-0.153
—1.179
1.864

-0.310
-0,276
-3.314

UG III

Og

Op

~c

-1.203
—1.092
1.978

-0.196
-1.280
—2.472

HJ UG I UG III BS III GS II

FIG. 1. Energy levels for 0 . The column labeled HJ
is calculated using the Hamada-Johnston singlet even po-
tential in combination with the UG I triplet odd potential.

GS II 7I -1.034
-0.360

2.346
-1.246
—0.064
—3.253

BSIII m'

Og

Op

—1.077
—0.123
0.055
2.101

-0.584
-4.152
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Q ~

(9
CL

UJ

UJ

nomenological model. The models differ most
from one another with respect to the J=0 ground
state, which is a consequence of the fact that this
level is particularly sensitive to the p =0 Talmi
integral of the static singlet even potential.

Finally, we attempt to achieve agreement with
experiment by varying the appropriate potential
parameters. Of course, as is well known, core-
polarization effects play an important role in es-
tablishing agreement with experiment. However,
the calculation of core-polarization effects would
greatly lengthen our calculations. Since the J=0
ground state is controlled mainly by the p = 0 Tal-
mi integral of the static singlet even potential, we
compute the contributions to this quantity from the
individual mesons. The contributions are listed
in Table V. We see that the light scalar meson
gives the dominant contribution in each model.
Accordingly, we vary the coupling constant of the
light scalar meson in order to obtain the best fit
to the experimental levels. The final values of
this coupling constant for the UGI, UGIII, GSII,
and BSIII models are found to be, respectively,
3.06, 2.72, 4.25, and 12.79, which represent in-
creases on the order of 60-80%%up. The correspond-
ing energy levels are shown in Fig. 2. They agree
reasonably well with experiment.

EXP (UG I )' (UG III)' (BS III)' (GS II)' IV. CONCLUSION

FIG. 2. Energy levels for 0 . The notation (UGI)',
for example, means that the levels are derived from the
UGI model which has been adjusted by varying the appro-
priate coupling constant.

In Table III we decompose the matrix element

( 1d~,2' J = 0
i 6 i 1d, (~' J= 0 )

for the singlet even potential. The results for the
various models are reasonably close to one an-
other. We note that the contributions from the p'
velocity-dependent components are almost negli-
gible. This is consistent with the well-known
effect of the Brueckner G matrix -that it sup-
presses the repulsive core of the potential.

In Table IV we list the G matrix elements for0" computed from the various potential models.
Corresponding matrix elements from the various
models are similar for the most part. The result-
ing energy levels are shown in Fig. 1. The UG I
model gives the closest agreement with the phe-

The present calculations confirm the conclusion
of Ref. 1 that it is necessary to use reaction-ma-
trix theory when performing shell-model calcula-
tions with one-boson-exchange potentials. We
found that the shell-model reaction matrix ele-
ments exhibited insufficient attraction to give
agreement with experiment. It has been found'
that the inclusion of core-polarization increases
the attraction of the matrix elements and depress-
es the energy levels. Since the role of the light
scalar meson in the one-boson-exchange model of
the nucleon-nucleon interaction is to provide a
long-range attraction, it is perhaps not surprising
that we have found it necessary to strengthen the
contribution from this meson in order to fit the
experimental energy levels more closely. The ad-
justments which we have made to the potential may
be regarded as simulating core-polarization ef-
fects. It is extremely unlikely that these adjust-
ments are consistent with the nucleon-nucleon scat-
tering data.
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Brueckner-Hartree-Fock Calculations Using Density-Dependent Effective Interactions.
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The effects of allowing variations in the radial orbital wave functions, or major shell mix-
ing, have been investigated within the framework of Brueckner-Hartree-Fock (BHF) theory
for 0 . The calculation is carried out in the matrix representation using harmonic-oscillator
wave functions as a basis. Effective G matrix elements are calculated through the use of a
density-dependent, two-body operator following a prescription of Bethe. Two possible param-
etrizations, the local-density approximation and an average-density approximation, are corn-
pared. Consideration of the rearrangement energy shows that it is an important contribution
to the binding energy. The problem is formulated in a way which facilitates the application of
BHF theory to deformed as well as spherical nuclei.

1. INTRODUCTION

Recent results have shown the feasibility of ap-
plying Brueckner-Hartree-Fock (BHF) theory to
finite nuclei. ' ~ This theory has emerged from
the efforts to incorporate Brueckner's treatment
of the nuclear two-body interaction into the frame-
work of a Hartree-Fock-like variational calcula-
tion. Using a suitable procedure for calculating
effective G matrix elements, the result is a prob-
lem somewhat more tractable than the conven-
tional approach of solving the Bethe-Goldstone
equation.

The Hartree-Fock (HF) part of the calculation
allows variations in the radial orbital wave func-
tions, a situation which has become known as ma-
jor shell mixing. "" We use the matrix represen-
tation with harmonic-oscillator wave functions as
the basis states. The states from the higher oscil-
lator shells which may mix into the ground-state
wave functions are determined from symmetry con-
siderations.

In the calculation of the effective G matrix ele-
ments for a realistic interaction, we follow a pre-
scription of Bethe" which utilizes a density-depen-
dent two-body operator. The density enters
through a parametrization of the tensor force and
also as a factor in the short-range part of Q, the
so-called core correction. Two possible alterna-

tives are considered: the local-density approxi-
mation (LDA) in which the effective interaction is
a function of the density at the center of mass of
the two interacting particles, and an average-den-
sity approximation (ADA) in which the density pa-
rameter is the average single-particle density.

The principal objective of this work is to estab-
lish a viable calculational procedure which can be
used for the application of the BHF theory to de-
formed nuclei. It is for this reason that two pos-
sible parametrizations of G are considered. We
compare in this paper the uses of the LDA and the
ADA in calculations of O". A treatment of de-
formed nuclei will be given in a subsequent paper, ~
designated by II. Our LDA calculation of O" re-
sembles work done by Negele" who, using the
LDA, did calculations in configuration space for
several closed-shell nuclei and obtained excellent
fits to the electron scattering data with his density
distributions.

In Sec. 2 we outline the theory which underlies
this work. We include a consideration of the so-
called rearrangement energy and discuss the rele-
vance of Brandow's work. In Sec. 3 we describe
the method of calculating effective G matrix ele-
ments. The application to 4N, even-even nuclei,
in particular 0", is presented in Sec. 4. Section 5
contains the results of the calculations, while the
conclusions are summarized in Sec. 6.


