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Two distinct types of perturbation theories for three-particle scattering which are based
upon the decomposition of the two-particle transition operators into dominant and weak parts
are investigated. The relationship of these two techniques and their usefulness in practical
calculations are discussed.

I. INTRODUCTION

A few years ago, Alt, Grassberger, and Sandhas
(AGS)' provided a general framework for a per-
turbative treatment of three-particle scattering.
An essential aspect of their approach is the de-
composition of the two-particle transition opera-
tors, t, into "dominant, " t', and "weak, " t~,
parts:

t =t~ +t

where the index n refers to that channel in which
particle a (=1, 2, 2) is asymptotically free. In the
AGS approach I," is incorporated in an exact fash-
ion into the three-particle scattering problem,
while t is to be treated perturbatively. The lib-
erty in the choice of t" and t, which arises from
the ambiguity in the definition of weak and domi-
nant, has given rise to a host of different realiza-
tions of the formalism of Ref. 1.' '

A distinctive attribute of the perturbation
theory of Hef. 1 is that even when t is incorpo-
rated into the formalism in lowest order, the re-
sultant three-particle scattering amplitudes con-
tain contributions from all orders of t", albeit
approximately. This particular property makes
possible the exploitation of the AGS theory as a
unitarization technique. ' 4 ' This is all quite anal-
ogous to the use of the K matrix in two-particle
scattering. For example, if one employs the Born
approximation for K, one still generates a scatter-
ing amplitude which contains the potential to all
orders. Needless to say, this attribute by no
means guarantees the success of the approxima-
tion.

On the other hand, Sloan' has recently proposed
a perturbation theory which is also based on the
split (1.1) of f into dominant and weak parts, but
which is somewhat more traditional in its handling
of the contribution from t . For example, in low-
est order in f the final (approximate) three-body
amplitudes are a sum of the exact solution ob-
tained with t =0 and a term of first order in t

We will use throughout this work the specific
form of the three-body scattering integral equa-
tions introduced in Ref. 1.' The physical scatter-
ing amplitudes can be obtained from the matrix
elements of the operators FB„which satisfy

= B+FtB,
where

B=5GO,

(2.1)

and G, is the free three-particle Green's function.
We have employed the usual (cf. Ref. 4) matrix
notation with respect to the channel indices z, P
=1, 2, 3. Thus, F represents a 3 x3 matrix whose
elements are the operators FB, t is a diagonal
matrix with elements I, 58, and the elements of
5 are 1 —5~ . The physical significance of the
operators Fs is derived from the fact that

V+ VG V=+ t~+ Q tsF~ t~,

where V and G are the full three-particle inter-
action and Green's function, respectively. ' "

If we write, corresponding to (1.1)

=F+FI; F, (2.2a)

We propose to clarify the connection between
these two theories. This turns out to be facilitated
by generalizing the formalism in Ref. 8 and placing
it in the canonical form of a scattering perturba-
tion theory, namely as an iteration expansion of a
specific integral equation. We demonstrate that
the Sloan procedure can, in a certain sense, be
regarded as a special case of the method of Ref. 1.
The practical utility of both of these techniques is
discussed.

II. PERTURBATION THEORY
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where

Z =B+Bt2y

=B+Tt B. (2.2b)

We will show that one can, using Eqs. (2.2), gen-
erate two distinct types of perturbation theories
based upon the decomposition (1.1) depending on

whether one identifies t' or t' witht'. Before we
demonstrate this a more definite characterization
of t~ is required.

The practical utility of (2.2) ultimately depends
upon the supposition that each t' be of finite rank
on the relevant two-particle subspace. We will
assume, henceforth, that each t~ has this struc-
ture, which implies that in the three-body c.m.
frame

x7&„,„,(q'„")F"„' (qy'(q ),
mhere, for example,

F~(q8lq. )=(P, n;q'8IFs l~, m;q. &

(2.4)

(2.5)

are matrix elements of E8 with respect to the
vertex states appearing in (2.3}. In the particular
instance of nucleon-deuteron scattering the on-
shell matrix elements (2.5}with respect to the
deuteron-pole vertex states are simply the elastic
N-d scattering amplitudes. ' For the sake of def-
initeness in our subsequent discussion we will
suppose that we are dealing specifically with the
three-nucleon problem, and that we are interested
only in elastic N-d scattering and breakup.

As Sloan' has pointed out, despite the enormous

f =g dq ~o, , n; q ) v„(q ')(o, m; q ~, (2.3)
f

where the sums over the discrete indices n and m

are finite, and q denotes the momentum of parti-
cle + in the c.m. system. In general the vertex
states (n, n; q ~

and (o., n; q ) are not dual to each
other. The vertex states as mell as the scalar
functions 7„depend, in general, on the three-
body parametric energy. ' We also assume that if
in any channel z there are two-particle bound
states, then some portion of each of these separ-
able contributions to t be included in t~ . It may
appear contradictory not to include anything but
the full two-particle bound-state pole contribu-
tions in t' . However, plausible arguments have
been put forth for other choices. '4 '

In the extreme case where t =0, Eqs. (2.2) re-
duce to Eqs. (2.1). The reduction of (2.1}in this
case to a set of multichannel quasi-two-particle
equations is then easily demonstrated. If t= t~,
we obtain using (2.1) and (2.3),

\0

F8.(4lq.}=B8.(qslq. }+ g [
~q,"B8„'(q'slq,"}

n'm', y

= B+Ft'B, (2 6)

and therefore, the vertex-state matrix elements
of F satisfy a set of integral equations of the form
(2.4). Provided that the number of terms in the
expansion (2.3) is small enough we can regard
these integral equations as practically soluble.
We have then an exact solution of the N-d scat-
tering problem with an approximate N-X dynam-
ics." I evidently can be regarded as the unper-
turbed transition operator. It is then natural to
look upon (2.2a) in this case,

E=E+Et F, (2.7)

as a "two-potential formula" for the complete
transition operator E with t in the role of the
perturbing "interaction. "

The perturbation expansion of Ref. 8 is, as we

shall demonstrate below, simply the iteration so-
lution of (2.V), viz. ,

I =I +I t I'+I t I' t "7+ ~ ~ ~ (2.8)

The convergence of (2.8) depends on the properties
of the kernel, Et, of the integral equation (2.7);
if f is "weak enough,

"
only a few terms of (2.8)

will be adequate.
Now for elastic N-d scattering we are only in-

terested in the on-shell deuteron vertex-state ma-
trix elements of E. If we call E(n}, where n= 0, 1,
. . . , the term in the expansion (2.8) which in-
volves n occurrences of t, me see that except for
n =0 all F(n) will involve non-vertex-state matrix
elements of F." For E(1) this presents no real
problem, since by (2.6)

F(1)=(B+Ft B)t (B+Bt E), (2.9}

and the on-shell deuteron vertex-state matrix el-
ements of the right-hand side of (2.9) can be ex-
pressed entirely in terms of the half-off-shell
solutions of the counterpart of (2.4) arising from
(2.6). This information is obtained in calculating
the vertex-state matrix elements of the unper-
turbed problem represented by F=F(0).

If n&1, more information than would normally

simplification achieved when one has reduced the
problem to the solution of a set of integral equa-
tions of the form (2.4) even these equations become
numerically unwieldly when the number of terms
in (2.3) is too large. This particular circumstance,
in point of fact, provided the specific motivation
for the introduction of his form of perturbation
theory.

We will now show that this perturbation theory
is based upon the identification of t' in (2.2b) with
t ~. Then

E=B+Bt F
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x t (a+ at 'E) . (2.10)

It seems evident that a perturbation theory based
upon (2.7) and (2.8) will be quite impractical unless
it suffices to neglect all terms in (2.8) for which
n~ 2.

The right-hand sides of (2.9) and (2.10) corre-
spond to the correction terms obtained by Sloan'
in his special case of a finite-rank t . Our main
addition to the discussion of Hef. 8 has been to
relate the perturbation procedure to the iteration
solution of a specific integral equation (2.7). Thus,
at least in principle, it is possible to discern
whether or not (2.8) converges (and how fast) from
the properties of Ft . However, the simplicity
and generality of our derivation of the form of
even the lowest-order correction, E(1), may be
more than of academic interest when considering
the full spin complications of the N-N interaction,
as well as the possibility that t is not of finite
rank.

It is also interesting to inquire as to how one
can compute the breakup scattering in a perturba-
tive fashion. It is well known that the breakup
scattering amplitudes are simply the on-shell ma-
trix elements

(p.w. iG 'E
i

vo.s.),
where ~p.w. ) is a plane-wave state,

~
o.;v.s. ) is a

deuteron vertex state, and

E,„=E,„+PF, t E
Y

where

Fo„—= Go(1++ t yE~ )

(2.11)

yields the breakup amplitude for the unperturbed
problem. ' ' We note that if E~ in (2.11) is com-
puted via (2.8) to order n in t, then Eo is of
order n+1 in t . We can avoid this disparity in

be obtained in solving the unperturbed problem is,
unfortunately, required. Obviously, since

E(0)=E=B+Bt B+Bt Ft B,

any matrix element of I can be expressed in
terms of its vertex-state matrix elements. How-

ever, in general, the latter are completely off
shell and this requires much more preliminary
computation than that for the input into E(l). This
additional computation is over and above that in-
volved in the evaluation of the multidimensional
integrals which are implicit in the matrix ele-
ments of E(n) for n&0. Given the completely off-
shell vertex-state matrix elements of F the eval-
uation of F(2) is best begun from the easily de-
rivable expression

E(2) =(a+Et'a)t (a+at'a+at'Et'a)

powers of t, as well as simplify the calculation
of breakup scattering, by neglecting the highest-
order term in F „when used in (2.11). This sim-
plification is quite real in the (only practical) ca.se
where we have taken

F=F(O)+F(1) (2.12)

in computing elastic N-d scattering. If we use
(2.12) in the right-hand side of (2.11) we evidently
need completely off-shell vertex-state matrix
elements of F in order to handle the contribution
from E(l). We can minimize this difficulty, as
well as keep the corrections to the breakup and
elastic scattering to equal orders of t, by using
in this case,

Eon = Fo.+ZEoyt ) E).
y

FA +FtdFA (2.13a)

where

PA B+Byte A

= B+FAt ~B. (2.13b)

The perturbation theory derived from Eqs. (2.13)
has been explained fully and applied in first order
in Hefs. 1 and 5. We will be concerned primarily

with comparing this method with that based on
(2.7).

The success of the AGS theory depends on the
possibility of using only a few terms in the itera-
tion solution of (2.13b):

FA = B+Bt ~B+Bt ~Bt ~B+ (2.14)

Again, if t is "weak enough,
" only a few terms

will suffice. Also, one can investigate the gener-
al convergence properties of (2.14) by studying the
kernel Bt . However, unlike the case of the ker-
nel of Eq. (2.7) this appears to be within the realm
of practical execution with the relatively simple
kernel Bt ." This feature of the AGS formalism
can be regarded as a distinct advantage over the
perturbation theory based on (2.7).

It is clear if (2.14) is truncated at some order
n in t, and the resultant (approximate) E" is em-
ployed as input in (2.13a), that the solution, E, of
(2.13a) will nevertheless contain t to all orders.
In order to see the connection in various orders of

which will involve a relatively restricted class of
completely off-shell vertex-state matrix elements
of F.

We will next outline the perturbation theory of
AGS' ' and compare it with the preceding tech-
nique. The AGS method is based on the identifica-
tion of t' with t~. In this case Eqs. (2.2) become

F FA+FAtdF
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t with the expansion (2.8) let us substitute the
infinite expansion (2.14) into (2.13a). Then we
write, formally,

F=Q F"(n),
ft= 0

(2.15)

F"(n) =F(n), (2.16)

as one would expect. It is also easy to demon-
strate that if the expansion (2.14) for E" is trun-
cated at the term of order n' in t, that the for-
mal expansion (2.15) will still be infinite, but the
equality (2.16) will hold only for n & n'. Thus a
truncation of order n in the AGS procedure yields
the series (2.8) exactly to nth order plus an ap-
proximate representation of all higher-order
terms. It is not clear which alternative is pre-
ferable, and perhaps some model calculations on

where F"(n) has the same significance as F(n)
Equating powers of t on both sides of the result-
ing integral equation we obtain

F"(0)=B+Bt'F"(0)=E(0),
E"(1)=B[t B+ t "Bt4F"(0)l + Bt F"(1)

=E~(0)t ~[B+Bt~E~(0)J

=F(0)t "F(0)=F(1),
and in general,

the lines of those carried out in Ref. 5 could shed
some light on this question.

One possible advantage of the AGS technique is
that although one has a more difficult integral
equation to solve in (2.13a) as compared to (2.6),
one never has to compute complicated multidi-
mensional integrals using the solutions of this
integral equation if one is only interested in elas-
tic scattering. We discussed the latter problem
at length in connection with the two-potential
theory and found that it limited that expansion,
for all practical purposes, to the consideration
of only the first-order terms. The multidimen-
sional integrals implicit in the higher-order terms
in (2.14) certainly present numerical problems,
but, for a given dimensionality, they appear some-
what more tractable than the corresponding terms
in (2.8). Finally, we recall that the prescription
in the AGS formalism for calculating the perturbed
breakup scattering involves only half-off-shell
vertex-state matrix elements of the unperturbed
scattering operator I'.
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